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Abstract
The continuum mechanical treatment of biological growth and remodeling has attracted
considerable attention over the past fifteen years. Many aspects of these problems are now well-
understood, yet there remain areas in need of significant development from the standpoint of
experiments, theory, and computation. In this perspective paper we review the state of the field
and highlight open questions, challenges, and avenues for further development.

1. Introduction
Biological growth occupied the minds of students of evolutionary and organismic biology in
the early twentieth century. Foremost among them were D’Arcy Thompson and Julian
Huxley. Their classics, “On Growth and Form” (Thompson, 1917) and “Problems of
Relative Growth” (Huxley, 1932), put forth the idea of growth as a change in form. The
focus then was on the recurring observation that certain organisms and their sub-parts grew
into well-defined geometric forms. As in other aspects of life science, however, the advent
of molecular and cell biology subsequently over-shadowed this organism-level
morphological view. The dominant view today is that molecular interactions drive biological
processes. Perhaps as a natural outcome of this view, the contemporary classic “The
Molecular Biology of the Cell” (Alberts et al., 2008) describes growth as an increase in mass
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driven primarily by the biochemistry. Both of these viewpoints—growth as changes in form
or changes in mass—have found acceptance within the continuum mechanics community.

Early work by Skalak (1982) introduced the kinematic treatment of continuum mechanics to
describe surface growth (see also Cowin and Van Buskirk, 1979). It was followed by a more
comprehensive discussion (Skalak, 1997) of growth velocities and velocities of generating
cells that shape antlers, horns, tusks, and shells. Among continuum mechanicians there
remain adherents to the view that the important effects of growth are explained by induced
changes in form. The other opinion, that of growth as a change in mass, has drawn from the
thermodynamics of open systems and more specifically in some cases, from the continuum
theory of mixtures. It too has numerous adherents.

Modern continuum mechanical treatments of growth as a change in mass do not ignore the
related change in form, however, as do some quarters of the mathematical biology
community. How to translate gain and loss of mass into non-uniform changes in form is a
central question for continuum mechanics. A common approach has been to treat local
changes in mass via variations in concentrations, and to allow stress, or alternately the
elastic part of the deformation gradient, to be driven by these variations in concentration.
This approach is predicated upon a decomposition of the deformation gradient tensor into
elastic and growth components, mathematically isomorphic to the multiplicative
decomposition that is a cornerstone of finite strain plasticity. The coupled solution of
balances of mass and linear momentum then governs changes in form: An increase in mass
is accompanied by an increase in volume and vice versa for a decrease in mass. This simple
approach (some would say simple-minded) successfully models residual stress in growing
tissues. Indeed, a series of seminal studies by Fung and co-workers (Chuong & Fung, 1982;
Liu & Fung, 1988; Omens & Fung, 1990) on residual stress in arteries and the heart was
interpreted in terms of continuum growth theories (and remodeling—see below). In the
1990s Fung also introduced the concept of a “mass-stress relation” for growth, a
generalization to unmineralized tissues of a concept developed for mineralized tissue (bone)
growth (Pauwels, 1980; Kummer, 1972; Firoozbakhsh and Cowin, 1981). Another general
approach to modeling growth (and remodeling) has stemmed from Fung’s suggestion, that
is, by incorporating biologically driven mass density productions and survival functions
within constitutive relations for stress response based on simple rule of mixture formulations
(Humphrey & Rajagopal, 2002).

“Remodeling”, a term often used jointly with growth, has been employed to describe
changes in properties, such as the anisotropy, stiffness and strength, that result from fine
changes in microstructure as well as coarse changes such as thickening and fibrosis (Taber,
1995). However, the last two processes are also manifestations of growth at lower spatial
scales. This example suggests that although growth and remodeling can be distinct cell
driven biological processes, they often interact. One example occurs in the growth of long
bones. The cartilaginous growth plate near the ends of a long bone provides an increment of
length to the bone before the growth plate closes (endochondral ossification). This additional
length distorts the overall shape of the bone initiating a remodeling process that reshapes the
bone. Growth and remodeling are separate processes in this case, but the former initiates the
latter.12 As another example, even if the overall mass remains constant, local cellular
synthesis and degradation of extracellular matrix for purposes of remodeling necessarily
involve mass turnover, that is, changes in constituent masses that again suggest an intimate
coupling of the two processes (Humphrey & Rajagopal, 2002). Nevertheless, in an attempt
to maintain distinct definitions, some restrict the term remodeling to signify a change in the

12This interaction is illustrated in an animated graphical file that may be viewed at
http://depts.washington.edu/bonebio/ASBMRed/growth.html#long.
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underlying microstructure while mass is held constant (Kuhl et al., 2005; Garikipati et al.,
2006).

Morphogenesis, another developmental process of fundamental importance in biology,
suggests a macroscopic change in form actuated and underlain in some manner by growth or
remodeling. It is the most dramatic of changes in the developing embryo, yet its continuum
mechanical treatment remains the least explored of the three processes operative during
development: growth, remodeling, and morphogenesis.

The emphasis in this communication is on growth, the continuum mechanical treatment of
which is not without controversy. Different approaches exist to model relationships between
changes in mass, kinematics, the origin of residual stress, the evolution of natural
configurations of a growing body or its constituent parts, and other associated aspects of
growth. For instance, because the set of material points constituting the tissue is changing
due to growth, even the appropriateness of modeling growth by an elastic-growth
decomposition of the deformation gradient tensor has been questioned by some. Others in
the field suggest that the relation between growth-induced concentration changes and the
elastic-growth decomposition of the deformation gradient is well-defined and useful,
however, and that the important question is how to enrich it by drawing upon experiment
and theory. Given the perspective nature of this communication—bringing together diverse
ideas from different investigators—we have not attempted to forge a consensus on this
controversy or others. Opposing points of view are thus expressed in this paper with the
hope of promoting increased research in this important and broad area.

Apart from these topics, this paper also highlights the largely-unexplored role of the
thermodynamics of growth, questions of the scale at which growth theories may be
employed, the robust experimental and theoretical activity in plant growth, links to the
theory of structural optimization, identification of open problems and computational issues.

Perhaps most important of all, we also touch upon studies relating to the pathways by which
mechanics induces chemical activity to cause growth at the molecular scale. That section
(§11) is focused on cancer studies, because the discovery of the importance of mechano-
chemical coupling to tumor growth has fueled more research on such interactions in cancer
studies than in other topics involving biological growth.

2. Kinematics
Foundational aspects of the mathematical formulation of growth and remodeling can be
viewed through the modern continuum mechanical lens of kinematics, balance laws and
constitutive relations. Of these, balance laws can be said to be fairly well-understood and
agreed-upon, at least for uniform media. There has been some recent disagreement on the
kinematic representations as will become clear in this section. Constitutive relations for
growth and remodeling are very much open as will be discussed in the next section.

2.1. Volumetric and surface growth
The kinematics of growth was cast in the mathematics of continuum mechanics by Skalak
and co-workers in the 1980s (Skalak, 1981; Skalak et al., 1982) by focusing on “volumetric
growth,” denoted by Fg in a 3-D finite strain setting. Analogous to the deformation gradient
tensor F = ∇ϕ, where ϕ is the motion, the growth between two instants was thus modeled
much like the strain associated with a finite deformation. Skalak referred to this process as
distributed continuous growth, motivated by ideas in the historical plant and animal
literature. In these papers, Skalak and co-workers also defined growth velocities and the
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velocities of generating cells to model surface growth that leads to the forms of horns,
antlers, and shells.13

Among the concerns expressed with this approach are the following: (i) There are many
situations in materials science where kinematic changes proceed from internal processes,
that is, they are not determined uniquely by the load. Plastic deformation is one example,
while simultaneous deformation and growth of a body is another. An effect much studied in
plasticity is that of incompatible plastic deformation; it arises from the underlying
incompatible nature of plastic slip or twinning deformation. In the case of biological growth,
with material actually added or lost, adjacent neighborhoods of the body may not “fit
together” in Euclidean space if the kinematic effect of growth alone is considered. In this
sense growth, like plasticity, is said to be incompatible. One mathematical consequence is
that Fg cannot be expressed as the gradient of a vector field. (ii) Another difficulty with the
volumetric growth approach is that, due to gain and loss of material, the mapping between
physically-attained configurations of the body is not represented entirely by the deformation;
growth also contributes to this mapping. While Fg represents the stretching of tangent
vectors due to volumetric growth in the interior of the body, the direct use of the
deformation gradient and its multiplicative decomposition at a surface is not appropriate
when surface growth occurs. Instead, the surface representation should be based on surface
and growth velocities. Mappings between physically-attained configurations must be
decomposed properly into components due to surface deformation and surface growth. The
work of Skalak et al. (1982) focused on this mapping when surface growth alone takes place
without surface deformation (see also Cowin and Van Buskirk, 1979). The kinematics
described by Skalak and co-workers (Skalak et al., 1982; 1997) or the more recent work of
Ateshian (2007) and Garikipati (2009) can be applied to surface growth. Issues associated
with proper extensions to combined deformation and growth are discussed below. (iii) Some
investigators also perceive a difficulty associated with the gain and loss of mass,
understanding it to imply that the mapping from the reference configuration to the
instantaneous configuration cannot be bijective, consequently local strain measures cannot
be defined. In this view, Skalak’s notion of distributed continuous growth is considered by
some not to be an accurate representation of actual growth processes because it assumes
spatial uniformity and temporal continuity, neither of which is usually observed.

