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P e r s p e c t i v e

I. Introduction
In the voltage-gated K+ channels, measurements of ion 
channel permeability show that the protein selectively 
allows the flow of K+ over Na+ with a fidelity of better 
than 1 part in 1,000 (Latorre and Miller, 1983). Recent 
measurements (Lockless et al., 2007) of equilibrium se-
lectivity also suggest that, relative to K+, Na+ hardly binds 
to the selectivity filter. These observations are striking 
given that the Pauling radius of K+ is only 0.4 Å greater 
than that of Na+ (Pauling, 1988). Here, we provide our 
perspective on the thermodynamics of this selectivity.

The elucidation of the crystal structure (Doyle et al., 
1998) has allowed for detailed molecular scale investi-
gations of the selectivity filter (Allen et al., 2000; Åqvist 
and Luzhkov, 2000; Bernéche and Roux, 2000, 2001; 
Luzhkov and Åqvist, 2001; Shrivastava et al., 2002;  
Miloshevsky and Jordan, 2008). The selectivity filter 
contains five ion-binding sites, S0–S4. S4 is the site on the 
intracellular side and S0 is near the extracellular mouth 
of the protein (Noskov et al., 2004). The S2 site forms 
the narrowest part of the pore. In the S2 site, for exam-
ple, the K+ ion snugly fits (Doyle et al., 1998) in a pocket 
comprising eight backbone carbonyl ligands, where 
each monomer of the homotetramer contributes two 
carbonyl ligands from adjacent residues (Fig. 1). Each 
site can accommodate either an ion or a water mole-
cule, and the filter as a whole has two or three bound 
ions with the remaining sites filled by water molecules.

In computer simulations of equilibrium selectivity of 
the S2 site (Noskov et al., 2004; Dixit et al., 2009), it is 
common to consider an ion in each of the S0, S2, and 
S4 sites, with a water molecule each in S1 and S3. It is 
expected that configurations of the selectivity filter 
where adjacent binding sites are occupied by ions will 
be disfavored, and configurations where adjacent sites 
are occupied by water molecules are likely to be unsta-
ble as well (Bernéche and Roux, 2000). In our studies 
of selectivity, we consider the entire protein–lipid bi-
layer complex with this canonical occupancy of ions 
and water.

The background literature (Allen et al., 2000; Luzhkov 
and Åqvist, 2001; Zhou et al., 2001; Shrivastava et al., 2002; 
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MacKinnon, 2003; Noskov et al., 2004; Asthagiri et al., 
2006, 2010; Noskov and Roux, 2006, 2007; Bostick and 
Brooks, 2007, 2009; Lockless et al., 2007; Thomas et al., 
2007; Varma and Rempe, 2007, 2008; Miloshevsky and 
Jordan, 2008; Varma et al., 2008; Dixit et al., 2009; Roux, 
2010; Dixit and Asthagiri, 2011) and the other articles 
in this series can be consulted to gain some apprecia-
tion for the vibrant discussions on selectivity. We aim for 
a pedagogical approach here. We first present the ther-
modynamic framework defining selectivity. Our aim is 
to emphasize the quantities that go into quantifying  
selectivity. It is our thesis that this is necessary to help 
focus the discussion on physically realizable systems that 
are of first interest here. Then we discuss the statistical 
mechanical framework that, together with the known 
structure and computer simulations, can address each 
factor that goes into the metric defining selectivity. It is 
hoped that the insights obtained from these studies can 
helpfully advance our understanding of the molecular 
determinants of selectivity.

II. Thermodynamics of selectivity
The reversible work of transferring a Na+ ion from the 
aqueous phase to the ion-binding site (S) in the selectiv-
ity filter relative to the case for a K+ ion provides a ther-
modynamic measure of selectivity. Thus,
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is the measure of equilibrium selectivity, where µx
ex  is 

the excess chemical potential of the ion (x) in the site 
(S) or in bulk water (aq). The excess chemical poten-
tial, µx

ex , is the contribution to the Gibbs free energy per 
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428 Thermodynamics of selectivity

In the presence of the ion, the potential energy of the 
site and the medium are given by the site–site (Us), me-
dium–medium (Um), and site–medium (Us-m) contribu-
tions to the potential energy.

