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Abstract
Importance to the field—Virtual screening is a computer-based technique for identifying
promising compounds to bind to a target molecule of known structure. Given the rapidly
increasing number of protein and nucleic acid structures, virtual screening continues to grow as an
effective method for the discovery of new inhibitors and drug molecules.

Areas covered in this review—We describe virtual screening methods that are available in
the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening
in pharmaceutical lead discovery.

What the reader will gain—A general overview of the challenges of virtual screening is
presented, along with the tools available in the AutoDock suite of programs for addressing these
challenges.

Take home message—Virtual screening is an effective tool for the discovery of compounds
for use as leads in drug discovery, and the free, open source program AutoDock is an effective
tool for virtual screening.
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Introduction
AutoDock is a suite of software for predicting the optimal bound conformations of ligands
to proteins [1,2]. The initial applications of AutoDock were in the analysis of binding modes
and catalytic properties of protein and nucleic acid complexes [3,4], and a typical study
would include results from several dozen docking simulations. More recently, however,
enhancements in the performance of AutoDock combined with the availability of high speed
computers and clusters of computers has allowed much larger experiments, where entire
compound libraries are screened against pharmaceutically-relevant targets [5]. In this report,
we will describe the methods that are available within AutoDock to perform virtual
screening experiments, and describe some of the successes in virtual screening with
AutoDock.
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Computational Docking
Computational docking is used to predict the binding modes of two or more molecules.
Building on two decades of research, many successful methods for docking of ligands to
macromolecular targets have been developed [6–13]. Computational docking relies on two
methods: first, a force field to estimate the free energy of binding of the complex, typically
estimated based on a particular bound conformation, and second, a search method to explore
the conformational space available to the ligand and target. Often, many approximations
must be built into the method, both in the force field and in the conformation search, to
allow docking with a reasonable computational effort. These may include use of simplified
force fields, restriction of the search space, or limitations to the conformational flexibility of
the ligand and/or target.

The current version of AutoDock, AutoDock4.2, relies on a number of approximations to
predict the conformation and free energy of binding during a docking simulation. The ligand
is treated as flexible, but unlike traditional molecular mechanics methods, only torsional
degrees of freedom are explored, holding bond angles and bond lengths constant. This
allows very rapid transformations of coordinates during the search, but may cause problems
if the complex requires significant distortion of the ligand upon binding. In addition, the
simple tree-like structure of the data representation used for the ligand does not allow direct
modeling of flexibility in rings, although several methods to reclose ring structures during a
docking experiment are currently available in AutoDock.

The empirical free energy force field is based on a molecular mechanics force field, which
includes typical terms for dispersion/repulsion, hydrogen bonding, electrostatics,
desolvation, and torsional entropy. The force field has been calibrated against a large
database of complexes with known structure and binding constant, allowing the force field
to predict binding free energies. During the docking simulation, a grid-based method is used
for energy evaluation, where interaction energies are precalculated around the target
structure and then used as look-up table to allow rapid evaluation of ligand-protein
interaction. However, the use of this grid-based method requires that the target molecule is
treated as rigid, unless specific sidechains are treated explicitly outside the grid.

Several search methods are available in AutoDock, including genetic algorithms, simulated
annealing, and local search. All of these methods are stochastic, so repeated docking
simulations are often used to validate the exhaustiveness of the search and the solution.

Virtual Screening
Today, virtual screening is widely used to predict the binding of a large database of ligands
to a particular target, with the goal of identifying the most promising compounds from the
database for further study [10,14–20]. Hundreds of thousands of compounds may evaluated
in a virtual screen, so two aspects of the search are critical. First, we must be confident that
the docking method will find a relevant conformation. Docking methods are typically
validated by “redocking” experiments, where a series of known complexes are separated and
then redocked, ensuring that the docking algorithm can reproduce the observed binding
mode. From this type of validation study, we have found that the current version of
AutoDock will consistently dock “drug-like” molecules with up to about 10 degrees of
torsional freedom [1]. Second, the predicted free energy of binding must be accurate enough
to allow ranking of compounds, ensuring that compounds that are predicted to bind most
strongly actually do bind when tested experimentally. Most computational docking
techniques, including AutoDock, have an accuracy of free energy prediction of about 2–3
kcal/mol standard deviation [21]. This is not sufficient, unfortunately, to provide confident
ranking. Rather, we typical refer to the process of “enrichment,” where the set of compounds
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that are predicted to bind tightly are enriched in compounds that actually show strong
binding upon testing.