2.2. Incompatible growth and remodeling
Skalak et al. (1996) explored the question of compatibility in the case of infinitesimal and
finite growth mappings and summarized compatibility conditions that are correspondingly
inherited from infinitesimal and finite strain elasticity, respectively. A provocative
hypothesis for this setting is that interstitial growth may be initially incompatible as new
material is added. During and after the incompatible growth phase, tissue remodeling could
smooth the incompatibility. This remodeling, a change in microstructure independent of
growth, could happen by fine scale mass transport. Thus, initial incompatibility associated
with growth is to be expected but could be eliminated naturally by remodeling. This
hypothesis points to the sometimes intimate connection between growth and remodeling,
and is consistent with the development of residual stress in some tissues.

Motivated by the work of Skalak and co-workers in the 1980s, the kinematics of finite
growth was extended to include the effects of incompatible growth (Rodriguez et al., 1994)
using a multiplicative decomposition (cf. Kröner, 1960; Lee, 1969) of the deformation
gradient F = ∇ϕ into an elastic Fe and a growth Fg part, where F = Fe · Fg. Here, both Fe

13Biologists often refer to volumetric growth as interstitial growth and to surface growth as appositional growth.
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and Fg are incompatible, but their multiplicative composition, F = ∇ϕ, is compatible by
construction (Figure 1).

2.3. On reference configurations for growth
There has been fairly wide agreement on the utility of this multiplicative framework to
model certain aspects of biological growth (e.g., Taber, 1995; Taber & Humphrey, 2001;
Lubarda & Hoger, 2002; Garikipati et al., 2004; Goriely & Ben Amar, 2007; Ambrosi et al.,
2008). Nevertheless, this approach has not been employed by others (e.g., Humphrey &
Rajagopal, 2002) and recent work by Ateshian (2007) has questioned it on the basis that
material is added to and lost from the body as growth progresses. As a result, the notion of a
fixed reference configuration is lost if the mapping between configurations is to be defined
only by the deformation. From this standpoint, a major challenge encountered in the
formulation of growth theories is the identification of reference configurations for the
growing tissue. One approach to resolving this difficulty is to allow the reference
configuration to evolve during growth. This approach also remains debated, and its
resolution requires that we question some fundamental assumptions, implicit or explicit, that
form the basis of classical continuum mechanics of non-growing bodies. For example, if a
body increases in mass over time as a result of growth, is it legitimate to identify it as the
same body in an evolved state or should it now be considered as the superposition of two
bodies, one representing that which deformed but maintained its original mass and another
that arose due to growth, with suitable kinematic constraints to match their current
configurations? The former description might require identifying the evolution of the body’s
reference configuration, whereas the latter description might keep the first body’s reference
configuration unchanged, while introducing new reference configuration(s) for the added
mass forming the “second” body. A third approach is to consider the current unloaded body
as the main configuration of interest but endowed with either a residual stress field or,
equivalently, a new metric representing the residual strains. The problem is then to define
the evolution and elasticity of a stressed body in the current configuration, which requires
constitutive relationships that take account of both the elastic properties of the body and the
residual stress field. Finally, a fourth approach to address this issue is to adopt a mixture
theory wherein different constituents can possess different natural configurations; this
approach is discussed below.

2.4. The mapping ϕ for a deformed, growing body
Yet another viewpoint arises from reconsidering the mapping ϕ and extending its physical
interpretation to include deformation and growth. In this case, ϕ is a bijective map from an
open set Ω0 ∈ R3, the reference configuration, to another set Ω ∈ R3, the current
configuration. Deformation and growth are included as physical processes giving rise to this
mapping, which is strictly between points in R3. According to proponents of this viewpoint,
misunderstandings arise from the use of terms such as “material particles,” whose
consideration is not appropriate in this framework. The intermediate “relaxed” configuration
attained by pulling back tangent vectors from Ω with Fe−1 is, by definition, the
configuration relative to which the elastic strain energy is to be evaluated, where W =
W(FFg−1) = W(Fe). Because of the incompatibility of growth, this intermediate
configuration is not physically attained by the body and therefore the partial differential
equation for balance of linear momentum cannot be written in this configuration, at least not
in strong form. It is therefore usual to pull back the balance of linear momentum to Ω0.

2.5. Resorption at a point
Some suggest that the aforementioned multiplicative decomposition can be applied without
difficulty if the tissue density ρ (or concentration) does not vanish anywhere over the body.
When ρ → 0 as a consequence of removal of tissue, it has been proposed (Garikipati, 2009)
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that the multiplicative decomposition can still be applied up to some arbitrarily set lower
limit, say ρ = ρcav, with Fg expressed as a function of ρ (see Section 3.1). If ρ ≤ ρcav over
some subdomain, a closed surface can be defined as the boundary of this subdomain that
represents a cavity, and the evolution of this surface can be governed by front tracking
methods such as levelsets.

2.6. Physical and mathematical basis of the multiplicative decomposition
Aside from issues raised above, concerns have been expressed that the type of multiplicative
decomposition discussed above for F is well-founded in crystal plasticity, but not in
biological growth. While the physics of growth is undeniably different from that of crystal
plasticity, there is no fundamental reason that such a multiplicative decomposition has a
more rightful basis in plasticity than in biology. In both cases there is an inelastic
contribution to the kinematics, represented by Fp or Fg, respectively. In this regard a
significant hurdle that needs to be overcome in growth kinematics is the definition of an
experimentally-inaccessible, evolving, incompatible state that is obtained by removing
external loads on the growing body. Mathematically, this translates to evolution equations
for Fg. Theories incorporating inelasticity have to address this problem and provide, if not a
physical justification, an explanation of this abstract concept as a useful and meaningful
mathematical construct.

The multiplicative decomposition of growth is also rejected by some on the grounds that it
focuses on consequences of growth (e.g., changes in form), not the biological mechanisms
by which growth occurs (e.g., cell and matrix turnover). This opinion relates back to the
previously noted change in viewpoint in biology, from a focus on changes in form to a focus
on changes in mass, ushered in by recent advances at molecular and cellular levels. In other
words, if one seeks to describe biological growth (and remodeling) in terms of the
underlying biological processes (i.e., cell mediated production, reorganization, and removal
of material), there is a need to develop continuum mechanical frameworks that admit such
information as it becomes available (cf. Humphrey & Rajagopal, 2002). In this way, models
can not only incorporate biological findings, they may also provide unprecedented
predictive capability based on knowledge of genetic mutations, altered cellular phenotypes,
and the like. It should be noted, therefore, that such theories of growth and remodeling will
also necessarily involve sequential motions and thus (different) multiplicative
decompositions for the kinematics. For example, Baek et al. (2006) show potential utility of
including a hypothesis that newly synthesized matrix or proliferative cells may be
incorporated within extant tissue at a preferred (homeostatic) stress or strain. In this case,
one can include the so-called “deposition stretch” within a multiplicative decomposition of
the overall kinematics, albeit in a very different way than suggested by the theory of
volumetric growth. Nevertheless, different models yield different types of utility, and
mathematical modeling can be as much about studying the consequences of a physical
phenomenon as its origins. For example, myriad implementations reveal that the volumetric
growth approach fulfills the important role of furnishing a framework for predicting globally
(both in time and space) the evolution, stability, and material properties of diverse biological
tissues. By analogy with an example in physics, although the origin of gravity is an
important problem, most interest lies in the consequences of gravity on large scales. On the
other hand, whereas one usually cannot control gravity, gene expression and intracellular
signaling pathways can be controlled, thus there can be strong motivation to build models
based on biological mechanisms, which fundamentally involve chemical reaction kinetics
and associated changes in constituent masses. The two approaches thus discussed could
therefore be seen as two levels in a multi-scale model of growth: the mechanism-based
approach exploits information obtained by experiment and allows long-term predictions
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whereas the consequence-based approach focuses solely on long-time and large-scale
outcomes.