In molecular biology, one often uses average binding 
strengths to rationalize binding (Alberts et al., 2002; 
MacKinnon, 2003). Rewriting Eq. 2 to reveal the aver-
age ion–protein binding energy explicitly, we have

	
∆ ∆ ∆

∆ ∆ ∆

µ ε µ

µ

ex
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ex
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ex
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,
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where all the changes within the site and the medium 
contribute to the fluctuation contribution, ∆µfluc

ex .  (The 
reason for this terminology is made clear below.)

Eq. 4 explicitly shows the various factors that contribute 
to selectivity, and, in particular, it explicitly reveals those 
contributions that do not directly involve ion–protein  
interaction. Intuitively, one normally first seeks to under-
stand selectivity based on the local ion–site interaction, 
but as Eq. 4 shows, there are attendant changes in the 
medium that also need to be considered. For example, 
∆ Us ,  the change in the average internal energy of the 
site upon changing the ion will sensitively depend on the 
composition of the binding site; thermodynamic theory 
makes it obvious that both number and chemical type of 
the ligands comprising the binding site will contribute to 
selectivity. Although there has been a vigorous debate 
about the relative importance of number versus chemistry 
of ligands, it appears to us that the only rigorous way to 
decouple the importance of either factor will be experi-
ments where one can change the number (chemical type) 
without changing the chemical type (number) and keep-
ing everything else the same. We are not aware of experi-
mentally realizable systems that satisfy this requirement, 
and hence it is also not clear to us what the vigorous dis-
cussions about number versus chemistry seek to establish.

III. Statistical mechanics of selectivity
Given models of intermolecular interactions, statistical 
mechanics provides a way to calculate the terms in Eq. 4. 
In particular, the excess chemical potential of the ion is 
given by Widom (1982), Beck et al. (2006), Pratt and 
Asthagiri (2007),

	 µ ε εβε
x
ex

B xk T P= ∫ln ( ) ,e d 	  (5)

where Px( )ε is the distribution of binding (interaction) 
energies of the ion (x) with the rest of the medium, T is 
the temperature, and β = 1 k TB  (kB is the Boltzmann 
constant). Operationally, for the ion in the S2 site, we 
construct Px( )ε  by sampling configurations of the system 
(from a molecular dynamics simulation at constant 
pressure and temperature) and computing the binding 
(interaction) energy () of the ion with all the atoms in 
the simulation system.

mole beyond the ideal gas contributions at the same 
temperature and density, and is also the quantity sought 
in computer simulations of ion selectivity.

Eq. 1 shows that two factors determine selectivity:  
(1) the hydration thermodynamics of the ion in water, and 
(2) the thermodynamics of the ion in the binding site. 
Each of these quantities is itself a large number on the 
thermal energy scale. For example, µ

Na
ex

+ aq( ) .≈ −88 7  kcal/
mol (Asthagiri et al., 2003), µ

K
ex

+ aq( ) .≈ −70 5  kcal/mol 
(Rempe et al., 2004), and thus ∆µex aq( )≈ −18  kcal/mol. 
(For the classical model used here [Dixit et al., 2009], 
∆µex aq( ) .≈ −20 7  kcal/mol.) But the net selectivity, 
∆µex ≈ 6 kcal/mol (Noskov et al., 2004; Dixit et al., 2009), 
is substantially smaller than the individual differences.

Neglecting small corrections as a result of the changes 
in the isothermal compressibility and thermal expansiv-
ity of the system upon replacing K+ with Na+, the free 
energy change ∆µex S( )  is given by Dixit and Asthagiri 
(2011) and Dixit et al. (2009):

	 ∆ ∆ ∆µex
sys

exS) U T s( = − 	  (2)

In Eq. 2, T is the temperature, ∆ Usys  is the change 
in the average potential energy of the ion–protein sys-
tem, and ∆sex is the change in the excess entropy. (The 
angle brackets denote averaging with the appropriate 
ion in the binding site.) Eq. 2 can be taken as the defini-
tion of entropic effects in selectivity.