The two-step docking process used in AutoDock, where a map of interaction energies is
calculated first and then used during the docking simulation, is particularly effective for
virtual screening, since the map need only be calculated once at the beginning of the screen.
A variety of map modification methods are available for extending the basic capabilities of
AutoDock. In these methods, the grid maps are modified prior to docking to incorporate a
new physical or chemical property. Examples include energy-weighted averaging to model
protein flexibility (described below) [22], covalent maps for prediction of covalently-linked
complexes or metal coordination [1], mutable atom approaches for de novo design of ligands
[23], and water maps for the prediction of bridging water positions (manuscript in
preparation).

Choice of Ligand Libraries
A variety of ligand libraries are available for use in virtual screening. The most important
criterion, of course, is the ability to obtain samples from the library for testing—so the
general rule of thumb is: use what you can get! Several large databases are available, such as
the NCBI PubChem (pubchem.ncbi.nlm.nih.gov), eMolecules (www.emolecules.com) and
ZINC [24], and most of them include commercially available compounds. ZINC now
distributes AutoDock input files for several of these different libraries, from vendors
including ChemBridge, Otava, and Asinex.

Other libraries are targeted for specific needs, such as the lead-like compounds [25],
nutraceuticals [26], natural products [27], and metabolome [28] libraries, which bring
together compounds that might be expected to have good biological properties. In addition,
the library of FDA-approved drugs (www.epa.gov/ncct/dsstox) may be of use for
repositioning compounds that have already shown biological activity and acceptable safety/
toxicity profiles. Finally, virtual screening may be used in tandem to combinatorial
chemistry, evaluating the set of molecules that are synthetically accessible within a given
combinatorial scheme.

Large databases are often prefiltered to create smaller databases that capture the diversity of
the entire set, while reducing the computational demands of the virtual screen campaign
[29]. The NCI Diversity Set (dtp.nci.nih.gov/branches/dscb/diversity_explanation.html) is a
popular example, which includes 1990 compounds that represent the diversity of 140,000
compounds available at NCI. A new NCI Diversity Set II is also now available
(dtp.nci.nih.gov/branches/dscb/div2_explanation.html), which contains a similar number of
compounds, but chosen to have more desirable physicochemical properties than the first set.
These types of filtered libraries, or diversity subsets, are often particularly effective in a two-
stage study. The best ranking compounds from the screen of the diversity set are tested, and
the actives are then used as seeds to perform a similarity search on the entire database,
generating a focused library of second-generation compounds with chemotypes that
structurally resemble the first-generation active compounds. In several of our own
applications (described below), this second generation resulted in higher success rates and
better activities upon testing.

Several sets of guidelines have been proposed to improve the sampling of the available
chemical space, which has been estimated to include 1060 unique compounds [30]. Most
notably, Lipinski and coworkers [31] identified common chemical properties that recurr in
FDA-approved molecules, presenting the familiar “rule of 5” for drug-like molecules (5
hydrogen bond donors and 10 acceptors, less than 500 daltons, and logPoctanol/water

coefficient lower than 5). A similar set of guidelines has been proposed for identifying
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suitable fragments for drug development [32]. These guidelines are useful for pruning ligand
libraries to remove potentially undesirable molecules, however, care must be taken in their
application. Many of the most successful drugs do not fit these guidelines, and would have
been pruned by a strict application of the guidelines. Like many other laboratories, we have
often used a stepwise approach, where a less stringent pruning is used before the virtual
screen, and the more stringent pruning is used in combination with manual inspection after
the screen.

Choice of Target
In many cases, the target molecule has a well-defined active site. In these cases, it is ideal to
have a target structure with an inhibitor or substrate bound, thus forcing the target to adopt a
conformation that is more relevant to binding of new compounds. Of course, we often do not
have this luxury and must begin with unbound target molecules, homology models, or other
target coordinate sets. In these cases, issues of flexibility and protonation state (see below)
or errors in modeling must be addressed, and results must be interpreted in this light.