3. Constitutive relations for growth
Basic postulates of continuum mechanics (e.g., balance of mass and linear momentum)
continue to prove useful in biology and medicine, hence development of theoretical
frameworks for growth and remodeling can focus primarily on appropriate constitutive
relations derived in terms of convenient continuum quantities. It is essential to remember,
however, that constitutive relations do not describe materials; rather, they describe the
response of a material to applied loads under specific conditions of interest. Different
constitutive relations can thus be equally useful depending on the question at hand.
Although there is a pressing need for more mechanobiological data (particularly on time
courses of cell and matrix turnover; Humphrey, 2008), significant data are available that
relate many tissue-level, cellular, and molecular responses to applied stresses or strains. It is
thus appropriate and useful to formulate constitutive relations for mass production and
removal, or similarly for changes in form, in response to altered states of stress/strain (the
choice of metric depending primarily on the availability of data and utility). Some also seek
to identify constitutive relations that relate stress/strain to changes in the primary effector
molecules (e.g., growth factors, cytokines, and proteases); this will involve
biochemomechanics (see §11; also Baek et al., 2007). Again, however, the search for such
relations will be dictated largely by the availability of data and the problem at hand.

3.1. Scalar and tensorial constitutive laws for Fg

Identification of appropriate evolution equations for the growth tensor Fg remains
challenging--possibly one of the most challenging problems in biomechanics according to
some proponents of this approach. Since the continuum mechanics treatment of growth
introduces Fg as a new unknown that is not governed by a new balance law, an appropriate
constitutive equation, namely an evolution law for growth, must be postulated. Such a law
must relate Fg to physical and chemical fields and, ultimately, biological signaling. Even if,
for the sake of simplicity, one is restricted to mechanically driven growth, neglecting all
other biological and chemical effects, there is no general agreement on whether growth
processes relate best to stress or strain.

How can one find such growth laws? One would be denying the complexity of biological
systems to believe that a simple universal law can be derived from fundamental physical
principles. Attempts along these lines, based on thermodynamic arguments, have not been
particularly fruitful. Another approach consists of postulating phenomenological laws based
on both experiments and general observations. For instance, the notion of homeostatic stress
(the idea that growth and remodeling takes place in such a way as to reduce the difference
between the actual stress and a preferred stress) is central to many physiological systems and
can be readily postulated as a differential law for the evolution of the growth tensor. In
developmental systems, specific diffusing chemicals known as morphogens are believed to
code for the location and extent of cell division and enlargement. Accordingly, the growth
tensor can be related directly to these chemical fields. These phenomenological models play
an important role in the development of the theory for they can be linked directly to specific
experiments from which arbitrary parameters can be evaluated. From a theoretical point of
view, however, there is room for a statistical mechanics formalism that starts with simple
microscopic mechanisms for mass deposition, removal, and remodeling, and by coarse-
graining arrives at macroscopic growth laws. By analogy, the development of the theory of
rubber elasticity by Flory and others in the 1940’s relied on simple observations of the
macroscopic structures of polymers that resulted in the derivation of the neo-Hookean
potential, which, in turn, served as a basis for further refinement and development. In many
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ways, more is already known about growth at the cellular level than we can exploit at the
tissue scale, and current attempts to develop evolution laws for growth necessarily ignore
many of the fundamental molecular and cellular processes known to play a role in the
process. Nevertheless, such an approach would establish a constitutive framework general
enough to accommodate further refinement.

When regarded as the process of mass addition and loss, the fundamental governing
equation of growth is balance of mass written in terms of either the mass or molar density,
namely the concentration, ρ. This equation is arguably the starting point for describing
growth, yet it is often missing from growth formulations. A key question is how ρ, a scalar
measure of growth, is to be related to the growth tensor, Fg.

3.2. Phenomenological evolution equations for Fg

A simple ad hoc attempt to formulate growth laws is to introduce evolution equations for Fg

on a phenomenological basis. Indeed, the simplest approach is to assume isotropic growth
whereby Fg = ϑI can be characterized through a single scalar-valued variable ϑ scaling the
second order isotropic tensor I. Its evolution could be driven by the density ρ or, if the mass
balance equation is not included in the formulation, by a pressure expressed in terms of the
trace of the second Piola Kirchhoff stress (i.e., tr (Se); Taber, 1995) or of the Mandel stress
(i.e., tr ((FeT · Fe): Se; Himpel et al., 2005). Because most soft biological tissues possess a
highly anisotropic microstructure, it seems natural to incorporate effects of anisotropic
growth parallel or perpendicular to characteristic microstructural directions n. The growth
tensor Fg = ϑ I + [η − ϑ] n ⊗ n would then be characterized through two variables η and ϑ,
where the former accounts for growth parallel to the direction n and the latter accounts for
growth perpendicular to n, respectively (Taber, 1995). Although the mathematical
understanding of these evolution equations seems to be fairly intuitive, their clear
biomechanical interpretation is still widely debated, particularly when defining appropriate
stress- or strain-based mechanical driving forces. It thus seems natural to seek further insight
through micromechanical phenomena that are related to isotropic and anisotropic tissue
growth on the cellular level.

3.3. Micromechanically motivated evolution equations for Fg –an example
The trend from phenomenological to micromechanical modeling reflects what is observed in
the constitutive characterization of a range of engineering materials such as metals, concrete,
soils, or polymers. When aiming to describe biological growth, however, this approach faces
greater complications since it ultimately requires in vivo characterization of structural and
functional changes in living tissues. Moreover, the type of growth is likely to depend on the
type of tissue under consideration. It is unlikely that a unique overall growth law could be
general enough for all types of tissue. It thus proves convenient to choose particular model
systems to start with for which growth is sufficiently well characterized. Typical examples
are arterial and cardiac tissues. The heart, for example, displays ventricular dilation and wall
thinning in response to volume overload and hypertrophic wall thickening in response to
pressure overload (Allen et al., 2001). Cardiac growth can be modeled using
micromechanically-motivated constitutive equations that account for alterations of cardiac
cell geometry. It is well-documented that heart muscle cells, or cardiomyocytes, tend to
elongate upon volume overload and thicken upon pressure overload (Hunter & Chien,
1999). Cardiac growth thus manifests phenomenologically as an anisotropic growth, say Fg

= ϑ I + [η − ϑ] n ⊗ n where the perpendicular growth ϑ = ϑ(tr(Se)) is driven by the
pressure tr(Se) and the longitudinal growth η = η (λ) is driven by longitudinal cell stretch λ.
Once calibrated on the cellular level via measurements from histology, the growth equations
can be validated experimentally through well-documented animal infarct models
characterizing growth on the tissue or organ level. A common procedure used to introduce
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cardiac growth is the controlled initiation of ischemia through the partial occlusion of the
coronary arteries. Cardiomyocyte death due to insufficient blood supply in the region close
to the infarct takes place almost instantaneously and can be observed in acute infarct models.
Ventricular dilation and remodeling that occur during the following weeks can only be
assessed in chronic infarct models (Cheng et al., 2006; Doyle et al., 2007). Modern invasive
and non-invasive imaging techniques can be applied to assess cardiac function via
ventricular volumes, cardiac output, ejection fraction, and wall dynamics.