Formally, Usys can be written as (Dixit and Asthagiri, 
2011),

	 U U U Usys local m s m s-m= + + + +ε ε , 	  (3)

where εlocal  is the interaction energy of the ion with pro-
tein groups in some defined neighborhood, and εm  is 
the remaining long-range contribution to the ion–protein 
interaction energy. (Thus, the total ion–protein inter
action energy is ε ε ε= local m+ . ) We will call the local neigh-
borhood of the ion the “site” and the remaining part of 
the protein as the “medium”; for example, the eight car-
bonyl groups complexing the ion can be termed the site. 

Figure 1.  (Left) K+ ion (magenta sphere) is shown bound in the 
S2 site of the selectivity filter (green ribbon). The backbone 
carbonyl groups of the S2 site are shown as spheres. (Right) 
View looking down the pore axis. Atoms are shown in space- 
filling format.
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A. Simplified models of selectivity. Intuitively, one expects 
that the interaction of the ion with the protein material 
outside the binding site does not discriminate between 
Na+ or K+. It is thus natural to study the interactions of 
the ion with some defined local neighborhood to un-
derstand selectivity. (See background literature cited 
above.) For the potassium channels, experiments sug-
gest that the selectivity filter can be affected by muta-
tions outside the filter (for example, Cheng et al., 2011, 
and Valiyaveetil et al., 2006, and references therein), 
suggesting the importance of understanding the effect 
of the protein medium on the dynamics of the local site. 
To be valid models of the physical reality, a local model 
must factor in the effect of the environment outside the 
local site and satisfy some constraints. It is not always 
clear if this is indeed the case, yet such models have pro-
vided reasonable estimates of selectivity. In those cases, 
it is important to understand why such models work in 
the first place.

We know that ε ε ε= local m+ .  Thus, we must have

	 P P Px x local x m local local( ) ( ) ( | ) .ε ε ε ε ε= ∫ d 	  (7)

The condition in which the long-range contributions 
are nondiscriminatory requires that not only must 
P Px m local x m( | ) ( ),ε ε ε≈  but also P P

K m Na m+ +≈( ) ( ).ε ε  If these 
conditions are satisfied, the local model is a reliable 
model of the entire system.

In Fig. 3 we plot m versus Usm, the site–medium 
interaction. Here, the site comprises the carbonyl 
groups in the S2 site, and for simplicity, the medium is 
simply the water molecules in S1 and S3. Treating water 
molecules in adjacent sites as the medium is justified 
because a large fraction of the effect of the entire me-
dium is accounted for by these water molecules (Dixit 
et al., 2009; Dixit and Asthagiri, 2011). Furthermore, 
because site–medium interactions will be correlated 
with ion–medium interactions, if site–medium inter
actions are not sensitive to ion type, then ion–medium 
interactions will not be sensitive to ion type as well. With 
these observations, we find that for the canonical  
occupancy of binding sites in the filter, the binding  
energy of the K+ or Na+ ion in the S2 site of KcsA  
does suggest that ion–medium interactions are un
correlated with site–medium interactions, hence 
P Px m local x m( | ) ( ).ε ε ε≈  They are also nearly the same for 
both Na+ and K+, hence P P

K m Na m+ +≈( ) ( ).ε ε  Observe that 
for a mutant analogue (Valiyaveetil et al., 2006) of the 
KcsA system, one with a glycine to d-alanine mutation 
in residue 77 (G77AD) that prevents the site from col-
lapsing in the absence of the ion, m and Usm are in-
versely correlated: the medium is thus expected to 
influence selectivity.

