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ABSTRACT

Analysis of genome-wide expression data poses a
challenge to extract relevant information. The usual
approaches compare cellular expression levels
relative to a pre-established control and genes are
clustered based on the correlation of their expres-
sion levels. This implies that cluster definitions are
dependent on the cellular metabolic state, even-
tually varying from one experiment to another. We
present here a computational method that order
genes on a line and clusters genes by the probability
that their products interact. Protein–protein associ-
ation information can be obtained from large data
bases as STRING. The genome organization
obtained this way is independent from specific
experiments, and defines functional modules that
are associated with gene ontology terms. The
starting point is a gene list and a matrix specifying
interactions. Considering the Saccharomyces
cerevisiae genome, we projected on the ordering
gene expression data, producing plots of transcrip-
tion levels for two different experiments, whose
data are available at Gene Expression Omnibus
database. These plots discriminate metabolic
cellular states, point to additional conclusions, and
may be regarded as the first versions of
‘transcriptograms’. This method is useful for
extracting information from cell stimuli/responses
experiments, and may be applied with diagnostic
purposes to different organisms.

INTRODUCTION

Genome-wide expression data consist of expression levels
of thousands of genes and the joint analysis of the whole

data represents a challenge. The usual approaches
compare expression levels of modified cellular stages
relative to those of a pre-established control. The genes
are then ranked by the variations in expression relative to
the control and those genes that present the most signifi-
cant alterations (highest or lowest) are chosen to be
further analyzed. However, genes have their expression
dynamics determined by a network of other genes and
moderate alterations on many interacting genes may
cause measurable effects on cell metabolism. These
effects may be overlooked when using the maximally
altered level criterion but, on the other hand, the great
amount of data may prevent a more accurate analysis.
From a broader point of view, however, analysis of a

great amount of information is not a novelty in scientific
research. Even in everyday life events, people deal with
amounts of data that largely exceeds their capacity to
process. Indeed, data filtering to process only the most
relevant information is an ability that saves time and
energy and, probably, it has been repeatedly selected
during evolution. A common example of data filtering
can be given by a high-resolution photograph: although
the digital file contains information on a huge number of
pixels, much higher than the number of pixels in a
computer screen, a picture of the whole object can still
be produced on the screen. Image processing tools
assign to each screen pixel some average of the informa-
tion stored in a neighboring group of digital pixels,
reducing the total information sent to the computer
screen but still preserving global information. Observe
that zooms may be applied to these pictures to obtain
partial images such that, after a zoom, each screen pixel
is assigned with the average of the information stored by a
number of neighboring digital pixels. In other words, a
huge collection of data relative to a whole phenomenon
may be presented either by a coarser, global image or by a
finer but partial image of the whole. In this example, the
key point is the average of information stored on
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neighboring pixels. Furthermore, the averaging over
neighboring pixels also acts in the sense of neutralizing
spurious fluctuations caused by some random external
effect.
In this article we present a method to produce ‘images’

of gene expression data of whole genomes, by producing
expression profiles for transcriptomes. The idea of the
method is to consider averages of expression data over
neighboring genes disposed on a line, as in the metaphoric
example of the high-resolution photograph. In one hand,
this procedure targets a global assessment of expression
data of whole genomes. On the other hand, it requires the
definition of gene neighborhood when disposed on a line,
which is not straightforward.
Expression levels of different genes may differ by large

amounts. Consequently a random list of genes generates
plots of relative gene expression levels that fluctuate so
wildly that very few, if some information, can be
gathered from them. Techniques to extract information
from wildly fluctuating general profiles consider averages
taken over intervals of neighboring points. In the case
where genes are ordered on a list following some criterion
that favors clustering together interacting genes,
the distance between any two genes on the list may cor-
relate with the probability of mutual interaction, yielding
then a natural criterion to define gene neighborhood on
the list.
Many algorithms exist that find clusters of nodes in

complex networks. These algorithms have been successful-
ly applied to gene networks based on protein–protein
interactions [see, for example, refs (1–4)]. However, they
do not order genes on a list, but rather present the genes
that belong to the same cluster in an arbitrary order. An
exception is the clustering algorithm proposed by Barabási
and collaborators (5,6), as we discuss in the following
sections. Also, analysis of trancriptomes often cluster
together genes by their co-expression, or co-variation in
time, which implies that these cluster definitions depend
on the stage the cell is going through or on the protocol
used to produce the assessed sample.
Here we present a method for ordering a list of genes