4. The role of mixture theory
Many current theories of biological growth model the tissue as a homogenized (single-
constituent) solid continuum. For the balance of mass, this approach assumes that the mass
supply needed to drive this growth is available from implicit sources. When extended to the
balance of energy and the entropy inequality, this approach corresponds to classical open
system thermodynamics. While this approach can yield self-consistent frameworks, it may
also overlook phenomena that can play important biological roles during growth, including
reaction and transport of nutrients, enzymes, and by-products. Another example of an
overlooked mechanism is the role of osmotic pressure in the interstitial fluid of a soft tissue.
If the solid matrix is charged, as is often the case in tissues containing proteoglycans, a
Donnan osmotic pressure will result in tissue swelling, typically in a non-homogeneous
manner. If the growth process involves changes in proteoglycan content, a common
occurrence in many tissues, the resulting change in the osmotic pressure of the interstitial
fluid will play an important role in the evolution of the tissue response. Thus, formulation of
a framework for biological growth can benefit from the use of mixture theory so as to
include contributions of diverse constituents (solid and fluid as well as electrolytes, growth
factors and cytokines, and nutrients and waste products within the interstitial fluid) involved
in the underlying biochemical and biophysical process. Subsequent simplifications may then
be adopted in the derivation of more elementary theories, when a clearer understanding is
available with regard to the significance of neglected terms.

The continuum theory of mixtures is similarly useful for modeling evolving contributions of
the different solid constituents that comprise a tissue or cell and influence its growth and
remodeling. Examples of structurally important solid-like constituents within soft tissues are
the fibrillar collagens, elastic fibers, proteoglycans, and muscle; examples within cells are F-
actin, microtubules, intermediate filaments, and stress fibers. These solid constituents
exhibit distinct natural configurations, material properties, and rates of turnover, thus
emphasizing the potential utility of materially nonuniform theories. For example, Humphrey
& Rajagopal (2002) suggested that full mixture equations for mass balance (to include
reaction-diffusion effects of vasoactive, mitogenic, synthetic, proteolytic, and inflammatory
molecules) be used in combination with classical equations for linear momentum balance
written in terms of rule-of-mixture relations for the stress response. Reasons for this include
the advantages of including contributions of individual constituents while avoiding
difficulties associated with prescribing partial traction boundary conditions in real problems
and the yet unknown exchanges of momentum between individual constituents as they
turnover. By prescribing separate mass balance relations for structurally insignificant
(soluble) and structurally significant (insoluble) constituents, one can begin to introduce
biochemomechanical modeling. Although any mixture theory of growth and remodeling will
involve potentially large numbers of constitutive relations and associated material
parameters,, such models should be formulated so that important data can be incorporated as
they become available, guidance can be given for needed experiments, and new hypotheses
can be generated and tested.
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4.1. Constrained mixture theory
This specialization of mixture theory assumes that growth and remodeling seeks to maintain
constant a preferred (homeostatic) biomechanical state, which is achieved via reorganizing
or replacing previously existing constituents with new constituents that may have new
natural configurations, orientations, and mass fractions, but otherwise similar mechanical
properties. Basic hypotheses are that structural constituents are constrained to move together
despite having different/evolving natural configurations, that new constituents are
incorporated within extant matrix at preferred deposition stretches, and that rates of turnover
(prescribed via production and survival functions) depend on changes in chemomechanical
stimuli from baseline. This basic theoretical framework has been used to model salient
features of the enlargement of cerebral aneurysms (Baek et al., 2006), the development and
resolution of cerebral vasospasm (Baek et al., 2007), and arterial adaptations to altered blood
flow and pressure (Valentin et al., 2008). It has also been shown that related computational
growth and remodeling codes can be combined with fluid-solid-interaction codes to develop
a new class of fluid-solid-growth codes that may be useful in cardiovascular medicine and
surgery (Figueroa et al., 2009). Such applications serve as reminders that growth and
remodeling research should not only seek to promote understanding of basic physiology and
pathophysiology, it should also seek to improve clinical intervention, particularly via
medical device design, regenerative medicine, and tissue engineering.

4.2. Thermodynamics and dissipation
Constitutive relations that govern material response in the sense of mechanics, both passive
and active, have received much attention. The thermodynamic aspects, however, have
remained fairly underdeveloped.

If a body is treated as a mixture, the balance of energy includes inter-species energy
exchange terms, which must be modeled if the energy balance needs to be resolved for each
species (see e.g., Garikipati et al., 2004). It is not yet known what form these interaction
terms take. The entropic changes also remain largely unaddressed apart from the recognition
that constitutive laws for growth, such as for Fg must comply with the dissipation inequality.
Instead, the inelastic kinematics of growth is exploited to write the corresponding
contribution to thermodynamic dissipation as the scalar product of the appropriate stress and
growth rate tensor. Maximum dissipation due to growth has been postulated in some cases
(Fusi et al., 2006) to obtain restrictions on the constitutive relation for Fg. However, there
have not been studies comparing such a model with experiment to suggest that maximum
dissipation is indeed a principle that is observed during biological growth.

Specifically, there is a need for constitutive equations for growth that can be tested using the
expression for thermodynamic dissipation. The dissipation so modeled can then be related to
measurable energetic and metabolic quantities at the cellular and molecular level. The
formal expertise developed in continuum thermodynamics can thus make fundamental
contributions to understanding the energetic basis of growth in normal and pathological
states. Such an approach was recently adopted by Narayanan et al. (2010) in an in silico
study of the free energy changes during growth of solid tumors. The authors grew tumor
spheroids of a human colon cancer adenocarcinoma cell line and characterized the growth
and mechanical properties of these tumor spheroids. Additional data were obtained from the
literature on tumor spheroids and cancer cells. With these, they carried out continuum
mixture theory-based computations for the development of a representative tumor spheroid
system over 28 days during which it grew from a radius of ~50 μm to ~200 μm. Their model
included the biochemo-mechanical processes of cell proliferation, death and migration,
extracellular matrix production, oxygen and glucose transport and consumption, and
mechanical growth against stress. They also derived free energy rates associated with these
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biochemo-mechanical processes. Their preliminary computations suggested that the free
energy rates associated with the mechanical processes of cell migration and growth against
stress are dwarfed by many orders of magnitude when compared with the biochemical
processes of cell proliferation and death, extra-cellular matrix (ECM) production, and
oxygen and glucose transport and consumption (Figure 2). This finding suggested that
reports of stress-induced retardation of tumor spheroid growth (Helmlinger et al., 1997), and
of arrest of cancer cells’ growth cycle (Chang et al., 2008), involve chemo-mechanical
signaling that is more complex than direct energy starvation by manipulation of mechanical
properties or boundary conditions. The paper also pointed to the need for a multiscale study
of the free energy changes associated with cell motion.

5. The cellular and sub-cellular scale for growth models
To date, most theoretical studies of growth and remodeling have been based on tissue-level
phenomenological models. These models have improved our understanding of macroscopic
responses. Yet, growth and remodeling is accomplished via cell mediated production (e.g.,
cell hypertrophy/proliferation and matrix synthesis) and removal (cell atrophy/death and
matrix degradation). From the perspective of biomechanics, one of the most important
discoveries in cell biology (in the 1970s) was that many types of cells respond to changes in
their mechanical environment via altered gene expression. These mechanobiological
responses involve three basic processes: transduction, transcription, and translation. It is
hoped that parallel advances in systems biology and biomechanics will one day enable
multiscale models that link these fundamental processes at the molecular level with the
tissue level manifestations that present clinically and require intervention. Clearly, this
endeavor poses a number of extremely challenging issues regarding how the various scales
will be linked. In the end, however, this research should help answer a number of
fundamental questions such as: What mechanical stimuli regulate growth and remodeling?
Why do some tissues seem to grow and remodel toward certain preferred states of stress or
strain? How do mechanical stimuli affect gene expression and vice versa?

