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ABSTRACT

Nucleosomes are multi-component macromolecular
assemblies which present a formidable obstacle to
enzymatic activities that require access to the DNA,
e.g. DNA and RNA polymerases. The mechanism
and pathway(s) by which nucleosomes disassemble
to allow DNA access are not well understood. Here
we present evidence from single molecule FRET
experiments for a previously uncharacterized inter-
mediate structural statebefore H2A-H2B dimer
release, whichis characterized by an increased
distance between H2B and the nucleosomal dyad.
This suggests that the first step in nucleosome dis-
assembly is the opening of the (H3-H4), tetramer/
(H2A-H2B) dimer interface, followed by H2A-H2B
dimer release from the DNA and, lastly, (H3-H4),
tetramer removal. We estimate that the open inter-
mediate state is populated at 0.2-3% under physio-
logical conditions. This finding could have
significant in vivo implications for factor-mediated
histone removal and exchange, as well as for
regulating DNA accessibility to the transcription
and replication machinery.

INTRODUCTION

Chromatin is the large nucleo-protein complex which folds
the eukaryotic genome in the nucleus. Nucleosomes, its
basic repeating unit, consist of 147 bp of DNA wrapped
around an octameric histone core: a modular complex of
two H2A-H2B dimers and a (H3-H4), tetramer (1,2).
Nucleosome assembly and disassembly profoundly
affects all nuclear processes that require DNA as a

template, such as transcription, replication, and repair.
Various studies have probed how nucleosomes are
formed from their components, and how they dissociate.
In vivo, nucleosomes are assembled by chromatin assembly
factors and histone chaperones, which together orchestrate
the ordered deposition of histones as well as prevent
improper interactions between histones and DNA (3).
Nucleosome disassembly is promoted by ATP-dependent
chromatin remodelers and is likely aided by histone chap-
erones through largely unknown mechanisms.

In vitro, buffer salt composition modulates the electro-
static interactions of the nucleosome and has been used to
mimic the activity of various factors in vivo (4).
Nucleosomes can be assembled reliably by combining
DNA and histone octamer at high salt and then
decreasing the salt concentration sequentially from 2 M
to physiological conditions (5). Conversely, nucleosomes
can be disassembled by increasing salt concentration.
While (H3-H4), deposition has been shown to start nu-
cleosome assembly, followed by H2A-H2B association
(5), the mechanism of [NaCl] induced nucleosome disas-
sembly is not known precisely. At least two pathways are
discussed: a sequential mechanism, starting with dissoci-
ation of H2A-H2B followed by dissociation of (H3-H4),
(state I->V—VI, Figure 1) (6-9), or dissociation of the
histone octamer as a whole (state [—I11I— VI, Figure 1)
(10-13). This latter model forms the basis for many com-
putational studies of nucleosome positioning (14,15).
Irrespective of the pathway, information about (dis)as-
sembly intermediates—which may exhibit unique struc-
tural properties with profound implications for the
in vivo function of chromatin—remains missing.

Recently, much progress has been made toward
analyzing nucleosome conformation and dynamics using
fluorescence techniques, specifically Forster resonance
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Figure 1. Pathways for nucleosome (dis)assembly. A reaction mechan-
ism depicting possible intermediate steps in the transition between nu-
cleosome (I) and free DNA, H2A-H2B dimer and (H3-H4), tetramer
(VI). DNA breathing (II), as first described by Widom and colleagues
(38) increases the accessibility of DNA to protein binding. Disassembly
has been proposed to occur either through a sequential mechanism
(I-V—VI) or a one-step release of the histone octamer
(I-II—VI). State IV (shaded in blue) represents a previously un-
detected open state in which the interactions between the H2A-H2B
dimer and (H3-H4), tetramer are partially lost.

energy transfer (FRET) (16,17). This approach is particu-
larly powerful when combined with single molecule tech-
niques, allowing one to observe subpopulations of
heterogeneous samples (18-21). Additionally, diffusion
properties and conformational fluctuations of nucleo-
somes have been studied by fluorescence correlation spec-
troscopy (FCS) (20). Our own previous single pair FRET
(spFRET) studies on DNA-labeled nucleosomes have
provided evidence for stepwise disassembly, from which
we inferred that H2A-H2B might first dissociate from
the nucleosome, followed ultimately by complete dissoci-
ation into unbound proteins and DNA (22).