using the computational physics method known as Monte
Carlo (7), that we call Cost Function Method (CFM).
The aim is to cluster on a line interacting genes, such
that the distance between two genes on the list correlates
with the probability that they interact, that is, the prob-
ability that their protein products are associated in
protein–protein association data bases as STRING (8).
A first advantage is that the definition of these clusters is
independent from the specific stage the cells are at a given
moment, or the protocol they have suffered. The genome
ordering we propose here defines a mathematical metric
that correlates the distance between two genes on the
list with their mutual influence. In this sense, the probabil-
ity that two genes interact decreases with the dis-
tance between their localization on the ordered list, and
an average of the expression levels over neighboring
genes on this list dumps fluctuations and produces a
smooth profile—that we call ‘transcriptogram’. As
we show in the following, the ordering is capable
of clustering together genes belonging to terms of

Gene Ontology: Biological Processes (9). Furthermore,
expression profiles projected on the ordering give
enough information on the global performance of a cell
to discriminate different metabolic or biosynthetic
processes, rendering a global assessment of cellular
metabolism.

MATERIALS AND METHODS

We retrieved protein–protein interactions from STRING
database (8th version) (http://string.embl.de/) (8), using
‘experimental’ and ‘database’ (95% of these interactions)
added with ‘neighbourhood’, ‘fusion’, ‘co-expression’, and
‘co-occurrence’ evidences, String-score�0.800, comprising
4655 genes and 47 415 interactions.

Gene Ontology (GO) term enrichment was performed
using DAVID bioinformatics resources (http://david
.niaid.nih.gov) (10) to determine whether particular gene
ontology terms occur more frequently than expected by
chance in a given set of genes. We used default settings for
the category GOTERM_BP_ALL, and selected those
terms with P< 0.05 (for FDR no greater than 5%) repre-
senting central biochemical pathways/metabolic functions.
From bit strings where the ith bit is set to 1(0) whenever
the ith gene of an ordering is (not) listed in the GO term,
we obtain smooth profiles by assigning to every gene the
fraction of bits with value 1 in a window of size w, centred
on the gene.

Yeast transcript expression data were obtained from
YG_S98 array platforms (Affymetrix, Inc.), available
at GEO database, Series GSE3431 (11) and GSE423
(12) (http://www.ncbi.nlm.nih.gov/projects/geo/). The
transcriptograms are obtained by assigning to the ith
gene the average of the expression values of its neighbors
in a window of size w centred at the gene.

RESULTS

The starting point for the method is a randomly
enumerated list of genes and the corresponding matrix
specifying the interaction between the proteins. Here we
consider gene or protein interaction as the physical and/or
functional association presented by any pair of protein
products. This body of information has been produced
along the years by different researchers around the
world and is magnificently organized and available at
STRING database (8). We retrieved all protein–protein
interactions described in that database inferred by ‘experi-
mental’ and ‘database’ evidences for the organism
Saccharomyces cerevisiae. Our final list comprises 4655
genes and 47 415 interactions.

For an ordered list with N genes, the interaction
data may be organized in an N�N matrix M, where
the matrix elements, Mi,j, are 1 or 0 depending on
whether or not the ith and jth genes on the list interact.
The result is a symmetric matrix of zeroes and ones with a
null diagonal. We propose here an ordering algorithm that

3006 Nucleic Acids Research, 2011, Vol. 39, No. 8



favors the proximity of interacting genes by minimizing a
cost function E assigned to each ordering, given as

E ¼
X

i¼1

X

j¼1

dijf Mi, j �Mi+1, j

�� ��+ Mi, j �Mi�1, j

�� ��

+ Mi, j �Mi, j+1

�� ��+ Mi, j �Mi, j�1

�� ��g ,

ð1Þ

where, |..| stands for the positive value of the difference of
the matrix elements located at neighboring sites and dij is
proportional to the distance from the point (i,j) to the
diagonal, that is, dij ¼ i� j

�� ��. This cost function increases
with the number of interfaces between one and zero
elements on the matrix and increases further when these
interfaces are far from the diagonal. We remember that
points (i,j) far from the diagonal present very different
values for i and j, implying then interactions between
distant genes on the ordering.