In some cases, we are faced with a completely new target molecule, with no knowledge of
potential binding sites for ligands. In these cases we can do a blind docking to the entire
protein, to identify sites that bind tightly to ligands. Limitations in the size of the
precalculated grid maps in AutoDock pose challenges for blind docking. The maps are
typically limited to about 128 grid points in each dimension, otherwise the computation time
and file sizes become prohibitive. We have taken two approaches to solve this problem.
First, a large grid spacing of 1 Å may be used, allowing the entire target to fit into the map
space. However, this may cause problems with accuracy, since the dispersion/repulsion and
hydrogen bonding potentials are very steep at short intermolecular distances (i.e., the
distances that are most interesting). Alternatively, we have had success with creating
separate maps at the typical 0.375 Å spacing, each centered at a different place on the
protein surface. Separate docking simulations are then performed within the separate search
spaces and the results are combined for analysis.

It is also possible to predict the optimal binding sites on a target molecule, identifying likely
candidates for drug-binding sites and using them as the targets for docking analysis, using
programs such as AutoLigand [33 and references therein]. AutoLigand analyzes the affinity
values around the protein structure, identifying the contiguous volume with the best
interaction energy for a given size of ligand molecule. In tests, AutoLigand is successful in
identifying the active sites of known complexes and predicting the size of the optimal ligand
that will bind to the site. We have applied it to several cases of blind docking, including
development of compounds to stabilize protein dimerization in transcription factors (Figure
1, described in more detail below). We have also used results from AutoLigand to define a
reduced volume for screening, limiting an AutoDock virtual screen to the area predicted to
provide the strongest binding potential.

Preparation of Coordinates
Of course, a virtual screen is only as good as the coordinates that are used. For ligand
coordinates, a number of processing methods are available, including the ZINC protocols
and Corina, which can successfully calculate energetically meaningful three dimensional
coordinates starting from the two dimensional representations often provided with
compound libraries. Then, AutoDockTools may be used to convert coordinates into the form
needed for AutoDock calculations, often adding hydrogen atoms and charges, merging non-
polar hydrogens onto their respective heavy atoms, and assigning atom types in the process.
It pays to be critical, however: incorrect calculation of the starting conformation, protonation
state, and partial charges can dramatically influence docking results, particularly in the case
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of rigid ligands containing macrocyclic rings or exotic chemical groups. In addition, errors
in the crystallographic coordinates or protein-induced distortions from standard geometry
may require energy minimization of ligand coordinates before and/or after it is used in
docking calculations. Often, preparation of difficult ligands may be improved using
sophisticated tools such as Marvin from ChemAxon (www.chemaxon.com) or Avogadro
(avogadro.openmolecules.net) to generate starting coordinates for unusual conformations or
protonation states.

Tautomers and protonation states pose problems for automated preparation of coordinates.
Ideally, we would like to test all possible tautomeric and protonation states of a given ligand
and target, to ensure that the state with optimal interaction is included in the screening
process. A recent study, however, questions the utility of tautomer and protomer
enumeration for improving the enrichment of active molecules, compared to use of a single
predicted form of each molecule. A retrospective virtual screening was performed using
AutoDock on 19 drug targets with a publicly available data set, and the authors propose that
with respect to efficiency, the use of the most probable tautomer/protomer is better than
docking the entire enumeration ensemble, since the scoring functions are generally not
accurate enough to discriminate among them [34]. On the other hand, other work suggests
that tautomer/protomer enumeration should be more suitable when limited information is
available for the target structure, or when standard protonation methods do not perform
satisfactorily [35].

Flexibility in the Target
In biological systems, we are often faced with heterogeneity in targets. Most often, this is a
consequence of flexibility, ranging from small motions of side-chains to flexing of entire
domains. Polymorphism in the target, in which multiple distinct, fairly rigid conformational
states exist in equilibrium, can add another dimension of complexity to the target’s
landscape. Also, we may have a target that can undergo resistance mutations and desire to
find compounds that bind to a range of different primary structures. With AutoDock, we
have explored several ways to approach this issue of diversity in the target.

Incorporation of target flexibility into AutoDock is tricky, since the grid-based method used
for energy evaluation limits us to a rigid model for the target. The current version of
AutoDock allows explicit modeling of flexibility in selected sidechains, but for larger
motions, other methods must be used. The most obvious approach to incorporating target
flexibility into docking is to generate a representative ensemble of structures, and then to
perform docking simulations against each one. This ensemble may be a collection of
experimental structures (such as from NMR spectroscopy), or in the case of the “relaxed
complex” scheme, they may be a collection of conformations harvested from a molecular
dynamics or a Monte Carlo simulation [36,37].