As Table I shows, the free energy ∆µex S)(  computed by 
accounting for all ion–protein interactions is nearly  

By expanding Eq. 5 into cumulants (Kubo, 1962), we 
can show that (Dixit et al., 2009)

	 µ ε µx
ex

fluc,x
ex= + . 	  (6)

Here, ε x is the mean binding energy of the ion (x) 
with the medium, and µfluc,x

ex is the remaining contribution 
to µx

ex.  The fluctuation contribution µfluc,x
ex collects contri-

butions from all cumulants of order two and greater.  
For example, if Px() is a Gaussian distribution, cumulants 
of order three and greater are zero and µ βσfluc,x

ex
x= 2 2,  

where σx
2  is the variance of Px( ).ε

Comparing Eq. 6 with Eq. 4, we find that the spread 
(or dispersion) about the mean of the binding energy 
distribution of the ion with the protein informs us about 
the average potential energy of the site plus medium 
complex and the entropic effects in binding (Dixit et al., 
2009). Thus, if the site–site interaction energy is larger 
in the presence of Na+ relative to K+, assuming entropic 
effects are small, we can expect the binding energy dis-
tribution of Na+ with the protein will be broader as com-
pared with that for K+. As Fig. 2 shows, the binding energy 
distribution for Na+ is indeed broader than that for K+.  
Interestingly, the mean binding energy of Na+ with the 
protein is lower than that for K+ and ∆ ε ≈ −20  kcal/mol. 
As we noted above, because ∆µex aq) 20( ≈ − kcal/mol, mean 
binding energy alone cannot explain selectivity. Thus, 
we immediately infer that to understand selectivity, one 
must understand the changes in the medium that con-
tribute to ∆µfluc

ex .

Figure 2.  The logarithm of the distribution of binding energies,
Px( ),ε  of K+ (blue) and Na+ (red) with the entire protein. The 
ions are in the S2 site. (Inset) Binding energy distribution consid-
ering only interactions with the eight carbonyls of the S2 site. (The 
eight-carbonyl site is extracted from simulations of the entire sys-
tem.) Note that the local component more acutely highlights the 
larger range of energies sampled by Na+. The dashed blue curve 
is the K+ binding energy distribution translated along the energy 
axis to match the mean binding energy of the Na+ distribution.
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difference in ion-binding free energy is small (Noskov 
and Roux, 2006; Dixit et al., 2009). As Eq. 8 shows  
(Dixit et al., 2009), this implies compensation be-
tween matrix strain associated with ligand–ligand re-
pulsion and binding–energy fluctuations: ∆µex S )( 2  = 
5.2 kcal/mol is roughly the same magnitude as 
∆ UCO-CO  = 7.3 kcal/mol. Thus, we see that selectivity 
depends on the differential strain introduced in the 
medium (Noskov and Roux, 2007; Dixit et al., 2009; 
Dixit and Asthagiri, 2011), and this strain will be sen-
sitive to both number and chemical type of the li-
gands in the binding site.

the same as the analogous quantity ∆Wlocal  obtained by 
considering only ion–site interactions solely. (For calcu-
lating ∆Wlocal,  we sample the local ion–site configura-
tions from a simulation of the full ion–protein system.) 
The mean binding energies are, however, fairly differ-
ent. As we argued recently (Dixit and Asthagiri, 2011), 
∆µex S)(  and ∆Wlocal  are nearly similar because of the in-
verse correlation of ion–site and site–medium inter
actions. Thus, although the estimated selectivity free 
energy—a small difference of large numbers—can be 
insensitive to model details, the various components of 
the selectivity (Eq. 2) are not. Hence, a local model that 
reproduces the selectivity free energy may not represent 
the underlying physics with reasonable fidelity.

The results of Fig. 3 and Table I together suggest that, 
given the canonical occupancy of binding sites, a model 
of the binding site comprising eight carbonyl ligands 
(in the field imposed by the remaining protein) is ac-
ceptable for the KcsA system. Our analysis also provides 
a rigorous basis for the success of an isolated system of 
eight carbonyl ligands (Noskov et al., 2004), but in our 
studies, the eight-carbonyl site is always present in the 
field imposed by the remaining protein. Having thus es-
tablished the utility of the eight-carbonyl model of the 
S2 site for KcsA, we return to the question of the molec-
ular basis of selectivity in this system.