After starting with a randomly ordered gene list and its
corresponding interaction matrix, the algorithm proceeds
by randomly choosing a pair of genes and swapping their
positions on the ordering. A new interaction matrix is
produced for this new ordering and its cost is recalculated
using Equation (1). If the cost decreases, the change is
accepted. If the cost is increased by �E, the change is
accepted with probability exp [–�E /T], where T is a
virtual temperature. We started with T=6� 105 and
every 100 Monte Carlo Steps (MCS) the temperature is
lowered to 20% of its previous value. A MCS is a number
of random choices equal to the number of elements in the
system. This procedure is known as a ‘simulated anneal-
ing’ (13), and is intended to escape from metastable states.
When changes are not accepted, they are discarded and a
new gene pair is chosen to repeat the process. This
procedure is repeated until the calculated value of cost is
stabilized. See Supplementary Figure S1 for the plot of the
cost function versus number of changes.

Figure 1 presents the interaction matrices relative to S.
cerevisiae for the initial random gene ordering (Figure 1a),
after ordering following the Dendogram clustering
algorithm as proposed by Barabási and collaborators (5)
(Figure 1b), and following the algorithm described above
(Figure 1c). For each figure, vertical and horizontal axes
give the relative gene positions on the ordering. See also
Supplementary Data for the details for the Dendogram
ordering. These positions are normalized, such that the
ith gene on the list is assigned the position i

4655 on both
vertical and horizontal axes. In these figures a black dot
located at (i,j) indicates an association between the gene in
position i on the horizontal axis with the gene on position
j on the vertical axis such that Mi,j ¼ 1. All three config-
urations present the same number of black dots and rep-
resent the same information on protein–-protein
association.

The difference between the figures stems in the different
localizations of the genes on the axes. The randomly
ordered gene list distributes uniformly the interaction-
representing-dots over the whole matrix surface. After
Dendogram ordering, some black dots are concentrated
on the main diagonal with some large clusters, while
after CFM ordering the black dots concentrate even
nearer the diagonal, leaving the top left and bottom

right corners free of black dots. These two corners repre-
sent interactions between genes located far apart on the
list, since they represent matrix elements Mij for which i
and j are very different. Furthermore, the black dot
clusters far from the diagonal, which are present in the
interaction matrix representing the Dendogram ordering,
indicate that there are many interacting genes belonging to
clusters located far apart on that ordering.
A way of quantitatively characterizing the orderings is

using the interaction probability �ðnÞ for two genes that
are separated by n positions on an ordering. This
probability is given by the relative number of black dots
on diagonals distant by n pixels from the main diagonal on
the interaction matrix and may be calculated as

�ðnÞ ¼
1

N� n

XN�n

i¼1

Mi, i+n: ð2Þ

Figure 2 presents �ðnÞ versus n for the Dendogram and
CFM algorithms in log-linear plots. Observe that the
Dendogram algorithm stabilizes �ðnÞ at a finite value as
n increases, but the CFM algorithm yields an exponential
decay (represented by a straight line in a log linear plot)
for this probability. It implies that the probability that two
genes interact decays exponentially with the distance
between their locations on the CFM ordering, while
stabilizing at a finite value (�10�3) in the case of the
Dendogram ordering. For very short ranges, however,
Figure 2b shows that the Dendogram algorithm concen-
trates more on the interacting genes, up to 20 genes
distant; between 20 and approximately 600 genes apart
the CFM concentrates more, between 600 an 1000 they
present roughly the same interaction probability and, after
that, the CFM ordering presents exponentially decreasing
�ðnÞ. We interpret this exponential decay in �ðnÞ for the
CFM ordering as a correlation between interaction and
localization of the genes on the ordering. This correlation
yields to adequate averages over neighboring genes,
allowing the smoothing out of wild fluctuations in the
diverse profiles. For comparison we considered four arti-
ficially constructed networks whose results are presented
on Supplementary Materials Online.
Gene ordering on a line is a frustrated process, in the

sense that conflicts appear on how to order genes. It may
happen that a gene interacts with two different clusters,
say cluster A and B. This gene could be located near any
one of the clusters or in some place in between. A criterion
must be provided to resolve these conflicts. When favoring
putting this gene together with, for example, cluster A, the
blocks near the diagonal are more compact, but the price
for that is the appearance of dots far from the diagonal,
representing the interactions of the gene with cluster B. On
the other hand, when the ordering method favors putting
the gene in some place between clusters A and B on the
ordering, the locations far from the main diagonal on the
interaction matrix are free from black dots (there is no
interaction Mij such that i and j are very different) but
the blocks near the diagonal are less compact.
While ordering, CFM algorithm acts to reduce a cost