This line of thought leads to the choice of scale and system to model. Notwithstanding the
importance of continuum mechanical treatments of growth and remodeling at the tissue
scale, there are unparalleled opportunities at the cellular and sub-cellular scales. As the basic
unit of life, the functionally adapative growth processes so unique to living biological
materials begin and end with the effector cell. Consider this: The cell is a well-defined
domain with clear boundaries and interior. Its boundary, the cell membrane, is subject to
influx and efflux of mass via ion channels, pumps, and direct diffusion; it has distinct
boundary subdomains where tractions are applied, exerted, and sensed. These regions
include focal adhesions, cadherins junctions, and other receptor-mediated attachments. The
cell, itself, is subject to finite strains. There is a great deal of data on the mechanical
properties of intracellular components (actin, microtubules, intermediate filaments) and of
the viscoelastic response of the cell as a whole. Moreover, the cell cycle -- through the
phases of gap1 (G1), the growth phase of synthesis (S), gap2 (G2), and mitosis (M) -- is
well-characterized. At the larger scale of the tissue, boundaries are sometimes hard to define
and transport across them is not always well-characterized. The higher degree of variability
and mechanical complexity of the tissue structure also seems to have rendered mechanical
testing more difficult. These reasons offer strong motivation to apply the continuum theory
of coupled transport, reaction, and mechanics to the cell at least as much as to tissues.
Moreover, such research may afford a favorable framework by which to link macroscopic to
microscopic scales (Na et al., 2007; Humphrey, 2008). Such an integration of scales will be
a prerequisite to joining advances made in computational tissue engineering (macro) to those
in computational biology and bioinformatics (micro) in order to realize in silico platforms
for patient-specific regenerative medicine (Semple, 2005).
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6. Morphogenesis
Morphogenesis is the creation of biological form. This subject offers a wide range of
challenging and important problems that barely have been touched outside the field of
developmental biology. Problems include the development of the heart, blood vessels, brain,
lungs, gut, eye, and musculoskeletal system (Taber 1995; Taber 2001; Murray 2002). In
addition, tissue engineers can benefit greatly from knowledge of how tissues develop in
nature.

Growth and remodeling play important roles during development, but changes in form or
shape result primarily from viscoelastic deformation of cells and tissues in response to both
external and internal loads. Internal loads include those generated by cytoskeletal
contraction, actin polymerization, microtubule elongation and shortening, adhesion,
differential growth, and swelling of ECM. Cells also migrate through the embryo and
exchange neighbors (intercalate) to change tissue shape. At the tissue level, many of these
processes can be simulated using the theory of Rodriguez et al. (1994) for finite volumetric
growth (Taber et al. 2000; Taber 2001).

In the embryo, cells move either individually (mesenchyme) or in sheets (epithelia). The
heart, brain, and gut begin as epithelia. Muscles and bone arise from clusters of
mesenchymal cells.

In early work on modeling the mechanics of epithelial morphogenesis, Odell et al. (1981)
proposed a 2D model for an epithelium in which each cell is treated as a viscoelastic truss-
like element with a contractile apex. These authors used this model to simulate the
invagination that occurs during gastrulation and neurulation. Since then, other models for
epithelial morphogenesis have been used to study neurulation (Brodland et al. 1994;
Brodland 2002; Chen et al. 2008), gastrulation (Davidson et al. 1995; Munoz et al. 2007),
and cardiac looping (Ramasubramanian et al. 2006; Ramasubramanian et al. 2008).

A pioneering model for mesenchymal morphogenesis is the Murray-Oster theory, which is
based on continuum mechanics for a mixture of cells and matrix and includes the effects of
cell traction, mitosis, matrix secretion, cell migration, and differential adhesion (Murray et
al. 1983; Oster et al. 1983). The governing equations produce a reaction-diffusion type
system similar to those studied extensively in biochemical models of pattern formation
(Murray 2002). Using this theory, Manoussaki et al. (1996) and Namy et al. (2004) studied
two-dimensional models for vasculogenesis. For appropriately chosen parameters, their
model yielded networks of cord-like cell aggregates resembling those that form when
endothelial cells are cultured in vitro (Folkman et al. 1980). The tissue development model
of Barocas and Tranquillo (1997) is based on an extension of the Murray-Oster theory.

Genes play a central role in regulating the forces that drive morphogenesis. Gene activity,
however, is affected by feedback from the mechanical environment, and the nature of this
feedback has been a subject of considerable speculation. Computational models with
mechanical feedback have been developed for a number of morphogenetic processes,
including gastrulation (Odell et al. 1981; Taber 2008; Taber 2009), neurulation (Clausi &
Brodland 1993; Brodland et al. 1994), cardiac looping (Nerurkar et al. 2006;
Ramasubramanian et al. 2008), and bone development (Carter 1987). The behavior of these
models depends on postulated feedback laws based on stress, strain, or stain-energy density.

There is no clear consensus on the specific mathematical form that biomechanical feedback
laws should take, and some investigators argue that it is unlikely that such laws even exist.
Clearly, biological systems must obey the quantitative laws of physics, but it is not clear
whether they also obey quantitative laws of biology. For example, Forgacs and Newman
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(2005) note that, in contrast to inanimate systems, living systems are governed by the laws
of evolution. To increase their chances of surviving natural selection, therefore, species
develop adaptive mechanisms which differ among species. Moreover, different tissues serve
different functions and likely are optimized to carry out these functions. Hence, if
mathematical feedback laws exist, they may be different for each organism and each tissue
type. On the other hand, for undifferentiated cells in the early embryo, such laws may have a
certain universal character.

Based on decades of experiments with embryos, the developmental biologist Lev Beloussov
has suggested that a universal principle for morphomechanics does indeed exist (Beloussov
1998). According to his hyperrestoration (HR) hypothesis, a perturbation in tissue stress
induces an active mechanical response which is directed toward restoring the initial stress
value, but generally overshoots to the opposite side. Each response changes tissue shape and
induces a new stress perturbation, which elicits a new response, and so on, until the proper
form is created. Beloussov (1998) has shown that this idea can explain in qualitative terms a
number of experimental observations for embryos undergoing various morphogenetic
processes, including cleavage, gastrulation, and neurulation. Ultimately, computational
models are needed to test this idea (Belintsev et al. 1987; Nerurkar et al., 2006;
Ramasubramanian et al., 2008; Taber, 2008). Thus far, the results are mixed. Nevertheless,
the HR hypothesis or a modified version of this theory (Taber, 2009) remains an intriguing
idea to be pursued in the future.

7. Plant growth
The involvement of mechanics in plant growth has been known for more than a century
(Sachs, 1875). The early recognition of the importance of mechanics is largely due to the
fact that residual stresses in plants are large and ubiquitous. In that sense, plant growth
shares many similarities with animal tissue growth and remodeling (Cowin, 2004).
However, some fundamental differences between the structure of plant and animal cells
need to be taken into account in modeling growth. The goal of this section is to present the
key mechanical aspects of plant growth.

7.1. The mechanics of growth at the cell level
Many of the features of plant growth find their explanation at the cell level. It is therefore
useful to focus first on the growth of plant cells. Plant cells differ from animal cells in that
they are surrounded by a thin but stiff extracellular matrix, the cell wall, made of highly
organized cellulose microfibrils embedded in a pectin matrix (Preston, 1974; Cosgrove,
1997; Peters et al., 2000; Baskin, 2005). For a plant cell to increase its volume, it must
expand the cellulosic wall that surrounds it. Whether wall assembly will contribute to cell
surface expansion depends on the mode of insertion of new wall material. Two contrasting
mechanisms exist – wall assembly by apposition and by intussusception. Appositional wall
assembly implies that new material is added to the inner surface of the pre-existing wall thus
increasing wall thickness. Intussusception is growth where new wall components are
deposited within the existing polymer network thus leading to increased surface area of the
cell. Ever since the two modes of wall deposition were recognized, plant biologists have
debated their relative importance (Noll, 1887; Jost, 1907; Ray, 1967). It now seems clear
that wall assembly proceeds mostly by apposition as far as cellulose deposition is concerned,
while other wall components can be incorporated in the wall with some degree of
intussusception (Ray, 1967).

Wall deposition and assembly is, however, only one aspect of plant cell growth. Plant cell
expansion also requires that the cellulosic wall be put under tension. The strength of the wall
is such that a considerable stress is required to cause it to creep. This stress is provided by
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the internal hydrostatic pressure of the cell known as turgor. A turgor pressure of
approximately 0.5 MPa is common in plant cells (Green et al., 1971; Zhu and Boyer, 1992).
Cells develop this pressure by maintaining an osmotic gradient between their cytoplasm and
the environment thus allowing water to move into the cell and build up a large pressure. Cell
expansion occurs only when the cell’s turgor pressure exceeds some critical value thus
underlining the fact that at the macroscopic level cell walls possess a plastic yield stress
above which irreversible expansion is observed and below which deformations are elastic
and therefore reversible (Green et al., 1971; Cosgrove, 1985, 1986). The most compelling
evidence of the complementary role of wall deposition and of pre-stresses in driving growth
comes from the analysis of cells growing under reduced turgor pressure. Under these
conditions, it is common for cell expansion to stop completely while wall deposition
proceeds unaffected, leading to a rapid wall thickening (Kiermayer 1964). Clearly, wall
deposition must be complemented with a certain level of stress to allow normal cell growth.
Thus plant cells offer a striking example of a stress-dependent growth process of the kind
described above. Although few studies have focused on the constitutive behavior of the
growing cell wall, other mechanical aspects of plant cell expansion have been analyzed in
detail (Lockhart, 1969; Green et al., 1971; Sellen, 1983; Zhu & Boyer, 1992, Goriely and
Tabor, 2003; Dumais et al., 2006; Bernal et al., 2007). In particular, pressurized shell models
with simple constitutive relations can predict cell surface expansion with surprising accuracy
(Sellen, 1983; Dumais et al., 2006; Bernal et al., 2007).