B. Selectivity: role of energetic strain. Guided by the frame-
work developed above, for the eight-carbonyl site (in 
the field of the remaining protein), in Fig. 4 we plot the 
distribution of ion–site binding energy with the site–site 
interaction energy. Here, Us ≡ UCOCO. Clearly, on aver-
age, relative to K+, Na+ is better bound to the S2 site. 
Further, it is obvious that better ion–site binding causes 
the average internal energy of the site to increase. As we 
noted above, this energetic strain directly determines 
the fluctuation contribution, because

	 ∆ ∆ ∆µfluc
ex

2
ex

2(S )= U -T s (S ). 	  (8)

For the S2 site, Tsex(S2) = 2.1 kcal/mol. Relative  
to the observed magnitude of selectivity ( ∆µex S )( 2  =  
15.8 kcal/mol), the entropic contribution to the 

Figure 3.  The joint probability distri-
bution, P Ux s-m m( , ),ε  of the interac-
tion of the ion with the representative 
protein medium m versus the interac-
tion of the site with the bulk protein 
medium, Usm. We regard the water 
molecules in S1 and S3 sites as the pro-
tein medium (Table I). m and Usm are 
nearly independent of each other and 
similar for Na+ and K+ in KcsA (left), 
whereas they are inversely correlated in 
KcsA-G77AD (right). Figure reprinted 
from Dixit and Asthagiri (2011) with 
permission from Elsevier.

TA B L E  I

Energetic decomposition for KcsA and KcsA-G77AD

KcsA KcsA-G77AD

∆µex S)( 15.7 10.0

∆Wlocal
15.8 9.9

Tsex 1.3 1.1

T slocal
ex∆ 2.1 4.7

Ion–site ∆ ε local
21.0 0.8

Ion–medium ∆ εm
2.2 20.1

Site–site ∆ Us
7.3 6.0

Site–medium ∆ Us-m
2.9 14.5

Medium–medium ∆ Um
0.0 0.3

Fluctuation (total) ∆µ fluc
ex 3.1 9.3

Fluctuation (local) ∆Wlocal,fluc
ex 5.2 10.7

The eight carbonyl ligands comprise the local site. We consider the water 
molecules in the S1 and S3 sites adjoining the S2 site as the medium. 
∆µex S)(  and ∆Wlocal  are obtained using thermodynamic integration. 

The selectivity in the KcsA system is 5.0 kcal/mol considering the site 
plus the medium, and it is 4.9 kcal/mol for the eight-carbonyl model. 
Fluctuation (total), the fluctuation contribution for the site plus two-water 
system; Fluctuation (local), the fluctuation contribution for the site alone. 
Note that these values are comparable to the selectivity free energy. All 
values are in kcal/mol.
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Thus, the selectivity for K+ in the eight-water binding 
site, ∆µex ,  is given by Asthagiri et al. (2010)

		  (10)
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x (x = K+, Na+) is the radius of the first coordination 
shell. Note that ex in the above equation depends not 
only on the population distribution of water ligands 
around the two ions but also on the population distribu-
tion of water molecules in an observation volume in the 
bulk aqueous phase. The latter aspect was ignored in  
the earlier work (Bostick and Brooks, 2007). Accounting 
for all the factors, as correct thermodynamic theory de-
mands, one finds that the eight-water site is selective for 
K+ (Dixit et al., 2009; Asthagiri et al., 2010) by only  
2 kcal/mol. Neglecting the p( )( ; )0 n λ  factor can suggest 
apparent selectivities as high as 5 kcal/mol, comparable 
to those found in the S2 site of the channel (Table I).

Eq. 9 is applicable for solutes in any medium. That 
equation and the above analysis emphasize that both num-
ber and chemical type of ligands in the binding site must 
be considered in understanding ion selectivity. Further,  
to describe the physics of selectivity, sufficient care is also 
required in designing models of the binding site.

IV. Acknowledging mistakes and correcting errors
The framework of a Perspective behooves us to review 
our earlier work and correct some unfortunate errors 
that we made in citing previous research. In discuss-
ing one model of selectivity that purported to show 
that enforcing an eight-coordinate structure with water 
as ligands can explain selectivity (Bostick and Brooks, 
2007), we made two errors. First, we mistakenly noted in 
the introduction of our article that those authors consid-
ered water molecules within a sphere of radius 3.5 Å as 
the binding site. (Later in the same article, we do acknowl-
edge that they used different radii.) Second, we mistak-
enly noted that those authors compare the probability of 
observing an eight-coordinate structure around Na+ 
(or K+) relative to the most probable coordination 
state of those ions, whereas those authors did not com-
pare it with the most probable coordination state. Iron-
ically, had those authors indeed made the first error  
we ascribed to them, they would have immediately rec-
ognized the problems with their model. The second  
mistaken attribution does not materially affect the  
conclusions those authors drew. We revisit those ques-
tions here, as this highlights the care needed in esti-
mating selectivity.