function by penalizing configurations with interactions
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Figure 1. Protein–protein interaction matrix analysis algorithms. The axes relative to gene position have been divided by the total number of genes:
4655. (a) Random ordering. (b) Dendogram ordering algorithm. (c) Cost Function Minimizing (CFM) algorithm. (d–l) Projection of diverse terms of
the Gene Ontology: Biological Process, as indicated in the right hand frame of each row. Gray landscape backgrounds: window modularity for the
orderings. The maxima at the window modularity plots correspond to larger concentrations of black dots on the matrix representation, that is,
intra-module interactions are more intense in these regions.
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between genes located far apart in the ordering. This is
done by the factor in Equation (1) that depends on the
distance of a black dot (representing interaction between
two genes) from the main diagonal. The consequence is
reflected in the probability that two genes located n
positions apart on the ordering, �ðnÞ, decays exponentially
with n.

The Dendogram method, on its turn, does not penalize
strongly enough interactions between genes far apart on
the ordering, favoring compact blocks near the main
diagonal. The consequence is an interaction probability
between genes, �ðnÞ, that is large for small n, decreases
fast for intermediate distances and then stabilizes at a
constant value, as shown in Figure 2.

Window modularity

To further characterize the orderings, we have considered
the window modularity for each gene on an ordering,
defined as follows. For each gene on the ordering
consider its w/2 neighbors to the left and its w/2 neighbors
to the right, comprehending an interval of w+1 genes.
The window modularity Ww(i) for a gene, located at the
ith position of the ordering, is defined as the ratio between
the number of interactions that link any two genes in the
interval (window) of size w+1 list, centered at the ithgene,
and the number of interactions involving at least one gene
in that window (14). That is,

WwðiÞ ¼
1

PN
j¼1 Mi, j

Xmodði+w
2, NÞ

j¼modði�w
2, NÞ

Mi, j, ð3Þ

where,

modði+n, NÞ ¼ i+n
i+n�N

if i+n�N
if i+n>N

�
ð4Þ

accounts for periodic boundary conditions to deal with
genes near the ends of the list.

Window modularity strongly depends on the window
size w. For example, for a window containing all genes
of an ordered list, window modularity is one for every
gene. However, when a gene is at the center of an
interval that describes a highly interconnected cluster, its
modularity decreases for windows smaller than the cluster
size. This happens due to interactions connecting genes
inside the window with genes outside the window but
still belonging to the cluster. Also, genes that link different
clusters present low modularity. On Figure 1d–l window
modularity is represented as gray landscapes. There we
have chosen w= 251. Plots for other values of window
size are presented in Supplementary Data, as well as for
other artificial networks for didactic purposes. The choice
of the window size w depends on the desired accuracy for
the peaks. In fact, as window size increases, the rugosity of
the window modularity profile varies. It first increases,
passes to a maximum and then decreases as w increases.
Rugosity of a profile is defined as the standard deviation
of the profile height and gives a measure of the amount of
peaks and valleys. (See Supplementary Figure S4c and
S4d). Here we choose w= 251 to have a more global de-
scription of the GO: BP terms. However, smaller windows
may enhance accuracy for the modularity profile, as well
as for expression data analysis (See Supplementary Figure
S13 and S14 and discussion below).
Observe that window modularity in both Dendogram

and CFM orderings present well defined peaks and
valleys, indicating interacting modules. The random list
presents a very low modularity for all genes. Taking
random fluctuations as a null hypothesis, and estimating
the standard deviations of random fluctuations from the
random ordering modularity (� �0:00735), the probabil-
ity that both CFM and Dendogram window modularity
peaks and valleys are random is virtually zero, that is,
peaks and valleys of heights of order 0.5 are more
distant from the random average than 50 standard devi-
ations of the window modularity distribution in a random
ordering. The magnitude of both average and standard
deviations for the window modularity may be directly
estimated from the figures.
Although, the peaks in CFM and Dendogram orderings

are similar in height, in the CFM ordering the valleys are
deeper and the number of peaks separated by deep valleys
is smaller. In fact, since there are valleys with different
depth in the CFM ordering the peaks may be hierarchic-
ally defined: smaller clusters composing larger clusters.