Here, we probe the conformational changes that occur
during salt-induced assembly and disassembly of nucleo-
somes by spFRET analysis and FCS. Our results show
unambiguously that H2A-H2B dissociates before (H3-
H4),, eliminating a disassembly pathway in which the
histone octamer is removed in one step. We provide
evidence for a previously uncharacterized first step in nu-
cleosome disassembly where the distance between H2B
and the nucleosomal dyad is increased, suggesting that
the interface between the (H3-H4), tetramer and H2A-
H2B dimers opens up before H2A—H2B dissociation from
the DNA. Nucleosome assembly follows the reverse
pathway with the same intermediates.

MATERIALS AND METHODS
Fluorescently labeled nucleosomes

Mononucleosomes were reconstituted by salt dialysis from
labeled DNA fragments containing the Systematic
Evolution of Ligands by EXponential enrichment
(SELEX) generated 601 positioning sequence (170 bp
unless stated otherwise) and unlabeled or labeled recom-
binant Xenopus laevis histone octamers. DNA was labeled
via a thymine with C6-linker at —52 or —15 bp (alexa 594)
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Figure 2. Fluorescently labeled nucleosomes. (A) Illustration of the
extended 170bp nucleosomal DNA showing the positions of the
donor fluorophore alexa 488 (green circles) and acceptor fluorophores
alexa 594 (red circles) relative to the nucleosome dyad axis. (B) Top
and side views of the nucleosome crystal structure for visualization of
fluorophore positions and FRET distances. H2A is shown in yellow,
H2B in red, H3 in blue, H4 in green. The fluorophores are depicted
with green and red circles corresponding to donor (alexa 488) and
acceptor (alexa 594). Depending on perspective, some fluorophore pos-
itions are hidden and therefore not labeled in the crystal structure. In
the top view, only fluorophores on one of the two H2B and on one of
the two H4 are marked. In the side view, the fluorophore on position
—15 on the DNA and the fluorophores on both H4 are not marked.

and +42 bp (alexa 488) from the positioning center (Figure
2A and B). Histones were separately expressed and
purified as detailed in ref. (23) and labeled prior octamer
refolding using histone mutants H2B T112C (9) and H4
E63C (24) and alexa 488-maleimide (Figure 2B). To
minimize the occurrence of octamers carrying two donor
fluorophores, we purposely labeled only 10% of the
histones. The full details of the sample preparation are
given in Supplementary Data 1.1.

Single molecule fluorescence spectroscopy

Experiments were carried out using a confocal microscope
(18) illuminated with a continuous wave Ar/Kr laser
(Melles Griot, Darmstadt, Germany) at 488 nm for exci-
tation. Fluorescence emission was split in two spectral
detection windows for donor and acceptor defined by
appropriate filters and collected from two avalanche
photodiodes (APD, Perkin Elmer Optoelectronics). In
FCS experiments, the signal from the detectors was read
out by an ALVS5000/E autocorrelator (ALV GmbH,
Langen, Germany) and autocorrelation functions were
fitted as described in ref. (25). In spFRET the signal was
read out by a TCSPC board (TimeHarp200, Picoquant



GmbH, Berlin, Germany). Software developed in house
was used to extract single molecule events and calculate
the proximity ratio P(¢). P(¢) is closely related to the FRET
efficiency and provides information on the distance
between fluorophores, following Equation (1):

Na

P(t) =
@) Na+Np

O

(for detailed description of the setup, the experimental
procedure and data evaluation see Supplementary Data
1.2 and 1.3).

RESULTS

FCS reveals that histone complexes are released in a
stepwise manner during salt-dependent nucleosome
disassembly

Initially, we studied subunit dissociation during salt
induced nucleosome disassembly by measuring the diffu-
sion coefficient D of fluorescently labeled nucleosomes
with FCS, as a measure for their overall size and shape.
Dissociation of a fluorescent subunit from a large complex
can be detected by the increase of its diffusion coefficient.
We prepared nucleosomes fluorescently labeled with alexa
488 on either the (H2A-H2B) dimer (H2B T112C), (H3-
H4), tetramer (H4 E63C), or the DNA (position +42 from
the dyad; Figure 2A and B; see Supplementary Data 2.1
for characterization of the constructs). We then measured
the diffusion coefficients of these nucleosomes at
increasing salt concentrations by FCS.