The proper representation of protein flexibility can determine the difference between success
and failure. For instance, as part of the FightAIDS@Home project, we recently reexamined
nine compounds that did not perform well when they were docked against 77 different
crystal structures of HIV protease, but when tested they displayed anti-HIV activity in the
standard FRET-based protease inhibition assay. We then used the relaxed complex scheme,
docking these nine false negative compounds against 2,000 different snapshots of a wild
type HIV-1b protease harvested from 20 ns of molecular dynamics [38]. These AutoDock
calculations were surprisingly successful (Table 1)—all 9 compounds scored better than the
threshold of −7.0 kcal/mol that was established in the early FightAIDS@Home experiments
[39], allowing us to retrospectively re-classify all nine of these compounds as actual hits. A
comparison with the original virtual screen that was performed against the rigid crystal
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structures indicated that clashes and less favorable electrostatic interactions with the
crystallographic conformations of a mobile arginine sidechain were the likely cause of the
false negative results. Looking to other applications of the relaxed complex method, we see
that the method typically yields a good success rate, so these gains in correct scoring of false
negatives are not accompanied by a significant increase in false positives [40,41].

A number of methods have been developed to reduce the computation burden of docking to
multiple target structures. These have the advantage of both decreasing the computational
cost and reducing the amount of human time needed for visual analysis of the docking
results. For instance, the “in situ cross docking method” [42] performs all the docking
simulations simultaneously, by placing several instances of the binding site within the search
space and letting the ligand choose the most favorable one during the docking simulation
(Figure 2). The only limitation resides in the number of conformations that can fit within the
search space.

We have also explored methods to define a single representation of the target in a way that
captures the structural features of the entire ensemble. One method is to overlap all of the
structures in the ensemble, and then to create an averaged map that incorporates features
from all the structures. We found that an energy-weighted average map was able to improve
docking of a series of HIV protease inhibitors, where the conformation of a mobile arginine
was critical to binding of larger ligands [22]. We have also used this method in a virtual
screen of the NCI datatabase against an ensemble of x-ray structures β-secretase. Docking
analysis was performed individually with each structure, and the different conformations of
β-secretase were also combined to generate a unified description of the proteins
conformational ensemble. The enrichment factors from these two approaches showed
similar predictive power in identifying the positive controls [43].

More recently, we have used principal component analysis to analyze a large cross-docking
experiment with 1771 ligands docked to 268 HIV protease structures [39]. The analysis was
able to identify a small collection of “spanning” protease structures that capture the
energetic features of the entire set. These spanning structures may then be used in future
studies in place of the entire set of protease structures.

Analysis of Results
One of the most difficult and subjective steps of virtual screening is the process of analyzing
the docking results and choosing the compounds that will actually be ordered and tested.
The process is tricky because of the inaccuracies of the scoring functions, which result in
errors in ranking. We have used a number of different techniques to help improve the
success rate.

Prior to virtual screening calculations, it is often useful to test docking performance on the
studied system. Typically, this is done by redocking the co-crystallized conformation of a
ligand, if present. This provides many benefits, including validation of the target
preparation, tuning of parameters for the docking calculation, and the validation of the
method for predicting the known binding pose. If a set of known active compounds exists,
these may also be docked against the target protein, and the results used to define a baseline
energy value for the selection of virtual screening results that will be considered for further
study.

The simplest method for ranking is to use the predicted free energy found for each
compound. An additional refinement is to look at the consistency of a particular solution in
reiterated docking calculations, often evaluated by clustering the docked conformations
based on the RMSD of coordinates. We and others have found that this consistency is
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related to the conformational entropy of the system, and solutions that are found many times
in reiterated docking experiments typically correspond to compounds with better free energy
of binding [44]. We often use a combination of these two metrics, requiring conformations
to have both favorable predicted free energy and consistent clustering of docking
conformations [45]. Several variations on this approach are described in the applications
below. A further measure used by some workers is the ligand efficiency [46], the free energy
of binding per non-hydrogen atom in the ligand. The ligand efficiency is designed to counter
the strong bias of virtual screening towards large compounds, since the predicted binding
affinity is often closely proportional to the number of atoms in the ligand.

In specialized cases, negative design elements may also be incorporated in the selection of
ligands for testing, to try to increase specificity of binding and potentially reduce the
possibility of toxic side effects. This approach may include results from docking to
competing targets, to competing sites on the receptor, or to undesired/decoy conformations
of the target site. The Myc-Max virtual screen described below is an example.