Biological characterization

To assess the biochemical meaning of the orderings we
have projected on the ordering information regarding
the Biological Process terms from the Gene Ontology
(GO) Database (9). We used ‘DAVID’ Bioinformatics
Resources (10), as described in Materials and Methods,
to obtain the GO terms of Biological Process Ontology
that best represent each window modularity peak. After
obtaining the representing terms, we calculated for each
one a profile over the whole ordering. These GO term
profiles are smooth functions of gene localization and
give the fraction of genes that belong to the GO term in

Figure 2. Interaction probability �ðnÞ as a function of n. This gives
information on the quantity of links between genes as a function of
their distance on the ordering. (a) On a log-linear plot and the whole
interval, to evince the exponential decay of dot density on the CFM
plots and (b) for a smaller interval in n to evince the behaviour near the
main diagonal.
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windows of 251 sites around a given gene. See Figure 1d–l.
For the randomly ordered list, no peaks are seen and no
information can be gathered from these plots. For the
ordering obtained using Dendogram algorithm, some
peaks appear, but the ontology terms are not as
concentrated as for the CFM algorithm. Again, having a
null hypothesis of random fluctuations whose standard
deviation is estimated from the random ordering projec-
tions, the probability that the peak values of the terms
profiles presented by both CFM and Dendogram
algorithm are random fluctuation is virtually zero, since
they lay more distant from the random average than tens
of standard deviations. See Supplementary Figures
S8–S10 . Also, the CFM ordering successively locates
classes of GO terms in an order that reproduces cell
cycle: from right to left we first find terms associated
with energy metabolism, followed by cell morphogenesis
and cell communication, then GO terms related to vesicle
transport and Golgi vesicle transport, then DNA replica-
tion and repair, and finally GO terms associated with
RNA production and translation.

Network properties

The orderings may be characterized using the connectivity
k(i) and the clustering coefficient c(i) of the ith gene on the
ordering (15). The interaction matrix gives information on
which pairs of genes interact. The connectivity k(i) of the
ith gene on the ordering is defined as the number of genes
with which it interacts. On its turn, the clustering coeffi-
cient c(i) is defined as the fraction of existing links between
any two of the k(i) neighbors of the ith gene, relative to the
maximum possible number k(i)[k(i)-1]/2 of such links.
Figure 3a and 3b presents the connectivity and clustering
coefficient profiles for, respectively, the CFM and
Dendogram orderings, obtained by taking the average of
these quantities over windows of 251 sites. The connectiv-
ity profile of the CFM ordering shows that (i) genes with
higher connectivity are more concentrated than the
Dendogram ordering, presenting a high peak around the
window modularity maximum at the region located at

0.2–0.3 on the horizontal axis. This region of the CFM
ordering is rich with genes belonging to GO terms
associated with translation, while the poorly connected
genes are found at the ordering extremities. Also
Figure 3 shows that (ii) the clustering coefficient decreases
to very small values at the ordering extremities for the
CFM ordering.

From now on we concentrate in analyzing the results
for the CFM ordering. We sliced the CFM ordering in
seven pieces, using the window modularity peaks as a
guide (Figure 4e). The genes of each piece, together with
the information on the interaction between these genes,
are fed to Medusa application (16) and partial network
graphs were produced, shown in Figure 4. The biological
functions are mapped with GO terms. Observe that in this
figure we are able to discriminate gene networks of related
functions.

For example, networks p1, p2 and p3 (Figure 4a–c) are
all associated with transcription and translation processes,
as rRNA/mRNA processing and ribosome biogenesis and
assembly. Network p4, also overlaps these functions
(Figure 4d), represented by DNA repair/replication and
cell-cycle regulation. All these four gene networks have
in common the synthesis of biological polymers. By
contrast, network p5 seems to be a single cluster,
shifting the ordering to other biochemical classes
(Figure 4f), such as cell communication and morphogen-
esis. The last two gene networks (Figure 4g–h) present a
variety of functions, from actin cytoskeleton organization
and vesicle transport to carbohydrate, lipid and amino
acid metabolic processes.