For DNA-labeled samples, the value of D started to
decrease slightly at elevated ionic strength (800 mM)
(Figure 3, red symbols), until it approached that of free
DNA, which is lower than that of compact nucleosomes
because of its extended shape, and in agreement with dis-
assembly. The D-value for H2B-labeled samples increased
above 600mM NaCl, reaching a plateau at 1000 mM
NaCl (Figure 3, green symbols). In Supplementary
Data 2.3, we identify the diffusing particle at 1100 mM
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Figure 3. (H2A-H2B) dimers dissociate before (H3-H4), tetramer as
shown by FCS. Diffusion coefficients of H2B-, H4- and DNA-labeled
nucleosome samples (green, black and red, respectively) and labeled
DNA (orange) relative to a standard (alexa 488) as a function of
[NaCl] (error bars represent standard deviation from 10 measurements
each). The sequential increase of the diffusion coefficients of H2B- and
H4-labeled nucleosome samples indicates that H2A-H2B dissociates
from the nucleosomal complex at lower [NaCl] than (H3-H4),.
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as free fluorescent H2A-H2B. We also show evidence
that by increasing and re-decreasing [NaCl] we can
induce H2A-H2B exchange between nucleosomes
(Supplementary Data 2.4), verifying its dissociation. For
H4-labeled samples (Figure 3, black symbols), the D-value
increased only at 1100mM NaCl, indicating (H3-H4),
release from the DNA at higher [NaCl] than H2A-H2B.

Nucleosome disassembly intermediates revealed by
SspFRET: octamer opening precedes H2A-H2B dimer
dissociation

The FCS data demonstrate that H2A-H2B dissociates
from the nucleosome at lower salt concentrations than
(H3-H4),, corresponding to the mechanism in Figure 1
(state I->V—VI). In order to obtain a more detailed
view of nucleosome disassembly, we measured spFRET
between different sites within a single nucleosome. Since
the amount of energy transferred between a donor and
acceptor fluorophore decreases with distance, the judi-
cious placement of donor—acceptor pairs to histones and
DNA allows us to monitor the structural changes induced
by increasing [NaCl]. We used the following five FRET
pairs: H2B T112C and position —52 on DNA close to the
nucleosome entry site (H2B-DNA™%); H2B T112C and
position —15 on DNA close to the nucleosome dyad axis
(H2B-DNA'%); H4 E63C and position —15 on DNA
(H4-DNA™'%); H4 E63C and position —52 on DNA
(H4-DNA>%); and two internal positions on the DNA
(+42 and —52) that come into in close proximity if the
DNA is wrapped around the octamer (DNA™-
DNA %) (Figure 2A and B). Due to the presence of
two identical copies of every histone within the octamer,
specific labeling of one histone was not possible. We pur-
posely labeled only 10% of the histones (using the donor
fluorophore), thereby minimizing the presence of two
labeled histones on one nucleosome (Supplementary
Data 1.1). The acceptor fluorophore was placed on the
DNA where we could ensure close to 100% Ilabeling at
one specific site. Position —52 was selected because it
would best represent any internal structural changes
within the nucleosome and prevented confusion of our
results with those from DNA end ‘breathing’ as
proposed in (20,26,27).

As a measure of energy transfer efficiency E, we
determined the proximity ratio P, which is directly
related to E and therefore to the interfluorophore
distance (Supplementary Data 1.2 for further detail). We
measured photon bursts from single nucleosomes,
calculated P for each burst and analyzed its distribution
in histograms (Figure 4A, example histograms for all con-
structs). In most cases, three populations could be distin-
guished (Supplementary Figure S2). Bursts with
intermediate P-values, referred to as FRET population,
correspond to nucleosomes where the dyes are close to
one another, such that energy transfer can occur. The
peak centered at 0 (NoFRET population) arises from nu-
cleosomes—or their dissociation products—that show no
energy transfer. The peak centered at 1 arises from
acceptor-only labeled nucleosomes that are excited
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directly and were neglected during further analysis (see
sample labeling strategy Supplementary Data 1.2).