7.2. Tissue growth
The mechanism of plant cell expansion has one obvious consequence for the growth of plant
tissues – growth can proceed only if the walls of the many cells within a tissue are under
tension. Therefore, the large residual stresses present in growing plant structures are as much
a prerequisite for growth as they are a consequence of it. The main residual stresses in plant
organs come from the strong osmotic gradients that maintain the turgor pressure within cells
(Hejnowicz and Sievers, 1995a,b; 1996). This conclusion is supported by a simple
experiment. When a growing stem is cut along its length, the two halves spring apart thus
demonstrating that residual strains (and stresses) are present (Peters et al., 2000). However,
when the same stem is placed in a solution with high concentration of sugar or salt such that
the pressure within the cells is reduced, it shows little or no response to a longitudinal cut.
Clearly, the residual stresses present in the stem are dependent on the internal pressure of the
cells.

Residual stresses were also uncovered in the shoot apex whose growth produces most of the
above-ground organs of plants (Snow and Snow, 1951; Hussey, 1973). The stress field is
especially intricate in the sunflower head where the outer epidermal layer is under radial
tension and circumferential compression (Dumais and Steele, 2000) (Figure 3). These large
residual stresses are revealed either with cuts of the meristem surface (Figure 3a) or by
propagating cracks that invariably follow circumferential trajectories in order to release the
radial tension on the surface (Figure 3b). Interestingly, the pattern of residual stresses can be
explained solely by assuming that the cells within the meristem exert a uniform pressure on
the meristem surface (Dumais and Steele, 2000). As with other plant structures, the residual
stresses vanish when the apex is plunged in a salt solution to lower the turgor pressure of the
cells (Figure 3c, 3d). The consequences of these residual stresses on the overall mechanical
properties of plants can be studied within the context of a multiplicative decomposition
growth theory as shown by Vandiver and Goriely (2008).

8. Structural optimization and bone remodeling
There is a close connection between the objectives of computational bone remodeling and
the field of structural optimization (Petersen and Bendsøe, 1999; Bendsøe, 1995). Structural
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optimization is a term used to cover a number of optimization techniques associated with
structural mechanics; it includes shape, size, and topological optimization. It also includes
material optimization, which overlaps strongly with material design. Shape optimization is
the term used to describe the process of finding the optimum shape of a domain, the shape
being the design variable; see Haftka and Grandhi (1986). Size optimization is the term used
to describe the process of finding the optimum dimension of a structural shape, say, the
thickness of a plate. Topology optimization is a method that applies equally well to
determining the connectivity of a structural domain or to material optimization (design). For
a survey of structural optimization, see Bendsøe (1995) and for applications Petersen and
Bendsøe (1999). Surface bone remodeling bears a great deal of similarity to shape
optimization because surface bone remodeling has to do with changes in the overall shape of
a single bone. Internal bone remodeling has many characteristics and techniques in common
with topology optimization. One application of topology optimization is to fashion the shape
of a truss from an amorphous structural domain in a manner similar to a sculptor fashioning
a sculptural art form from an amorphous marble domain. Internal bone remodeling is used in
a manner similar to topology optimization to fashion local trabecular architecture.
Trabecular architecture is treated as both a structure and a material in mechanics. Similar
remarks may be made about topology optimization because it is applied to both structures
and to material optimization. An interesting point concerning these optimization algorithms
and surface bone remodeling models is that the optimization algorithms are global and the
surface bone remodeling models are local yet they often produce similar results for similar
problems and the connection between the two has not been established to date.

Figures 4—6 show a typical example of bone remodeling around implants (Kuhl et al.,
2003). Using a relaxed topology optimization algorithm in which the density is treated as an
internal variable that is allowed to change gradually, bone density profiles can be generated
by laying down material in areas of high stress concentrations while areas with low stress
undergo bone resorption. Figure 4 illustrates the classical benchmark problem of the
proxima femur loaded by three different muscle groups that are activated during abduction,
adduction, and the midstance phase of gait. The underlying topology algorithm converges
towards a physiological density profile with the characteristic dense system of compressive
trabeculae carrying the load from the superior contact surface to the calcar region, a
secondary arc system of trabeculae through the infero-medial joint surface, Ward’s triangle
as an area of low density, and a dense cortical shaft. Figure 5 documents the evolution of the
density profile in response to the virtual implantation of a traditional prosthesis. The stiff
titanium transfers the joint forces down the distal portion of the implant stem. At the distal
tip of the stem, forces are transferred to the outer bone shaft. This triggers the pronounced
deposition of bone mass at the distal tip of the prosthesis while the unloaded proximal
regions of the femur undergo a severe bone loss that is typically accompanied with aseptic
loosening and the need for refixation. To avoid these undesirable long-term effects, a novel
technique has been developed that is based on local femur hip resurfacing. Figure 6
demonstrates its advantages over traditional hip implants. The new nail-shaped implant
shows a much better ingrowth with an increased density at the medial side. In contrast to the
classical implantation technique, the shaft remains virtually unaffected by the treatment.
These examples demonstrate the ability of bone to change its local microstructure in
response to loading and document how the functional adaptation could potentially be
predicted using finite element algorithms in combination with topology optimization.
Another example of bone remodeling is illustrated in Figure 7. It shows the functional
adaptation of bone density in high performance tennis players. Severe humeral torsion
during the serve induces bone remodeling which results in a twisted density profile with
high density areas wound around the long axis of the bone (Taylor et al., 2009).
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9. Some open problems in growth and remodeling
The mathematical modeling of growth and remodeling can be expected to provide fertile
ground for research over the next decade and beyond. For example, the endothelial cells,
lining the arterial wall and resting on a thin basal membrane, “recognize” (shear) stress and
(shear) strain in a still unknown manner but regulate many of the functions of the wall;
smooth muscle cells, which reside in an extracellular matrix within the media, recognize
cyclic stress and strain, and in response regulate the diameter, thickness, length, stiffness,
and tone of the artery; fibroblasts, which reside in matrix within the adventitia are similarly
responsive to changes in cyclic stress or strain and maintain adventitial structure by
producing and degrading matrix and can migrate to inner portions of the wall to facilitate
growth, remodeling, and repair. It is thus accepted that one trigger for growth and
remodeling comes from mechanical stimuli which, in arterial walls, stimulate endothelial
cells through the activation of mechanosensors. Such mechanotransduction leads to
modulations of protein expression and other cellular functions (see §11; also Chien, 2007).

For example, after stretching a substrate on which a cell is attached, a net stimulus acts on
cell-matrix contacts, which, via integrins, induce signaling pathways that ultimately affect
the nucleus. One effect is an up-regulation of the synthesis of an matrix protein and a down-
regulation of protease expression. Subsequently, the cell will try to reach a new equilibrium
state in which external and internal forces are balanced, signaling via integrins becomes
quiescent, and the cell—matrix contacts are restructured (Chiquet 1999). Hence, the activity
of cells depends strongly upon mechanical stimuli mediated by the matrix. An important
goal is translate information from cell or tissue culture studies to clinical medicine wherein,
for example, growth and remodeling of arterial walls under physiological (morphogenesis)
or pathophysiological (aneurysm growth) conditions are fundamental to patient health.