A feature of the right side of CFM ordering is the
presence of several intermediate products and
ATP-producing pathways (e.g. carboxylic acid cycle and
cellular respiration). The network structure is enriched
with highly interconnected anabolic and catabolic
pathways, which is consistent with the basic strategy of
central metabolism to form ATP, electron carriers and
precursors for the biosynthesis of more-complex mol-
ecules. Therefore, gene networks p6 and p7 are related
to the production of both energy and the building
blocks from which other biomolecules are made.

At the other end of the CFM ordering (the left side), the
functional boundaries of the network structure seems to
be better discriminated. There are sub-clusters associated
with several processing steps that control the flow of
genetic information in cells.

In summary, the metabolic pattern as organized by the
CFM algorithm gives rise to a sound biochemical and
functional ordering, where the closest gene networks are
more interrelated than the distant ones.

The transcriptogram: projection of gene expression data

Now we analyze gene expression data for the yeast
genome. We focus on experimental data available at
Gene Expression Omnibus database, regarding
microarrays presenting probes for almost all genome com-
ponents. We have then projected the expression on the
CFM ordering, always considering window averages,

Figure 3. Connectivity and clustering coefficient for (a) CFM and (b)
Dendogram ordering. The gray landscapes are relative to the window
modularity. The window size is 251.
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obtaining expression profiles that we call
transcriptograms. Here we present transcriptograms for
S. cerevisiae using data obtained from two different
experiments.

The first one, as explained in a very nice paper by Tu
et al. (11), considers expression data obtained from yeast
continuous culture, in controlled conditions, where the
concentration levels of dissolved O2 are constantly moni-
tored. These levels vary periodically in time and the tran-
scription levels were measured for 12 different stages in
three different dissolved O2 concentration oscillation
periods, summing up 36 transcription profiles.

Figure 5 presents the results concerning trans-
criptograms obtained using the CFM ordering. A movie

presenting all 36 snapshots is available at Supplementary
Materials Online, as well as the results for the Dendogram
ordering. Figure 5a presents 21 transcriptograms (7 per
cycle), taken at the instants represented by the colored
(orange, blue and purple) dots on the plot of dissolved
oxygen versus time in log-linear plot (Figure 5b). Each
color is associated with one cycle. Figure 5a also presents
the window modularity as a landscape, to guide the eye,
and the distribution of three gene clusters as defined in Tu
et al. paper based on sentinels genes: Ox (oxidative), R/B
(reductive, building) and R/C (reductive, charging). Figure
5c–i present the relative expression profiles at different
instants. The relative profiles were calculated taking as ref-
erence the average of the expression intensity for each gene

Figure 4. Graph representation of the CFM ordering. The axes relative to gene position have been divided by the total number of genes: 4655.
(e) CFM ordering was sliced in seven pieces, using the window modularity peaks as a guide for this division. The genes of each piece, together with
the information on the interaction between these genes, were fed to Medusa application to produce the network graphs. (a–c,e–h) Network graphs
associated with each peak, whose biological functions are mapped with GO terms using ‘DAVID’ bioinformatics resources.

Nucleic Acids Research, 2011, Vol. 39, No. 8 3011



Figure 5. Saccharomyces cerevisiae transcriptograms. The axes relative to gene position have been divided by the total number of genes: 4655.
(a) Microarray data available at Gene Expression Omnibus database were projected on CFM ordering to obtain the expression profiles, or
transcriptograms. Each color is associated with one cycle, as shown in (b). Projections on the ordering were performed always considering
window averages. To guide the eye, the window modularity is depicted as a landscape, together with the distribution of three gene clusters, as
described previously, based on sentinels genes: Ox, oxidative; R/B, reductive, building; R/C, reductive, charging. Also, the distribution of the 40
genes whose expressions are maximally altered in the interval 0.35–0.45 of the CFM ordering. As discussed in the text, these genes are mainly related
to catabolism of macromolecules and nuclear transport. (b) Plot of dissolved Oxygen versus time in log linear. Transcriptograms (seven per cycle),
were taken at the instants represented by the colored (orange, blue and purple) dots. (c–i) Relative expression profiles. Transcriptograms were divided
by the average expression values of the first state of the cycles (Time=0, 300 and 600 min). c: represents the relative expression profile corresponding
to the first dot of each cycle; d: represents the second dot of each cycle and so on. (j) Oscillations in expression levels of the sentinels genes: Ox,
oxidative; R/B, reductive, building; R/C, reductive, charging, together with the most altered genes for the interval 0.35–0.45 of CFM ordering
(yellow). These are average levels of the 40 most altered genes in each case.
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presented at times equal to 0, 300 and 600 min, which rep-
resent the first stages of each cycle. We have divided each
gene expression intensity for its respective average, and
projected over the ordering after performing a
251-window average, as done for other quantities.