At 150mM NaCl, the FRET population represents
intact nucleosomes. At elevated [NaCl], the NoFRET
population increases at the expense of the FRET popula-
tion for all nucleosomes tested (Figure 4B). Photophysical
artifacts at elevated [NaCl] could be excluded
(Supplementary Data, section 2.1). Quantifying the
NoFRET and FRET-fractions for each experiment
(Supplementary Material 1.2) showed a sigmoidal
behavior of the decay of the FRET fraction with
increasing [NaCl] (Figure 5). The salt concentration at
which the FRET fraction has decreased by 50% is
denoted as c;,. Together, our data determine the follow-
ing order of events during disassembly: at the lowest salt
concentrations, FRET disappears between H2A-H2B and
the DNA dyad position —15 (¢;» = 620 mM), followed by
loss of FRET between H2A-H2B and the adjacent DNA
at position —52 (c;, = 760mM). At significantly higher
salt concentrations, FRET between the two internal pos-
itions on the DNA (42 and —52) disappears with ¢y,
> =870mM. Lastly, FRET between (H3-H4), and
DNA disappears (c;, = 900mM for H4-DNA™? and
c12 = 930mM for H4-DNA ™), indicating that nucleo-
some disassembly is complete at this salt concentration. In
contrast to our previous studies (18,22,28), here we used
Nonidet P40 to prevent surface adsorption of labeled
histones. In the presence of this detergent, which is
known to stabilize nucleosomes (29), we observed dissoci-
ation at higher [NaCl]. Importantly, in addition to the

A DNA+42-DNA-52 H2B-DNA52

H2B-DNA-15

decreased FRET population, changes in the proximity
ratio distributions were also observed, which can be
related to structural changes within the nucleosome. Due
to technical limitations, only a qualitative analysis of the
proximity factor distribution is possible. Nevertheless, this
allows us to gain further insights into the structural
changes within the nucleosome and further strengthens
the proposed mechanism for disassembly. These changes
are discussed in detail in Supplementary Data 2.5. In
contrast to bulk FRET experiments, in which only the
average transfer efficiency of all labeled particles is
determined, spFRET analysis allows us to observe and
distinguish loss of FRET from shifts in the proximity
ratio distribution. Only by using single molecule tech-
niques can the sequential loss of FRET be investigated
and a mechanism derived.

The distance between H2B and DNA position —15,
near the dyad axis, increases at the lowest salt concentra-
tion before any of the other distance changes. This
suggests that the interface between the (H3-H4),
tetramer and H2A-H2B dimer opens up, while all
histones remain bound to DNA. Direct measurement of
spFRET to analyze the distance between H2A-H2B and
(H3-H4), is, unfortunately, impractical: the two copies of
each histone present in each octamer would result in four
different FRET pairs, leading to a multitude of FRET
populations that would be impossible to separate.
Measuring FRET between a single labeled histone and
two different positions on the DNA is the best alternative
to circumvent this complication and to discriminate
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Figure 4. spFRET can be used to measure intranucleosomal conformational changes. (A) Example of a proximity ratio distribution for DNA™—
DNA 2, H2B-DNA 2, H2B-DNA >, H4-DNA > and H4 DNA~"® at 150mM NaCl. Cartoons of nucleosomes indicate the relative locations of
labels on the nucleosome. The FRET population represents intact nucleosomes. The number of NoFRET bursts is low. The fit of FRET population
is shown in black, fits for subpopulations of the FRET fraction (if present) are shown in different shades of blue. In intact nucleosomes,
subpopulations arise if the distances between the fluorophore on the DNA and the fluorophores on the two copies of the labeled histones differ
(sSupplementary Data 1.2). (B) Examples of proximity ratio distributions for each construct (as above) at 400 mM (green), 600 mM (blue), 800 mM
(black) and 1200 mM (red) NaCl. Elevated [NaCl] causes an increase of the NoFRET population at the cost of the FRET population indicating that
the distance between the fluorophores increased above the distance for energy transfer. Other than H4-DNA™'3, all constructs displayed changes in
the proximity ratio distribution of the FRET population upon increase of [NaCl] which are related to structural changes within the nucleosome.
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Figure 5. spFRET reveals an intermediate open conformation before H2A-H2B dimer dissociation from the DNA. Plot showing fraction of the
FRET population as a function of the [NaCl] for H2B-DNA ™" (blue), H2B-DNA " (green), DNA™*-DNA>? (red), H4-DNA~>? (violet) and
H4-DNA~" (black). Each point represents an independent experiment. Errors were estimated based on the quality of the Gaussian fits of the
proximity ratio distributions. Cartoons of nucleosomes indicating the relative locations of labels on the nucleosome, together with the ¢, values
derived from the sigmoidal curves are also shown, using the same color scheme. Donor labels are shown in yellow, acceptor labels are shown in
magenta. From the sequence of the loss of FRET between the different nucleosome subunits, a model for disassembly can be derived (see text).