The study in question (Bostick and Brooks, 2007) had 
suggested that the coordination structure of the ions in 
the bulk aqueous phase itself provides insights into the 
selectivity in the channel. Specifically, it was claimed 
that because the probability of observing the eight-
coordinate structure of Na+ is much less than that for 
observing the eight-coordinate structure of K+, the free 
energy change in imposing an eight-coordinate struc-
ture around Na+ is higher relative to K+. The radius of 
the first coordination shell of the respective ions, differ-
ent for Na+ and K+, was used for defining the coordina-
tion states.

If px( ; )n λ  is the probability of finding n water mole-
cules in a coordination volume of radius  centered on 
the ion x, and p( )( ; )0 n λ  is the probability of finding n  
water molecules in the pure aqueous phase in an obser-
vation volume of radius  in the absence of the ion, we 
have (Merchant and Asthagiri, 2009; Asthagiri et al., 
2010; Merchant et al., 2011),

		   (9)

k T ln p ( ; )=k T ln p ( ; ) [ ( ; ) (aq)],B x B
(0)

x
ex

x
exn n nλ λ µ λ µ− −  

where µ λx
ex( ; )n  is the excess chemical potential of the 

ion subject to the constraint that there are only n sol-
vent molecules within the coordination sphere. By not-
ing that probabilities should sum to unity, it is easily 
confirmed that Eq. 9 leads to the correct multistate or-
ganization of the chemical potential µx

ex(aq) (Hummer 
et al., 1997; Merchant and Asthagiri, 2009; Asthagiri  
et al., 2010).

Figure 4.  Density plot of the joint probability distribution, 
P Ux CO-CO( , ).ε   is the binding energy between the ion and the 
carbonyl groups comprising the S2 site. UCOCO is the excess in-
ternal energy of the S2 site (but without considering the ion), 
which results from the repulsive interactions within the binding 
site ligands. The numbers indicate the ion coordination number 
for  = 2.7 Å for Na+ and  = 3.1 Å for K+. Observe that the low 
coordination states contribute to the high  part of the distribu-
tion and vice versa. The region corresponding to ±40% prob-
ability around the mean is indicated. ∆ ε = −21 0.  kcal/mol 
and ∆ UCO-CO = 7 3.  kcal/mol. Figure adapted from Dixit et al. 
(2009) with permission from Elsevier.
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that understanding the properties of the matrix holds 
the key to selectivity, and, for the canonical occupancy 
of the filter, one can study the eight carbonyls of the S2 
site (in the presence of the protein field) to understand 
selectivity. Better interaction of Na+ relative to K+ with 
the eight carbonyls strains the site, and this increased 
strain is seen to determine the magnitude of the net se-
lectivity (Dixit et al., 2009). (See also Varma and Rempe, 
2007, for example, for discussions on the role of the 
protein environment around the site.)

Our analysis shows that models of selectivity that con-
sider ion interactions with a defined local neighborhood 
of the ion-binding site should be carefully considered.  
Reproducing the free energy of ion exchange in the 
binding site—a small difference of large numbers—may 
not imply that the material outside the local environ-
ment of the ion plays no part in selectivity. This is most 
clearly seen in systems where the eight-carbonyl site is not 
an appropriate model of the binding site, as is the case 
for the mutant KcsA channel. This only reflects a failure 
in appropriately modeling the physical system under 
study. The ideas presented here appear to provide a safe 
and robust way to understand and model selectivity in 
such systems and in biomaterials in general.

This Perspectives series includes articles by Andersen, 
Alam and Jiang, Nimigean and Allen, Roux et al., and 
Varma et al. (scheduled for the June 2011 issue).
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