The expression profiles show different behaviours for
the left and right hand side portions: the expression
profile of left side peaks extremely abruptly at the
intense burst of oxygen consumption, while the right
side gradually rises when cells begin to cease oxygen con-
sumption. According to the gene networks mapped in
Figures 1 and 4, the left side embraces several energy-
demanding processes, essentially represented by the syn-
thesis of biological polymers. It requires abundant
amounts of adenosine triphosphate (ATP), which is avail-
able in profusion at the respiratory phase. This interplay
of metabolic pathways for energy production is compat-
ible with the time ordering through the phases Ox, R/B
and R/C as described in the original article (11).

Our results support the conclusion drawn by the
authors based on the expression of 40 genes for each
cluster, a small gene fraction available in yeast transcrip-
tomes. Here, by the use of transcriptograms, we present
the dynamic changes during the metabolic cycle assessing
the complete information.

Moreover, the transcriptograms allow going further.
There are more regions in the ordering that are signifi-
cantly varying during the yeast life cycle. Figure 6
presents the transcriptograms together with the signifi-
cance intervals for each point, given as the colored ir-
regular bands. These significance bands have been
calculated as follows. Taking the points at T=0, 300
and 600 min as the reference (the initial stage of each
respiratory cycle), we estimated the variation from the
standard deviation of relative expression levels for each
gene. The yellow band stands for relative gene expression
levels that deviate from the initial stage average from 0
to 2 SDs. The pale pink band stands for regions where
the relative expression levels deviates from the initial
values from 2 to 4 SDs and the gray regions stand for
deviations larger than 4 SDs. Because the expression
levels of each gene present different values of standard
deviations, these bands present irregular interfaces.
Besides the regions pointed by Tu et al. the
transcriptograms point to the interval from 0.35 to 0.45
as significantly varying during the respiration cycle
(several standard deviations). See Figure 6 for times
from 25 to 125 min. For illustration, we present in
Figure 5j the average expression levels of the 40 genes
that present the highest variations in this interval,

Figure 6. The respiration cycle transcriptograms and an estimate of the confidence intervals. The reference averages and their variations are
estimated from the average and standard deviation for the relative expression level of each gene i in the initial state of the three respiration
cycles. The yellow bands represent values that deviates from the average from 0 to 2 si; pink bands stand for deviations from 2 si to 4 si, and
the gray area stands for deviations larger than 4 si. Each panel presents data relative to corresponding states of the three cycles. The ordering region
in the interval 0.35–0.45 presents variations that are clearly in the gray region, mainly in times corresponding to T=150, 450 and 4750 min, and
T=175, 475 and 775 min, which correspond to the final fermentation phase and the beginning of high consumption of O2.
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together with the average expression levels of the three
groups of 40 genes presented by Tu et al. Although the
oscillations in the expression levels are less intense than
those found by Tu et al., they are still largely significant.
The density profiles for these 40 genes are represented in

Figure 5a by the yellow peak. This is a group rich in genes
belonging to macromolecule catabolic process terms or
nuclear transport. In fact, these 40 genes belong to two
different sub-peaks of peak 4 in Figure 6, that are made
visible when we use a smaller window (w=101 instead of
w=251), as shown in Supplementary Figures S13 and S14.
The complete list of genes in the interval between 0.35 and
0.45 of the ordering may be found in Supplementary Table

S1 and Supplementary Table S2 indicates the 40 genes that
are maximally expressed in this interval.