These types of quantitative measures, based on the predicted free energies and clustering of
docking poses, are often followed by a set of more subjective techniques. Visual inspection
is one of the most critical steps in virtual screening, as it can greatly help to increase the
success rate. Given that methods like AutoDock have a typical error of ±2 kcal/mol in the
prediction of free energies of binding, estimated free energy values should not be used as the
sole criterion for selecting the ligands that will eventually be tested.

Ideally, many criteria may be used to prescreen and remove undesirable compounds, such as
those that contain reactive groups, insoluble compounds, compounds that are too large/less
extendable, or highly flexible compounds. Docking simulations are so fast, however, and
these properties are often difficult to evaluate computationally, so prescreening is often only
performed in a rudimentary way, and compounds are screened manually for these properties
after docking. Several aspects of the docked conformation may also be used to filter the set
of compounds, such as the presence of key contacts with critical amino acids in the target
(identified by mutagenesis), similarity to known positions of ligands or waters in the active
site, or the presence of unpaired hydrogen bond donors or acceptors in the ligand-receptor
complex. In addition, the ligands may be filtered based on similarity to known actives (such
as by calculating “Tanimoto coefficients”), particularly if the screen is a second generation
screen [47].

Automation and Scripting
Virtual screening is largely a bookkeeping exercise, and careful planning will ensure an
orderly study and effective, efficient analysis of results. We are currently developing
graphical user interfaces to streamline the entire process of virtual screening. The first step
has been to automate the workflow for preparing the initial input files. The usual virtual
screening calculations involve docking a large number of ligands against a single protein (or
nucleic acid) structure. This implies the generation of AutoDock ligand format files, the
relative parameter files for calculating the affinity maps, and the file with the run parameters
used during docking. More sophisticated approaches can include partial target flexibility and
multiple target conformations or mutations of the same protein. All these required steps can
be performed by using Raccoon, a graphical user interface for AutoDock virtual screening
(autodock.scripps.edu/resources/raccoon). Raccoon can split multiple-molecule ligand files,
convert them into the AutoDock format, and filter them by using common criteria (e.g.,
Lipinski's rules, fragment-like “rule of 3”, and drug-likeness). A validation check of the
input files is performed at every step, which includes checking for the presence of non-
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standard atom types and ensuring that parameters, input filenames, and grid maps have a
coherent format.

Virtual screening rapidly becomes a major computational effort, particularly if flexibility
and/or multiple targets are required. For our largest experiments, which involve virtual
screening of libraries of hundreds of thousands of ligands against multiple molecular
dynamics snapshots of a series of different mutant targets, we have created the distributed
computing system FightAIDS@Home, which is now part of IBM’s “World Community
Grid” (fightaidsathome.scripps.edu). This system has allowed the application of over
100,000 CPU years of AutoDock effort devoted to virtual screens of HIV drug-resistance
strains.

ACAR Transformylase Inhibitors
In collaboration with Ian Wilson, our first successful virtual screen was targeted against
ACAR transformylase [48], which is required for cell division and tissue growth in
mammals and is a potential target for cancer chemotherapy. We screened the NCI Diversity
set against the crystal structure of human ACAR transformylase bound to the BW1540
inhibitor (PDB entry 1p4r). A simple selection procedure based on the binding energy was
used to select 44 compounds for testing. As is often the case with compounds from the NCI
Diversity Set, 10 were insoluble, 18 precipitated, and the remaining 16 had properties that
allowed testing. Of these 16, 8 showed inhibition better than 250 µM. A second generation
screen on the NCI-3D set (213,628 compounds), using compounds with >70% similarity to
the best leads, yielded 138 compounds. Of these 138, 12 compounds were tested, and 11
showed inhibition of 50 µM or better.

Protein phosphatase 2C Inhibitors
In collaboration with Paul Greengard, we used virtual screening to identify inhibitors of
protein phosphatase 2C [49]. After initial validation with three known ligands, the NCI
Diversity Set was screened. Docked compounds were ranked by the predicted free energy of
binding, and the best 100 compounds were ordered for testing. Of these, 4 compounds
showed >30% inhibition at 100 µM, with the best two displaying 5–10 and 20–30 µM IC50
values. A second generation screen was performed using a similarity search of the Open
NCI Database. This yielded 6,000 compounds that were docked using AutoDock. Based on
the predicted free energies in these complexes, 156 compounds were ordered and tested. 11
of these compounds showed >30% inhibition at 100µM.