between the opening of the H2A-H2B/(H3—-H4), interface
and H2A-H2B dissociation. After H2A-H2B dissoci-
ation, at least the central ~100bp of the DNA are still
wrapped around the remaining histones, indicated by the
presence of FRET between the two internal DNA pos-
itions. We concluded that the disassembly pathway
occurs through the following intermediate steps: state
I—» IV— V— VI (Figure 1).

Nucleosome assembly is a reversal of the disassembly
pathway

To test the reversibility of the disassembly process
described above, we monitored nucleosome assembly
using the same FCS and spFRET methods. We
reconstituted nucleosomes from octamer and DNA by
reducing the salt concentration in a stepwise manner
from 2000 to 300 mM NaCl with 300 nM sample concen-
tration. Using FCS, we measured the diffusion coefficients
of the labeled subunits [H2A-H2B, (H3-H4), or DNA as
in the disassembly study] at each step (Supplementary
Figure S4). These experiments were carried out directly
after dilution to 20nM, before reaching equilibrium, in
order to be as close as possible to the state of the sample
during the reconstitution (Supplementary Data 2.6). Our
results confirmed that even if the reconstitution is started
with histone octamer, (H3—H4), binds the DNA at higher
ionic strength than H2A-H2B (state V) (30).

For a more detailed analysis, energy transfer between
the different positions on the octamer and the nucleosom-
al DNA was measured at each step of the reconstitution
using spFRET (Figure 6). The FRET fractions for each
construct increased at the cost of the NoFRET fraction in
a reversal of the disassembly process. It can be seen that
(H3-H4), binds the DNA first, coincident with DNA
wrapping around bound (H3-H4), indicated by the ap-
pearance of FRET between the fluorophores on the
DNA (42 and —52) (state V, Figure 1). Next, H2A-H2B
is observed to bind to the tetrasome complex, in
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Figure 6. Nucleosome assembly follows the reverse pathway as disassem-
bly. The fraction of FRET population as a function of [NaCl] measured
during reconstitution of H2B-DNA™'® (blue), H2B-DNA 2 (green),
DNA™-DNA 2 (red), H&~DNA > (violet) and H4&DNA~'? (black).
Cartoons of nucleosomes indicate the relative locations of labels on the
nucleosome. The experimental error is estimated to be <6%. For clearness
of the representation, error bars are not depicted. Upon lowering the
[NaCl], FRET appears in the reverse order as it disappears during NaCl
induced disassembly, indicating that the reconstitution follows the same
mechanism as disassembly.

agreement with our FCS studies. Most importantly,
energy transfer between H2A-H2B and the position on
the DNA close to the dyad axis (—15) appeared at the
lowest [NaCl]. This can only be explained by the
presence of an intermediate state in which (H3-H4), and
H2A-H2B are bound to the DNA, while the H2A-H2B/
(H3-H4), interface is disrupted. This is the same step
observed earliest during nucleosome disassembly (state
IV, Figure 1). Only upon further reduction of [NaCl]
can the nucleosome adopt a compact form.

Analysis of the ionic dependence of nucleosome
dissociation reveals an intermediate open nucleosome state

By analyzing the salt dependence of histone dissociation
according to ref. (31) we are able to determine the number
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of ion pairs between histones and DNA (Supplementary
Data 2.8). A log-log plot of equilibrium constants for
histone dissociation calculated from our spFRET data
(Figure 7A) yielded the number of ionic interactions
through a linear fit.

