Skip to main content
. Author manuscript; available in PMC: 2011 Apr 27.
Published in final edited form as: Ann Appl Stat. 2011;5(1):449–467. doi: 10.1214/10-AOAS390

Table 3.

Results of simulation study. The true marginal logistic model has parameters (βτ, βx) = (−0.5, 1.0).

True Distribution APPROACH βτ = − 0.5 βx = 1.0 βτ= − 0.5 βx = 1.0 βτ = − 0.5 βx = 1.0
Bridge ρ = 0.10 ρ = 0.30 ρ = 0.60
Simulation Average Bridge ML −0.505 1.001 −0.509 1.009 −0.507 1.012
Bahadur ML −0.508 1.019 −0.502 1.016 −0.514 1.020
GEE −0.517 1.024 −0.509 1.033 −0.506 1.001
Simulation MSE Bridge ML 0.0291 0.0790 0.0297 0.0771 0.0282 0.0829
Bahadur ML 0.0296 0.0793 0.0301 0.0782 0.0294 0.0917
GEE 0.0299 0.0823 0.0305 0.0842 0.0284 0.0851
Coverage Probabilitya Bridge ML 94.0 95.5 95.1 94.9 93.2 94.7
Bahadur ML 94.8 95.1 93.9 96.0 95.7 93.8
GEE 94.3 93.6 93.9 95.1 94.6 95.1
Bahadur Γ = 0.10 Γ = 0.30 Γ = 0.60
Simulation Average Bridge ML −0.510 1.027 −0.508 1.001 −0.518 0.966
Bahadur ML −0.509 0.997 −0.514 1.031 −0.507 1.021
GEE −0.513 1.024 −0.506 1.015 −0.505 1.025
Simulation MSE Bridge ML 0.0299 0.0867 0.0278 0.1053 0.0241 0.1115
Bahadur ML 0.0290 0.0809 0.0265 0.1036 0.0233 0.1113
GEE 0.0288 0.0888 0.0272 0.1057 0.0256 0.1366
Coverage Probabilitya Bridge ML 93.4 95.2 93.0 94.7 93.2 94.7
Bahadur ML 94.4 95.7 95.2 95.1 92.8 94.8
GEE 95.5 95.4 95.9 95.0 93.8 93.6
a

Coverage Probability for a 95% Confidence Interval