APS reductase inhibitors
In collaboration with Kate Carroll, we have performed virtual screens to identify inhibitors
of APS reductase [50], a critical enzyme in bacterial sulfate metabolism and an attractive
target for tuberculosis therapy. AutoDock was used to screen the NCI Diversity Set against
the P. aeruginosa APS reductase crystal structure (PDB code 2goy). The results were sorted
on the basis of their predicted free energies of binding, which ranged from −3.16 to −13.76
kcal/mol, and according to the cluster size for each docked conformation. Solutions with a
predicted binding free energy higher than −8.0 kcal/mol and a cluster size lower than 20 out
of 100 individuals were discarded. The remaining 192 compounds were visually inspected
for interactions with three positively charged residues lining the active site. After this final
step, 42 compounds corresponding to 2% of the original NCI Diversity Set were selected for
biological evaluation. Five compounds exhibited more than 50% inhibition at 100 µM.

A second generation virtual screen was performed using 890 compounds with least 80%
Tanimoto similarity to the first generation compounds, chosen from 250,000 compounds in
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the Open NCI database. Similarity was evaluated using default settings at the Enhanced NCI
Database Browser (http://cactus.nci.nih.gov/ncidb2/). After docking these 890 compounds,
the 40 highest-scoring solutions, ranked according to the criteria outlined above, were
experimentally evaluated. Five compounds were identified that displayed dissociation
constants lower than 50 µM. The dihydrophenanthrendione 23180 (Figure 3) was the most
potent inhibitor identified in this study, with a dissociation constant of less than 10 µM.

Max Homodimer Stabilizers
In collaboration with Peter Vogt, we performed virtual screens to identify stabilizers of a
transcription factor interface [51]. Myc is an oncogene that mediates progression of the cell
cycle; thus, it is a potential target for cancer chemotherapy. It forms a series of homodimers
and heterodimers with the similar protein Max. The goal of the virtual screen was to block
dimerization between Myc and Max by specifically stabilizing the normally weak Max-Max
homodimer. This is an unusual application for drug design, since the goal is to stabilize a
protein-protein interaction rather than to block formation of the biologically-relevant
complex.

Two crystallographic structures were used: Myc-Max (PDB entry 1nkp) and the structure
we sought to stabilize, Max-Max (PDB entry 1an2). We screened the NCI Diversity Set
using a larger grid spacing than normal (1 Å), in order to provide a blind search of the entire
protein. A longer search was also employed to ensure that the larger search space was
adequately sampled. All results were clustered to identify 12 potential binding sites on the
protein surface. Three of these clusters contained 85% of the docked compounds and
included all of the compounds with the lowest predicted free energy of binding.
Consequently, the compounds bound to these three sites were chosen for experimental
testing. These sites were also identified using an early version of AutoLigand (Figure 1).

Forty compounds were chosen for testing from the Myc-Max docking results, and forty from
the Max-Max results. After duplicates were removed, 68 compounds were obtained and
tested by FRET analysis. At 10 µM, 13 compounds showed stabilization of Max-Max and
compounds predicted to bind to Myc-Max did not stabilize Max-Max. Further in vivo testing
with the best compound showed that the stabilization of Max-Max was not a function of
DNA binding, and that stabilization of Max-Max inhibited formation of Myc-Max. Tests in
cell culture with the best compound showed that it interferes with Myc-induced
transformation, Myc-dependent cell growth, and Myc-mediated transcriptional activation.

Cobratoxin Antitoxin
In collaboration with Opa Vajragupta and Palmer Taylor, we used virtual screening to
identify inhibitors of cobratoxin, for potential use as snakebite antidotes [52]. We used
several sets of coordinates, including a complex of α-cobratoxin with acetylcholine-binding
protein (PDB entry 1yi5) and two structures of α-cobratoxin alone (PDB entries 1ctx and
2ctx). We screened the NCI Diversity Set against all three coordinate sets and saved the top
175 compounds from each screen. The sets were then compared, and choosing the 77
compounds that in all three screens for a more thorough analysis. An additional filtering step
based on ligand efficiency < −0.30 and manual inspection for “drug-like properties” yielded
19 compounds for testing. A second protocol for filtering, which looked simply at the
predicted free energy value and the cluster size, yielded an additional 20 compounds. These
39 compounds were tested for their ability to block binding between α-cobratoxin and
acetylcholine-binding protein. Four of these compounds were active and were able to
displace the antagonists epibatidine and α-bungarotoxin with µM to nM dissociation
constants. The best case showed a 13.8 nM dissociation constant. The best compounds were
tested in vivo, showing increased survival time in mice challenged with cobratoxin. Three
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compounds increased survival if given 30 minutes before the toxin, and two showed
increased survival if given as an antidote immediately after toxin administration.

