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Abstract
Efron, Hastie, Johnstone and Tibshirani (2004) proposed Least Angle Regression (LAR), a
solution path algorithm for the least squares regression. They pointed out that a slight modification
of the LAR gives the LASSO (Tibshirani, 1996) solution path. However it is largely unknown
how to extend this solution path algorithm to models beyond the least squares regression. In this
work, we propose an extension of the LAR for generalized linear models and the quasi-likelihood
model by showing that the corresponding solution path is piecewise given by solutions of ordinary
differential equation systems. Our contribution is twofold. First, we provide a theoretical
understanding on how the corresponding solution path propagates. Second, we propose an
ordinary differential equation based algorithm to obtain the whole solution path.
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1 Introduction
Recently we have seen exploding growth of research in variable selection popularized by
Tibshirani (1996), which uses the L1 penalty to regularize least squares regression.
Following this line of research, many other techniques have been proposed. They include the
SCAD (Fan and Li, 2001), the LARS (Efron et al., 2004), the elastic net (Zou and Hastie,
2005), the Dantzig selector (Candes and Tao, 2007), the adaptive LASSO (Zou, 2006;
Zhang and Lu, 2007), and their related methods.

Computationally, the LASSO, elastic net, and adaptive LASSO can all be solved by any
quadratic programming (QP) solver. The Dantzig selector involves a linear programming
problem. The SCAD penalty leads to a non-convex optimization problem, for which Fan and
Li (2001) proposed a local quadratic approximation (LQA) algorithm and Zou and Li (2008)
proposed a local linear approximation (LLA) algorithm. They are two instances of the MM
algorithm (Hunter and Li, 2005) and each step of the LQA or LLA involves a QP problem.
All these algorithms share one characteristic in common: they solve the corresponding
optimization for one regularization parameter at a time.

Efron et al. (2004) proposed the Least Angle Regression (LAR) algorithm and illustrated its
close connection to the LASSO and Forward Stagewise linear regression. Together these
algorithms are called LARS. By slight modification, their algorithm provides the whole
exact solution path for the LASSO. The LARS solution paths are piecewise linear. Another
algorithm for the LASSO is due to Osborne, Presnell and Turlach (2000) which proposed
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the homotopy algorithm. Rosset and Zhu (2007) derived a general characterization of the
loss-penalty pair which leads to piecewise linear solution paths.

Note that the piecewise quadratic condition of Rosset and Zhu (2007) is not satisfied by
generalized linear models (GLMs). The corresponding L1 regularized solution path is not
piecewise linear as demonstrated by Figure 2. To our limited knowledge, it is largely
unknown how to extend the LARS to GLMs and more generally to the quasi-likelihood
model (QLM) to get an exact solution path. Yet some approximate solution path algorithms
are available. Madigan and Ridgeway (2004) discussed one possible extension to GLMs.
Rosset (2004) suggested a general second-order path-following algorithm to track the curved
regularized optimization solution path. Park and Hastie (2007)’s algorithm is based on the
predictor-corrector method of convex optimization. To control the overall accuracy, Park
and Hastie (2007) pointed out that it is critical to select the step length of the regularization
parameter, for which strategies are proposed. These two papers try to approximate the whole
regularization solution path by providing a series of solution sets at di erent regularization
parameters, but different strategies are proposed to select the set of regularization parameters
to control the approximation error. Yuan and Zou (2009) proposed an efficient global
approach to approximate nonlinear L1 regularization solution paths. Their method is based
on the approximation of a general loss function by quadratic splines. In this way, the global
loss approximation error can be controlled and a generalized LARS-type algorithm is
devised to compute the corresponding exact solution path for the approximate quadratic
spline loss. This path approximates the original nonlinear regularization solution path and
theory is provided to show that the path approximation error is controlled by the global loss
approximation error. On one hand, increasing the number of knots in the quadratic spline
approximation makes the approximate solution path more accurate. On the other hand, it
increases the number of pieces in the corresponding piecewise linear solution path and
therefore the computational cost as well (Section 4 of Yuan and Zou, 2009). They further
commented that “If the user wants to get the exact solution path from the EGA solution, then
it seems not worthy to use a large number of knots.”