For the H2B-DNA™>? combination, we derive 11 + 1
ion pairs. We conclude that H2A-H2B dissociation from
the DNA, to which we assigned the loss of FRET between
H2B and DNA ™, involves the breakage of 11 + I ion
bonds. The number of ion gairs derived for H4-DNA ™,
H4-DNA™"> and DNA"*-DNA ™ is nearly identical
(23 +£2, 24 +2, 20 £+ 2, respectively); almost exactly
twice the number of ion bonds as for H2A-H2B dissoci-
ation. The data for H4-DNA~>* and H4-DNA™" con-
structs are consistent with a release of (H3-H4), tetramer
from the DNA. The number of ions required for loss of
FRET between DNA"*>-DNA > reflects complete loss
of both H2A-H2B dimers from the DNA.

The loss of FRET between H2B-DNA™'° is not
assigned to a dissociation event, but to a monomolecular
transition corresponding to the opening of the nucleosome
structure. The fraction of the population in the open state
can be isolated. By mathematically treating the data sets
obtained for constructs H2B-DNA ™' and H2B-DNA ~>>
as described in Supplementary Data 2.8, we can calculate
the fraction of closed nucleosome (F1), and the sum of
closed and open nucleosomes (F2). Calculating the ratio
between F1 and F2 obtains the fraction of the open state.
Plotting the log[Na "] versus log(F,/F,—1) generates a plot
which can be linearly fit and extrapolated to physiological
salt concentrations (150-300 mM NaCl). From these data,
we calculate 4 & 1 ion pairs are broken during this initial
transition (Figure 7B). This is significantly fewer than the
11 ions lost for H2A-H2B release, indicating it is
electrostatically much weaker. Most importantly, we
estimate the fraction of open nucleosomes occupied at
physiological salt ranges from 0.2% to 3% resulting in a
free energy change of 3.5-2 kcal/mol. The implications of
this finding for biological processes acting upon the nu-
cleosome could be highly significant.

DISCUSSION

The structure of the nucleosome shows that the entire
145-147bp of DNA are in tight contact with the histone
octamer (32). Yet, it is a biological necessity that nucleo-
somes disassemble dynamically to allow for DNA access
during transcription, replication and repair (33). To date,
these structural transitions have not been characterized at
the molecular level.

By monitoring diffusion of fluorescent nucleosomes and
FRET within single nucleosomes, we have derived a
detailed sequence of events that occur during
salt-dependent nucleosome disassembly and assembly.
We have identified a previously undetected intermediate
state during salt-dependent disassembly precluding H2A—
H2B release that is populated at 0.2-3% under physio-
logical conditions. This state corresponds to an open
form of the nucleosome in which all components are
bound to the DNA, while the distances between
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Figure 7. The number of ion pairs between histones and DNA can be
derived from the salt dependence of the FRET fraction. (A)
Equilibrium constants (K) for histone dissociation as a function of
NaCl concentration for H2B-DNA™>? (green), DNA'*-DNA~>
(red), H4-DNA 2 (violet) and H4-DNA !> (black). Cartoons of nu-
cleosomes indicate the relative locations of labels on the nucleosome.
K-values were calculated from the fraction of intact nucleosomes
(Figure 5). The number of ions pairs between histones and DNA can
be derived from curve fitting (as described in Supplementary Data 2.8,
results see Supplementary Table S3). Approximately twice as many ion
pairs are broken upon (H3-H4), than upon H2A-H2B dissociation. (B)
Plot for the determination of the number of ion pairs involved in the
opening of the H2A-H2B/(H3-H4), interface [see SupplementaryData,
Equation (7)]. Data points were calculated from the fraction of intact
nucleosomes of H2B-DNA™!* and H2B-DNA > (Figure 5). The tran-
sition requires the breaking of 4 £ 1 ion pairs as required from the
slope of the fit. From extrapolation to physiological salt concentrations
(150-300 mM NacCl, indicated by the dashed lines) the fraction of open
nucleosomes occupied at physiological salt can be estimated to 0.2-3%.

H2A-H2B dimer and the DNA near the nucleosomal
dyad are increased (state 1V, Figure 1), suggesting a sep-
aration at the H2A-H2B/(H3-H4), interface. Upon
further increases in ionic strength, dissociation of H2A—
H2B from the DNA is observed, while the DNA remains
loosely wrapped around the remaining histones after
H2A-H2B dissociation. Last, the dissociation of the
(H3-H4), tetramer from the DNA completes nucleosome
disassembly (I—1V —V — VI, Figure 1). We further dem-
onstrate that salt-dependent nucleosome assembly follows
the same, but reverse pathway as observed during
disassembly.