DNA Quadruplex Groove Binders
In collaboration with Ettore Novellino and Antionio Randazzo, we used virtual screening to
find DNA quadruplex groove binders [53]. G-quadruplexes are four-stranded helical DNA
or RNA structures involved in a number of medically-relevant biological processes, such as
replication, recombination, transcription, and translation, and they form the teleomere
structure. So far, distamycin A is the only agent for which a pure groove binding mode has
been demonstrated.

We screened a diversity set of the commercially available Life Chemicals database (6000
compounds) against the simple quadruplex [d(TGGGGT)]4 (PDB entry 1s45, Figure 4). The
virtual screen results were sorted on the basis of their predicted binding free energies, which
ranged from −0.95 to −9.55 kcal/mol. Solutions with a predicted binding free energy greater
than −6.0 kcal/mol and a cluster size lower than 10 out of 100 individuals were discarded.
Based on these criteria, 137 individuals were retained for further consideration. The binding
poses calculated for these compounds were then visually inspected to discard compounds
that did not establish tight interactions with the groove of the quadruplex structure. More
precisely, compounds that were not able to form H-bonds with any of the guanine bases and/
or to establish an electrostatic interaction with the backbone phosphate groups were not
considered for subsequent tests. After this final step, 30 compounds corresponding to 0.5%
of the original Life Chemicals database were selected and purchased for further analysis.

The experimental testing was performed by NMR titrations. By monitoring resonance
chemical shift changes of DNA, we measured whether a given compound is able to interact
with the quadruplex and determined the binding site. Six molecules were found to cause an
appreciable chemical shift of the G3 and G4 resonances signals, indicative of a groove
binding interaction.

Aldose Reductase Inhibitors
In collaboration with Ettore Movellino, we performed virtual screens against aldose
reductase (ALR2), a potential target for preventing the onset, progression, and severity of
diabetic complications [54]. So far, the known ALR2 inhibitors failed in clinical trials
because of poor pharmacokinetic properties and unexpected side effects. From the structural
point of view, ALR2 represents one of the most striking examples of the induced fit effect
upon ligand binding. X-ray studies have demonstrated that at least three different binding
site conformations exist, depending on the bound ligand, which poses a great challenge for
virtual screening. We used “in situ cross-docking” (described above) to combine the three
most divergent X-ray structures of human ALR2 (PDB entries 2pdk, 1us0, and 2fzd) into
one grid map for docking. The combined grids were then used to perform a preliminary
docking calculation on a set of 141 active ligands, which showed good agreement with the
experimental data.

We then screened the commercially available Maybridge HitFinder database (14,400
compounds) against the combined grids. Virtual screen results were sorted on the basis of
the predicted free energy values, which ranged from −3.49 to −13.87 kcal/mol, and
compounds with a predicted energy value higher than the average energy calculated for the
known active compounds (−8.00 kcal/mol) were discarded. On the basis of this criterion,
7,468 compounds were retained, representing almost 52% of the database. Consequently, a
second filtering step, using a different methodology, was required in order to identify a
reasonable number of potential hits for subsequent testing.
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We used MolPrint2D [55] to perform a similarity search on the MayBridge database, which
allowed us to re-rank the 7468 hits. We retained 106 compounds that had a predicted free
energy of binding lower than −8.00 kcal/mol and a MolPrint2D score higher than 10. We
were encouraged that this MolPrint2D cutoff (>10) allowed us to also retain compounds that
were only vaguely similar to the known inhibitors. Finally, as a last criterion for selection,
we visually inspected each docked complex, removing compounds that did not display
interactions with the ALR2 anion and the specificity binding pocket. As a result, 57
candidates were selected and evaluated for their efficacy against ALR2. Twelve out of the
53 soluble compounds were shown to be inhibitors, with IC50 values in the range of 1–100
µM, resulting in a success rate of 22%. Within this set, six new chemotypes were identified
that feature novel molecular scaffolds structurally unrelated to the known inhibitors.
Analysis of the binding poses calculated for these ligands in complex with ALR2 allowed us
to suggest different structural modifications, which provided valuable alternative strategies
for ongoing medicinal chemistry optimization.