This urgent need of an exact solution path calls for another algorithm. This is exactly the
goal of the current paper. We extend the LAR to the QLM and name our extension
QuasiLAR. Piecewise, our QuasiLAR solution path is given by solutions of ordinary
differential equation (ODE) systems. We also discuss how the extension QuasiLAR is
modified to get the whole solution path of the LASSO regularized quasi-likelihood, and this
modified algorithm is called QuasiLASSO. Putting them together, we name our new
algorithm QuasiLARS. The QuasiLARS is different from existing algorithms mentioned in
the previous paragraph in that they all provide approximate solution paths instead. Our
contribution is two-fold. On one hand, the current paper helps us to understand the
corresponding optimization problem better by providing an answer to the question: how the
general LASSO regularized solution path changes as the regularization parameter varies. On
the other hand, we present an ODE based solution path algorithm and it provides a potential
way to evaluate how well these existing solution path algorithms approximate the true
solution path. Other papers on solution path algorithms include Zhu, Rosset, Hastie and
Tibshirani (2004), Hastie, Rosset, Tibshirani and Zhu (2004), Wang and Shen (2006), Yuan
and Lin (2007), Li, Liu and Zhu (2007), Wang and Zhu (2007), Wang, Shen and Liu (2008),
Li and Zhu (2008), Zou (2008), Rocha, Zhao and Yu (2008), Wu, Shen and Geyer (2009),
and references therein. In particular, Friedman, Hastie and Tibshirani (2010) focused on
GLMs as well. They proposed a coordinate descent algorithm, which works for a fixed
regularization parameter. They get a solution path by obtaining and connecting solutions at a
pre-specified (penitentially dense) grid of the regularization parameter.
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The rest of the article is organized as follows. Section 2 details the LARS and motivates the
QuasiLARS. In Section 3, we present the QuasiLARS . Details for a key step are discussed
in Section 4. Section 5 gives some properties of the QuasiLARS path. Numerical examples
in Section 6 are used to illustrate how our QuasiLARS works. We conclude with Section 7.
All technical proofs are collected in supplementary online material.

2 LARS
Before delving into details, let us see how the LAR works. To facilitate our later discussion,
let us consider a general regression with a univariate response  and predictor vector

, where p denotes the number of predictor variables. The QLM
assumes that μ(x) ≜ E(Y|X = x) = g−1(η(x)) with η(x) = β0 + xTβ, and Var(Y|X = x) = V (μ(x))
for some known monotonic link function g(·) and positive variance function V (·). Define

 and denote our observed data set by {(xi, yi) : i = 1, ⋯ , n}

with ,  and n being the sample size. Predictors have been

standardized such that  and , j = 1, ⋯, n. The QLM estimates β0 and β
by solving

(1)

The QLM includes GLMs as special cases by choosing g(·) and V(·) appropriately.

The ordinary least squares (OLS) regression is a special case with g(μ) = μ and V(μ) = σ2. In

this case, by demeaning if necessary to ensure , (1) reduces to

(2)

For OLS (2), the LAR provides a solution path β(t) indexed by t ∈ [0, ∞), with β(0) = 0. For
large enough t, β(t) is the same as the full OLS solution to (2). The solution path in between
is piecewise linear. Over each piece, it moves along the direction that keeps the correlation
between the current residuals and each active predictor equal in absolute value. Define
current residuals  for i = 1, ⋯ , n. In terms of the current residual vector
e(β(t)) = (e1(β(t)), ⋯ , en(β(t)))T and the jth predictor vector x(j) = (x1j, ⋯ , xnj)T, the current
correlation e(β(t))T x(j) has the same absolute value for each active predictor j. Note that

. This implies that the absolute values of the
objective function’s first-order derivatives are equal for each active predictor variable along

the LAR solution path, namely  for any
j and j’ among the active predictor set at t. In this paper we will take advantage of this
observation and extend LARS to the more general QLM. For the diabetes data in the R
package LARS, we plot the LAR solution path in the top left panel of Figure 1. The

derivatives  along the LAR solution path are shown in the top right
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panel of Figure 1. The derivatives in absolute value, namely  are given
in the bottom panel of Figure 1. It is clearly shows that, at the end of each LAR step, a new
predictor variable joins the group of active predictor variables that share the honor of having
the same largest absolute value of the first-order derivatives. The LAR algorithm terminates
at the full OLS estimate of (2) when all the first-order partial derivatives are exactly zero.