9.1. Collagen fiber remodeling in arterial walls
Hariton et al. (2007a) proposed a remodeling model for collagen fibers in arterial walls that
is stress modulated, i.e., the angle of collagen alignment depends on a ratio of the
magnitudes of the principal stresses. With consecutive iterations the authors solved
boundary-value problems using an external load and an anisotropic constitutive function
according to Holzapfel et al. (2000). The remodeling strategy works within a standard finite
element framework with the remodeling equations being evaluated at the integration points.
Figure 8a illustrates results for the apical ridge of a human carotid bifurcation (Hariton et al.,
2007b). The two families of collagen fibers at the apex are oriented almost along the
direction of the apical ridge and resemble a tendon-like structure, which is in agreement with
the physiological collagen structure; see the uniform size and co-aligned collagen fibers of
apex adventitia in the transmission electron photomicrograph depicted in Figure 8b –
adopted from Finlay et al. (1998). The fibers have a single preferred direction.

9.2. Cerebral aneurysms
There is an urgent need to better understand the etiology of aneurysms and to establish
reliable criteria by which surgeons can predict the risk of rupture and thus the need for
intervention. The aneurysmal wall is a living and metabolizing structure, able to add to and
reinforce itself. Much is known about the natural history of aneurysms, yet little is known
about the details of how they actually originate, enlarge, and rupture (Humphrey, 2002). In
order to analyze the process of aneurysm development, a number of animal model
aneurysms have been developed (see, for example, Zhang et al. 2003, with more references
therein). Animal models may give some guidance concerning the natural history of these
lesions, but it remains unclear to what extent they actually reflect the etiology of human
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aneurysms. There is a need, therefore, for increased experimental and clinical information
on human lesions.

In cerebral aneurysms fibroblasts are mainly responsible for the production of (Type I)
collagen. These cells therefore play a key role in aneurysmal growth. More specifically,
cyclic deformation induced by pulsatile blood flow (which, for example, fibroblasts
embedded in an arterial wall are exposed to) is known to govern the proliferation of and rate
of collagen production by fibroblasts, which are important for the growth of aneurysmal
tissue.

We need to better understand the structural development of human aneurysms not only in
terms of biology, but also from a biomechanical point of view. Cerebral aneurysms are thin-
walled and balloon-like structures with a dominant collagen-rich adventitia and weakness in
media that causes structural defects. The first model for saccular cerebral aneurysm growth
seems to be the one by Kroon and Holzapfel (2007, 2008, 2009). This model is based on the
assumption that a collagen fabric is the only load-bearing constituent in the aneurysmal wall,
and that the turnover of collagen is responsible for the growth and morphological changes of
the aneurysm. The aneurysm is modeled as a multi-layered membrane, and results agree
with clinical observations and mechanical test results for aneurysmal tissue.

More experimental and theoretical work is needed to understand how the collagen fabric
evolves during the development of aneurysms. See Baek et al. (2006) and Watton et al.
(2009) in this regard. The former illustrates the importance of understanding stress-mediated
orientation of newly synthesized collagen, not just the rate of deposition. The latter similarly
addresses a conceptual theoretical model to reflect the development of fusiform and saccular
cerebral aneurysms. The constitutive framework is based on (i) functions of strain energies
stored in elastin and collagen, (ii) elastin degradation, (iii) remodeling of the collagen fibers,
and (iv) growth/atrophy of collagen.

10. Computational issues
10.1. Computational framework for multiplicative growth

Irrespective of the choice of the particular growth law, the equations for growth of soft
biological tissues are typically, highly non-linear, anisotropic, and heterogeneous. Especially
for complex animal or patient specific geometries, they do not succumb to analytic methods.
The finite element method provides a unique computational framework that can incorporate
growth in a simple and straightforward way. From an implementational point of view, the
growth tensor, or rather its characteristic variables η and ϑ, introduced previously, can be
introduced as internal variables at integration points (Himpel et al., 2005). Provided the
evolution equations are not too complicated, they can be discretized in time with implicit
time stepping schemes, linearized consistently, and then embedded within an incremental,
iterative Newton Raphson solution scheme. Accordingly, algorithmic modifications only
affect the constitutive level and can thus be incorporated into any non-linear finite element
tool in a straightforward manner. Typical examples of isotropic arterial wall growth and in-
stent restenosis in response to a virtual stent implantation (Kuhl et al., 2007), and anisotropic
ventricular wall growth in hypertrophic dilation and wall thickening are illustrated in
Figures 9, 10 and 11, respectively.

10.2. Numerical algorithms
If the formulation of a growth problem is based on mixture theory a number of partial
differential equations need to be solved. For soft tissue there could be distinct momentum
balance equations for the solid and fluid phases, mass transport of the fluid, mass production
or consumption (growth and resorption, respectively) of the solid phase and reaction-

Ambrosi et al. Page 17

J Mech Phys Solids. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



transport equations for key nutrients, reactants and waste products. These equations are
coupled due to both balance laws and constitutive relations. A large matrix problem results
upon discretization by the finite element method. The direct approach to solving this matrix
problem consists of the so-called monolithic schemes, where the coupling is held unchanged
in the numerical algorithm. Monolithic schemes have the advantage of inheriting the
stability properties of the underlying physics, but suffer from the drawback of large matrix-
vector problems. As an example, on a coarse finite element mesh with 103 hexahedral
elements the solution of a growth problem with three concentration fields (solid, fluid and
one reactant) and two momentum equations (solid and fluid) involves linear solves of
1.2×104 equations. Since the momentum equations are nonlinear and the mass balance
equations possibly so, iterative procedures such as the Newton-Raphson Method must be
used separately of any iterative linear solver. Monolithic schemes can therefore become very
expensive for large problems.

The alternative, staggered schemes, are based on formal operator-splitting methodologies.
These consist of solving each equation (a momentum or mass balance equation) for its
primitive variable while holding fixed the primitive variables of the other equations. Smaller
systems have to be solved; in the above example, each momentum equation would require
the solution of ~ 4×103 equations. Further iterations are required over and above those with
monolithic schemes to ensure that a self-consistent solution has been attained. While
staggered schemes can deliver efficiency with large problems, the operator split can
introduce numerical instabilities. A significant body of literature exists on the stability
properties of staggered schemes for thermo-mechanics and bi-phasic mechanics. Due to the
common parabolic nature of the heat equation and the mass transport problem, much of
these numerical developments are relevant to the growth problem. Recently, the influence
on numerical stability of staggered schemes due to the choice of strain and stress
homogenization assumptions in soft tissue mechanics was studied by Narayanan et al.
(2009). If a poroelastic model is adopted for soft tissue mechanics without the explicit
solution of coupled momentum equations for the solid and fluid, a further assumption of
homogenization becomes necessary. The authors showed, by analysis and computation, that
homogenization of the strain field over the solid phase and the fluid-filled pores results in a
scheme that is slow to converge when compared with a stress homogenization assumption
over the solid and fluid phases. Iterations to self-consistent solutions converge at a rate that
is two orders of magnitude higher if stress homogenization is used. Failure to converge to
self-consistent solutions with the strain homogenization scheme eventually causes numerical
instabilities and divergence of the solution.

11. Links to molecular mechanisms in the context of tumor growth
To date, it is mainly in the context of cancer that studies have appeared to link the
mechanical aspects of growth with molecular biology. Even in this case, any experimental
evidence that mechanics can affect a tumor’s progression has appeared only recently.
Helmlinger et al. (1997) found a suppression of growth of tumor spheroids derived from
colon cancer LS174T cells when subjected to compressive stress by an encapsulating
hydrogel. In a follow-up study Koike et al. (2002) demonstrated that externally-applied
mechanical stress aided the formation of multicellular tumor spheroids in the highly
metastatic Dunning R3327 rat prostate carcinoma AT3.1 cells, while the less metastatic AT1
cells formed spheroids even without the applied stress. This study thus pointed to cancerous
tissue growth by agglomeration of otherwise dispersed cells under stress.

Chang et al. (2008) showed that in four different cell lines shear stress led to cell cycle arrest
in the G2/M phase, thus directly targeting cell growth. This result was associated with
increased expression of cyclins B1 and p21CIP1, and decreased expression of cyclins A, D1
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and E, cyclin-dependent kinases (cdk) -1, -2, -4, -6 and p27KIP1, as well as decreased cdk-1
activity. Reviews by Kumar & Weaver (2009), Butcher et al. (2009) and Suresh (2007) have
pointed to the decreased stiffness and altered cytoskeletal rheology of cancer cells from
several different cell lines when compared with normal cells. These phenotypes promote
greater motility and therefore probably favor invasion of the cancer into surrounding tissue,
which at a continuum scale manifests itself as growth.