While many earlier studies have inferred (10-13) that
the histone octamer is released as one entity, our data
are consistent with experiments which have demonstrated
that H2A-H2B is released from the nucleosome before



(H3-H4), (6-9), and that H2A/H2B is exchanged at a
much higher rate than H3/H4 in vivo (34-36). Here, we
present direct evidence for the step-wise dissociation of
histone subcomplexes in response to increased ionic
strength. In theory, the loss of FRET between H2B and
DNA-15 could arise from mobility of the N-terminal helix
of H2B to which the donor fluorophore is attached.
However, we believe this not to be the case, due to struc-
tural constraints and geometric limitations imposed
upon the helix [explained in detail in the Supplementary
Data 2.5].

Comparing the salt dependence of FRET between dif-
ferent fluorophore pairs has allowed us to determine the
number of ion pairs involved in each specific transition.
For the dissociation of H2A-H2B from DNA, we find
that 11 ion pairs are broken; exactly half the number
lost upon (H3-H4), release from the DNA. This finding
supports our view that H2A/H2B dissociates as a dimer
and H3/H4 as a tetramer. It also agrees with all-atom
molecular dynamics simulations, which predict the
release of 45 counterions upon binding of the octamer
(as a whole) to the DNA (37). In contrast, the disruption
between H2A-H2B dimer and (H3-H4), tetramer requires
the breaking of only four ion pairs.

Intermediate states with increased DNA accessibility
have been postulated from various in vitro assays
(26,38-43). Ultimately, the consensus contends that the
ends of the nucleosomal DNA are generally accessible to
binding, but the DNA becomes less accessible beyond the
terminal 15-25bp. At the time, these studies provided
valuable insight into the dynamic properties of nucleo-
somes; however, they were technically limited by bulk
analysis of rather heterogeneous endogenous nucleosome
preparations. Thus, discriminate intermediate states might
not have been isolated. Recent technical advances have
allowed investigations of the transient accessibility of nu-
cleosomal DNA; reviewed in ref. (44). In contrast to these
studies, we chose the locations of the fluorophores on the
DNA to specifically monitor structural transitions
involving regions beyond those previously observed at
the very ends of the DNA. DNA end opening is consistent
with our data considering that the penultimate 15bp of
DNA are organized by an N-terminal o helix in histone
H3 and that this interaction is likely lost in the open nu-
cleosome state. A loss of this DNA/histone interaction
could result in the rapid spontaneous ‘nucleosome
breathing’ of the penultimate 10-20 bp of DNA and may
likely precede opening of the H2A-H2B/(H3-H4), inter-
face (20,26,27). During the opening of the H2A-H2B/
(H3-H4), interface, all components remain attached to
the DNA and consequently nucleosome accessibility is
observed, where DNA accessibility remains unaffected.
However steric inhibition to protein binding near the
ends of the DNA would be reduced, while the remaining
H2A-H2B bound to the DNA would prevent accessibility
deeper into the nucleosome core.

The possibility that an intermediate open nucleosome
state is populated significantly under physiological condi-
tions presents an alternative interpretation for experi-
ments probing nucleosomal DNA accessibility. For
example, previous single molecule studies have
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investigated the conformational changes that occur in nu-
cleosomes when they are pulled apart from the ends
(45,46). These studies show the transition from a closed
nucleosome to linear DNA as defined by two major steps,
the first being reversible and highly sensitive to salt con-
centration. This was interpreted as the breaking of
histone-DNA contacts while the DNA is being pulled
off the histone octamer. However, these data can also be
explained by the proposed reversible disruption of the
H2A-H2B/(H3-H4), interface, followed by the irrevers-
ible disruption of the (H3-H4),/DNA complex.