3 QuasiLARS: extension of LARS
Note first that in general β0 of the QLM cannot be removed from equation (1) by location
and scale transformations as in the least squares regression. However for any β, the quasi-
likelihood function (1) is concave in β0. Thus we can define the marginal maximizer of β0 as
a function of β. Namely for any β, define

(3)

We denote  and R(β) = R(β, β0(β)).

Based on the above observation that the LAR produces a solution path along which the
objective function’s first-order partial derivatives have the same absolute value for each
active predictor variable, our extension QuasiLAR seeks a solution path β(t) such that

 for j and j’ that are active at t. More explicitly, at

any t, the solution should move in a special direction , which is chosen in a

way to ensure that the first-order partial derivatives  have the same absolute value
for each active predictor variable j.

For R(β), denote its vector of first-order partial derivatives by b(β) = (b1(β), ⋯ , bp(β))T and

matrix of second-order partial derivatives by M(β) = (mjk(β))1≤j,k≤p, where 

and  for 1 ≤ j,k ≤ p.

As in LAR, we use t to index our QuasiLAR solution path β(t). Denote the active index set
at t by  and also by . We will use  and  interchangeably.

Note that b(β(t + dt)) ≈ b(β(t)) + M(β(t)) {β(t + dt) — β(t)} for small dt > 0 due to Taylor
expansion. Thus in order to keep the absolute values of the first-order partial derivatives
with respect to all active predictor variables decrease and be the same, our solution path
updating direction β(t+dt)—β(t) should satisfy that bj(β(t+dt))—bj(β(t)) has the opposite sign
of bj(β(t)) and has the same absolute value for each . Here the first requirement
guarantees that the first-order partial derivatives of active predictor variables are decreasing
in absolute value and the second requirement ensures that they decrease at the same speed.
This gives our motivation on how to define an appropriate solution path updating direction.
The above discussion can be made rigorous by using differential operators when the above
dt > 0 is infinitesimal as presented next.
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At any t with solution β(t), denote the solution path updating direction by

. For any inactive variable , we keep βj(t) =
0 and do not change it; thus aj(β(t)) = 0 for . Consequently we only care about aj(β(t))
for active predictor . For any two index sets  and , vector a, and matrix M, denote

 to be the sub-vector of a consisting of those elements with index in  and  to be the
sub-matrix of M consisting of those elements with row index in  and column index in .
When  and  are singletons, we also write  and , which are essentially a
row vector and a column vector, respectively. Denote the complement of  by

. With these notations, our solution path updating direction for active
predictor variables should satisfy

(4)

The argument is based on the previous paragraph with infinitesimal dt. Thus our solution

path should be updated using  and  with

(5)

being the solution of (4), where the invertibility of  is not an issue as long as the
quasi-likelihood is well defined. Here we use 0 to denote a column vector of zeros with
length depending on the context. Note further that this updating scheme implies that

 because .

In integration format, they become

(6)

(7)

where  is given by (5). Note that we consider small dt > 0 in all the above
discussion and assume that between t and t + dt the active index has not changed.
Consequently, beginning at t we may keep updating the solution path using (6) until the
active set changes at some t’ > t. This happens when another predictor variable  joins
the active set  to share the honor of having the largest absolute value of the first-order
partial derivatives, that is, ∣bj’(β(t’))∣ = ∣bj(β(t’))∣ for any active predictor . At this

point, we update the active set by setting .