Conclusions
AutoDock has shown continued success for the application of virtual screening to a variety
of targets. Applications studied in our laboratory have ranged from the development of
enzyme inhibitors, compounds that stabilize protein dimerization, antitoxins, and nucleic-
acid-binding compounds. Through the use of simple and automated scripting methods such
as Raccoon, virtual screening with AutoDock is currently available to a wide user
community. However, several challenges still face the virtual screening community, most
notably, the continued development of scoring methods to improve the ranking of
compounds. The AutoDock suite of programs is currently available as open source at
http://autodock.scripps.edu.

Expert Opinion
Virtual screening is currently an effective tool for the discovery of compounds for use as
leads in drug discovery. Many options are available both for compounds libraries and for
computational techniques for evaluating compounds in these libraries. However, the
limitations of the scoring functions used in these computations are such that results are not
guaranteed, and virtual screening currently requires significant expertise and manual
intervention to yield a successful result.

In our hands, AutoDock has been a successful technique for the discovery of drug leads. In
most systems that we have attempted, virtual screening has found several compounds that
showed binding upon experimental testing. These have included a diverse range of targets,
including enzyme active sites, protein dimerization interfaces, and nucleic acids. Looking at
the field at large, we see many similar successes using AutoDock and similar computational
docking techniques.

The simplified force fields used in current docking techniques are the major limiting factor
of current virtual screening efforts. These force fields typically estimate the free energy of
binding using a single conformation of the complex, and thus are unable to evaluate the
conformational entropy and other contributions to the free energy that are a consequence of
the thermodynamics of the entire ensemble of possible complex conformations. Advanced
statistical mechanics methods are being developed to address this limitation, unfortunately,
they are computationally intensive and thus not suitable for use in virtual screening. We
have tested methods for approximating these properties using the information available in a
docking simulation, with encouraging results. However, a major advance in scoring
functions will be needed to turn virtual screening into a turn-key method for lead discovery.
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Figure 1.
AutoLigand was used to identify potential binding sites to stabilize the homodimer of the
transcription factor Max. The illustration shows the homodimer of Max (surface
representation) bound to DNA (ball-and-sticks) and the small spheres show the optimal
binding site identified by AutoLigand. The gray spheres have the highest affinity for carbon,
the red spheres for hydrogen bond acceptors, and the cyan spheres for hydrogen bond
donors. The search was done on a 1 Å grid spacing using only the protein coordinates
(illustration created with PMV [56]).
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Figure 2.
Aldose reductase construct used for virtual screening with the in situ cross docking
approach. 2pdk, 1us0, and 2fzd subsites are represented as red, orange, and green surfaces,
respectively. The gray box represents the search area (illustration created with Chimera
[57]).
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Figure 3.
Binding pose of both NSC23180 and NSC348401 in the APS reductase binding site. The
two compounds bind to three separate sites in the protein, termed L1, L2, and P1. These
observations suggest that a ligand that occupies both L1 and L2 clefts and that displays polar
hydrogen bond accepting groups to interact with the P1 site may exhibit sub-µM activity
against APS reductase (illustration created with PMV [56]).
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Figure 4.
Surface representation of the quadruplex structure. Orange, white and cyan areas represent
negatively, neutrally and positively charged regions, respectively. The grey box represents
the searched area in virtual screening calculations. The cyan transparent arrow outlines the
groove area taken into consideration (illustration created with Chimera [57]).
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Table 1

Comparison of Ensemble Docking Methods

Ligand Average Energy(1) Relaxed Complex Energy(2)

007223 −6.58 −12.91

065828 −6.65 −11.52

119886 −5.82 −11.51

119889 −2.88 −10.27

119911 −5.43 −9.19

119913 −4.72 −10.39

172033 −4.35 −9.50

270718 −4.56 −10.87

402959 −6.41 −15.89

(1)
Compounds were docked to 77 crystallographic conformations of HIV protease, and the best energy from each complex averaged. Values are

kcal/mol.

(2)
Compounds were docked against snapshots from a molecular dynamics simulation of one HIV protease structure. Energies are from the

conformation with the best energy from the largest cluster. Values are kcal/mol.
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