The second experiment is the one by Fry, Sambandan
and Rha (12), where the authors compare the transcrip-
tion levels of S. cerevisiae wild-type with those of sgs1
mutants, when the samples are submitted or not to
stress represented by the direct addition of 0.1% methyl
methanesulfonate (MMS) and the cultures were incubated
at 30�C for 1 h. Their conclusions from the results are that
(i) under normal conditions the mutant present 4% of the
genes with transcriptional levels altered by 2-fold or more
and (ii) under the stressed conditions there is not any
difference between the different lineages. Figure 7

Figure 7. Saccharomyces cerevisiae transcriptograms: wild-type and sgs1 mutant. The axes relative to gene position have been divided by the total
number of genes: 4655. (a) Transcriptograms for two replicates of wild-type and sgs1 mutant prior to addition of MMS. (b) Transcriptograms for
two replicates of wild-type after MMS treatment. (c) Transcriptograms for two replicates of sgs1 mutants after MMS treatment.
(d) Transcriptograms of one replicate of wild-type and one replicate of sgs1 mutant, to evince that both samples have been arrested at the same
state of cell cycle. (f) Same as (d), but for the other pair of replicates, that have been arrested at a different state of cell cycle. All transcriptograms are
taken relative to the average values of the replicates of wild-type, prior to the addition of MMS. Averages of windows of 251 have been taken.
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presents the transcriptograms for their samples, always
having the modularity as a background, to guide the
eye. In those figures we have considered the expression
levels relative to the average of each transcript of the
wild-type under normal conditions.

Fugure 7a presents the transcriptogram for the normal,
control condition for both wild-type and sgs1 mutants, in
two replicates each, as obtained from Gene Expression
Omnibus, GSE423, related to the experiment by Fry
et al. We first observe that although there is not a very
large peak, the transcriptogram of sgs1 mutants present an
overall depression as compared to the wild-type replicate:
sgs1 mutant relative transcription levels are consistently
below the wild-type ones, possibly indicating a generalized
reduction of cellular metabolism due to the knockout of
sgs1 gene. Figure 7b and c present the transcriptograms
for, respectively, wild-type and sgs1 mutants in two repli-
cates each, after the treatment with MMS. The transcrip-
tion levels were again taken in relation to the wild-type
levels under normal conditions. Observe that each one of
the figures present two very different transcriptograms.
These differences are noticeable due to peaks and depres-
sions as compared to the wild-type. However, taking into
account the transcriptograms for respiration cycle
presented in Figures 5 and 6, we can assume that in
each case the replicates were arrested in different stages
of the respiration cycle. In fact, addition of MMS can
cause cell arrest in different stages of cell cycle (17). To
evince further, Figure 7d and e present the superposition
of transcriptograms of one replicate of the wild-type and
one replicate of the sgs1 Mutant: the plots are now almost
identical. This corroborates Fry and collaborators conclu-
sions that, under MMS stress, the sgs1 mutant performs as
the wild-type. However, it also indicates that care should
be taken in what regards the cell cycle stage, by either
synchronizing cell cycle stages as done by Tu et al. or
assessing in which stage the cells are at the moment of
measuring the transcription levels.

DISCUSSION

In summary, we propose here the transcriptogram as a
tool for assessing cell metabolism, which is capable of
discriminating the stage the cell is going through at a
given instant, as well as pointing metabolic changes in
altered cellular states as compared to a control state.
The transcriptogram is capable of evincing these features
due to the gene ordering that correlates the distance
between any two genes in the ordering with the probability
that they interact. Since for the ordering obtained using
the CFM method this interaction probability decays
exponentially with the distance between the genes, the
neighborhood on the ordering may be used to obtain
averages that smooth out too wild fluctuations presented
by gene expression data. This correlation also allows the
identification of different regions of the ordering with well
defined metabolic functions, endowing the dynamics of
expression levels with biological meaning. Furthermore,
transcriptograms allow whole genome assessment of
expression data, dispensing the clustering genes by their

(maximally) altered expression levels, which may vary
from a cell metabolic state to another.
Dendogram-like methods are capable of ordering the

genome and may also be used to produce
transcriptograms. However, they are less efficient in
ordering at long-range neighborhood, and hence com-
promise the quality of the information evinced by the
averages over neighboring sites, besides rendering more
difficult the biological interpretation of the expression
levels variations.
Further improvements on the algorithm should specif-

ically consider window size, which ultimately reflects the
functional correlation between genes. In fact, the
transcriptogram opens the possibility of a tool that
works as a telescope, where the focus is tuneable and
may be adjusted to the desired level of detail: when
passing from a wide genome overview to smaller function-
al modules analysis, the observation window may be
narrowed down, discriminating more functional modules
at greater detail. In this case, projecting smaller sets of
functionally related genes as some KEGG pathways (18)
may bring further information. On the other hand, the
method is readily applicable to any species, including
Homo sapiens, which will be presented elsewhere.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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