There is indirect evidence that the transitions described
in this manuscript and by the Widom and van Noort labs
are important in vivo. For example, DNA damage is
repaired more efficiently when located in peripheral
DNA regions as opposed to near the dyad axis, in
support of the presence of these states (47).
Transcription elongation has long been known to be in-
hibited by the barrier imposed by nucleosomes, but the
molecular details of the events while this barrier is
overcome are only now being elucidated. In vitro experi-
ments detailing the progression of RNA polymerase
through nucleosomes show strong pausing at positions
15 and 45 bp, with few intermediates (48—51). In light of
our results, these pauses can be explained by the presence
of the open nucleosome state, into which the polymerase
can easily progress up to the first H2A/H2B-DNA inter-
action (+15bp). At this point the polymerase must pause
until H2A/H2B is lost, and then continues until it reaches
the first contact made by histone fold region of H3/H4,
45bp into the nucleosome, the site of the second strong
pause. Our interpretation is further supported by the
finding that imposing mechanical torsion on a single chro-
matin fiber results in an initial opening of the nucleosome
without the loss of histones (52), in agreement with the
proposed open state, and, that in vivo, this mechanical
torsion can be induced by polymerase progression (53).

Our values for a free energy change in the range 3.5-
2 kcal/mol fit well with other nucleosome related data. For
example, competitive reconstitution assays show AAG
values from —3 to 1.5kcal/mol relative to 5s DNA (54),
while the H3K56 acetylation alters the (H3-H4),-DNA
interaction energy by 1.8 kcal/mol. Moreover, typical bi-
molecular protein—-DNA interactions (55), e.g. IHF (from
—5.6 to 10.6 kcal/mol), LexA (from —12.6 to —15kcal/
mol) and H2B (from —8.6 to —14.5 kcal/mol), have inter-
action energies significantly stronger than what we observe
for nucleosome opening, suggesting that the energy
required for H2A-H2B dimer release is significantly
higher than the energy required for the intermediate state
to form (8,56-58). Alternatively, the energy required for
nucleosome opening more closely reflects small changes in
the nucleosome assembly process, which can be altered by
differences in DNA sequence or histone modifications.

The equilibrium between the closed and open nucleo-
some states can be shifted in several intuitively obvious
ways. Histone variants are non-allelic versions of
histones (mostly H3 and H2A) that modulate nucleosome
accessibility and thus transcriptional output through
largely unknown mechanisms. Intriguingly, many
histone variants differ from their major-type counterparts
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in regions that form the H2A-H2B/(H3-H4), interface
[e.e. H2A.Z, and the centromeric H3 variant cenH3
(59)], or in their ability to organize the penultimate
15bp of DNA [H2A.Bbd (60)]. Thus, histone variants
might exhibit subtle changes in the equilibrium between
the open and closed conformations of the nucleosome,
with profound implications on nucleosome accessibility
and nucleosome remodeling (61). Similarly,
posttranslational modifications of histones may also
modulate this equilibrium. For example, the phosphoryl-
ation of H3Y41 (in the context of a nucleosome) stimu-
lates transcription (62). This side chain is buried in the
penultimate minor groove of nucleosomal DNA, requiring
a partially open state for its modification by the JAK?2
kinase. Furthermore, phosphorylation of H3Y41 would
almost certainly prevent rebinding of the DNA, thereby
stabilizing the open conformation. Bulk acetylation of
histone tails also has moderate effects on nucleosome con-
formation (63,64). Finally, while some protein factors,
such as linker histone H1, might stabilize nucleosomes in
the closed state, other chromatin architectural proteins
might trap or force open the nucleosome.

It is conceivable that the open nucleosome state is spe-
cifically recognized by histone chaperones and ATP-
dependent chromatin remodelers. For example, the
addition of FACT to nucleosomes has been shown to
alter their conformation and increase DNA accessibility
without losing H2A-H2B (65). FACT, and possibly other
chromatin remodeling factors, might stabilize the open
state, thereby facilitating the subsequent loss of H2A—
H2B dimer. Similarly, an open nucleosome state might
be a point of attack for the histone chaperone Asfl,
which interacts with a region of H3 and H4 that is
occluded in a properly folded ‘closed” nucleosome (66,67).

The reversible pathway of nucleosome disassembly/
assembly proposed here redefines our view of nucleosome
accessibility. The stability of the H2A-H2B/(H3-H4),
interface, so far only marginally considered, seems to
play an important role in the regulation of nucleosome
accessibility and, consequently, many other nuclear
processes. Our approach provides a unique opportunity
for further investigating these mechanisms.
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