Cells also impose traction forces on the ECM, and Gordon et al. (2003) found that larger
traction forces near the edge of tumor spheroids with the human U87MGmEGFR
glioblastoma cell line led to greater depths of invasion (tumor growth) into the ECM. Many
cell types form focal adhesions with the ECM, and the force developed in the actin
cytoskeleton is regulated by a dynamic interaction between focal adhesions, the cytoskeleton
and the ECM (Geiger & Bershadsky, 2001, and references therein). Perhaps the most far-
reaching studies of the direct interaction between stress and protein expression/inhibition
may be found in studies of focal adhesion growth. These adhesive structures have been
observed to show modes of growth, treadmilling and resorption as a function of the applied
force (see Olberding et al., 2010, for a recent theoretical treatment of focal adhesion
dynamics). A central hypothesis in this field is that conformational changes of certain focal
adhesion proteins such as vinculin (Zamir & Geiger, 2001) or ECM proteins such as
fibronectin (Geiger et al., 2001) are favored under tension. Focal adhesion kinase (FAK) is
another protein whose action is widely understood to be enhanced under force (Tomar &
Schlaepfer, 2009). The activation of these proteins, whether under force or otherwise, is
required at crucial steps in the growth of focal adhesions. Such studies provide a direct link
between mechanics and growth at the sub-cellular scale. In turn, since focal adhesion
formation, treadmilling and disassembly is necessary for cell migration a link is provided to
tumor invasion (growth at the continuum scale).

The chemo-mechanical regulation represented by the above mechanisms may further
influence the chemical signaling in cancer cells (Kumar & Weaver, 2009, and references
therein), and tumor growth by cell proliferation. Butcher et al. (2009) have also pointed to
altered “mechanoreciprocity” (the development of force within the cell in response to ECM-
imposed strain) by which higher-than-normal forces are applied to cell-cell junctions
causing them to lose their integrity, thereby aiding in tissue invasion. Weaver et al. (1997)
found that mechanical interactions between integrins and the ECM altered the phenotype of
human breast cancer cells and that under certain interventions these cells reverted to the
normal phenotype. Such mechanisms bear relevance not only to growth but also resorption
as seen at the continuum scale. Padera et al. (2004) demonstrated that mechanical stress
created by growing tumors compresses blood vessels supplying the tumors and thereby
interferes with the delivery of both nutrients and drugs, thus regulating tumor growth.
Levental et al. (2009) showed that ECM stiffness affects tumor growth via the mechanisms
of focal adhesion formation, growth factor signaling and breast tumor malignancy.

12. Concluding remarks
From a sociological point of view, it is interesting to note that mechanical theories of the
growth and/or remodeling of biological systems (cells, tissues, organs and organisms) are
now a popular theme of research in many different scientific communities, including
physiology, plant biology, agronomy, food science, biology, physics, engineering, computer
sciences, medical sciences, and applied mathematics. These scientific communities do not
usually overlap despite their common interests. Nevertheless, all are confronted with similar
conceptual problems such as the proper definition of residual stresses, the notion of evolving
reference configurations, the decomposition of deformation into elastic and growth
components, evolution equations for growth, the challenges of formulating and solving real
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problems using the theory of mixtures, and perhaps most important of all for biology, the
actual pathways by which mechanics is translated to chemical activity to effect growth.
Some of these issues have been discussed in the mechanics literature, some in relation to
elasto-plasticity, transport phenomena, and mixtures. Unfortunately, many of these
discussions are shrouded in precise but esoteric language addressed to the happy few.
Therefore, the mechanics community not only has an opportunity to play a central role in
advancing the field, but also a responsibility to popularize complicated concepts and reach
out to different scientific communities.
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Figure 1.
The reference configuration, Ω0, the current configuration, Ω, and the multiplicative
decomposition F = FeFg.
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Figure 2.
Surface plot of the free energy rates associated with tumor growth. All units are Wm−3. (a)
The rate of change of chemical free energy density stored in the cells. (b) The rate of change
of free energy density stored in newly formed cells. (c) The rate of change of free energy
density stored in newly-produced ECM. (d) The rate at which free energy density is
dissipated into work done as the tumor spheroid grows against stress. (e) The rate at which
free energy density is dissipated due to cell motion. (f) The rate of change of free energy
density due to glucose consumption. See Narayanan et al., (2010).
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Figure 3.
Growth stresses in the young sunflower head. (a) The head was cut along two orthogonal
lines. The cuts gape widely in the central region while they remain closely appressed in the
peripheral region where new organs are being formed. This gaping pattern demonstrates the
presence of radial tension and circumferential compression in the head. (b) Typical arcuate
crack created when the surface of the head is put in tension. The crack propagates
predominantly in the circumferential direction thus releasing the tensile stresses in the radial
direction. (c) and (d) The same head before (c) and after (d) reducing the turgor pressure of
the cells. The characteristic gaping of the cut has been lost after decreasing the pressure. (In
all images, the head is about 5mm in diameter.)
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Figure 4.
Example of structural optimization and bone remodeling: Typical benchmark problem of the
proxima femur. A finite element based smooth topology optimization algorithm can be used
to predict the physiological density profile in response to the three most relevant muscle
groups activated during abduction, adduction, and the midstance phase of gait. The
converged density profile displays the characteristic dense system of compressive trabeculae
carrying the load from the superior contact surface to the calcar region, a secondary arc
system of trabeculae through the infero-medial joint surface, Ward’s triangle as an area of
low density, and a dense cortical shaft.
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Figure 5.
Example of structural optimization and bone remodeling: Virtual implantation of traditional
hip prosthesis. The stiff titanium transfers the joint forces down the distal portion of the
implant stem. At the distal tip of the stem, forces are transferred to the outer bone shaft. This
triggers the pronounced deposition of bone mass at the distal tip of the prosthesis while the
unloaded proximal regions of the femur undergo a severe bone loss that is typically
accompanied with aseptic loosening and the need for refixation.
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Figure 6.
Example of structural optimization and bone remodeling: Novel hip resurfacing technique.
To avoid the undesirable long-term effects associated with traditional implants, a novel
techniques has been developed that is based on local femor hip resurfacing. The new nail-
shaped implant shows a much better ingrowth with an increased density at the medial side.
In contrast to the classical implantation technique, the shaft remains virtually unaffected by
the treatment.
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Figure 7.
Example of structural optimization and bone remodeling: Functional adaptation of bone
density in the humerus of high performance tennis players. Severe humeral torsion during
the serve induces bone remodeling which results in a non-physiological twisted density
profile with high density areas wound around the long axis of the bone.
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Figure 8.
(a) Principal stress directions (segments of black lines) and collagen fiber morphology
(segments of red curves). The dashed circle shows a region at the vicinity of the apex where
collagen fibers are oriented almost along the direction of the apical ridge resembling a
tendon-like structure; taken from Hariton et al. (2007b); (b) Transmission electron
photomicrograph of collagen fibrils of an apex adventitia (×40000). Fibrils in the apex
region are of uniform size and are co-aligned; taken from Finlay et al. (1998).
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Figure 9.
Isotropic growth based on phenomenological growth laws (Allen et al., 2001). Patient-
specific virtual stent implantation. CT of human aorta, Bezier spline interpolation, solid
aorta model, finite element discretization, and simulation of wall growth and in-stent
restenosis (from left to right).
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Figure 10.
Anisotropic growth based on microscopically-motivated growth laws. Ventricular growth
and remodeling. Pressure overload-induced hypertrophy in response to aortic stenosis,
normal heart, and volume overload-induced dilation in response to myocardial infarction.
Sections from Hunter et al. (1999) (left) and finite element simulation (right).
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Figure 11.
Anisotropic growth based on microscopically-motivated growth laws. Cardiac wall
thickening, stress-driven concentric growth, and transmural muscle thickening at constant
cardiac size. The concentric growth multiplier gradually increases from 1.00 to 3.00 as the
individual heart muscle cells grow concentrically. On the macroscopic scale, cardiac wall
thickening manifests itself in a progressive transmural muscle growth to withstand higher
blood pressure levels while the overall size of the heart remains constant. Since the septal
wall receives structural support through the pressure in the right ventricle, wall thickening is
slightly more pronounced at the free wall where the wall stresses are higher.
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