Now we present our extension QuasiLAR for the QLM. We initialize our solution path by
identifying the predictor variable j so that the objective function R(β) changes fastest with
respect to βj beginning at β = 0. We first set
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. It will be clear later why we choose t0
in this way. Our solution path begins with β(t0) = 0 and β0(t0) = β0(βt0)) defined in terms of
(3). The initial active predictor set is given by

.

With t0, β(t0), and , we update our solution path using (6) until a new variable joins the
active set at some t1(> t0) to be determined. That means the solution for any t > t0 may be

temporarily updated by  and . Here  is a
temporary solution path defined for any t > t0. For any , define

, where . Then t1 is given by  and
we call t1 a transition point in that the set of active predictors changes at t = t1.

Then our QuasiLAR algorithm updates by setting ,

Algorithm 1

QuasiLAR for the QLM

Step 1: Initialize by setting t0 = —maxj=1,⋯,p ∣bj(0)∣, β(t0) = 0, β0(t0) = β0(β(t0)) ad

defined in (3), and .

Step 2: For m = 0, ⋯ , p −2, define a tentative solution path using

for t ≥ tm. Define a new transition point , where

. Update solution path

by setting , , and β0(t) = β0(β(t)) for t ∈

[tm, tm+1].  for t ∈ [tm, tm+1) and .

Step 3: At the end of Step 2,  should be exactly {1, ⋯ , p}. Next we update solution

path using , and  for t
between tp—1 and tp = 0.

, and β0(t) = β0(β(t)) for all t ∈ [t0, t1]. The active predictor set stays the same for t
∈ [t0, t1), namely . At t1, we update the active predictor set by setting

. At t = t1, the number of active predictors is two. Due to (5), and

the definitions of , Tj and t1, β(t1) satisfies
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, where . Note further that (7) and the

definition of t0 ensure that  for any .

Our QuasiLAR algorithm continues with t1, β(t1), and . The full algorithm is given by
Algorithm 1. Note that at the end of the mth QuasiLAR step, tm, β(tm), and  satisfy

 for any  and

, for any .

Note that at the end of the (p — 1)th QuasiLAR step in Step 2 of Algorithm 1, all predictors
are active. Then, in Step 3, the QuasiLAR path moves along a direction such that the
absolute values of the first-order partial derivatives decrease at the same speed until all the
first-order partial derivatives are exactly zero, which happens at t = 0. The solution at t = 0
exactly corresponds to the full solution of the QLM by solving (1) just like the LAR ends at
the full OLS estimate. This completes our QuasiLAR algorithm.

Remark 1
Note that the QuasiLAR instantaneous path updating direction is given by

. For least squares regression, the objective function is
exactly quadratic and thus  depends only on the active predictor set , but not on the

current solution values . Note that  does not change in a small
neighborhood of t. This implies that, within a small neighborhood of t, the instantaneous
path updating direction is the same for least squares regression. This leads to the piecewise
linear solution path of the LAR and Rosset and Zhu (2007) in general.

3.1 Quasi-LASSO modification
Efron et al. (2004) discovered that the LASSO solution path can be obtained by a slight
modification of the LAR. Next we make a parallel extension by showing that the Quasi-
LAR can be modified to get the whole LASSO regularized quasi-likelihood solution path.

Now consider the LASSO regularized quasi-likelihood in two different formats

(8)

(9)

which are equivalent with one-to-one correspondence between λ ≥ 0 and s ≥ 0.

Let  be a LASSO solution to (8). Then we can show that the sign of any nonzero

component  must agree with the sign of the current first-order partial derivative . It is
given by Lemma 2 in Section 5.
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Suppose t = t* at the end of a QuasiLAR step with a new active set . At the next
QuasiLAR step with t ∈ [t*, T] for some T to be determined, the QuasiLAR solution path
moves along the following tentative solution path

(10)

for t ≥ t*. Denote  for
. Then the end point T is given by ,

However  may have changed sign at some point between t* and T for some , in
which case the sign restriction in Lemma 2 must have been violated. We define

 for , where  is the jth component of  defined by

(10). If  defined by (10) cannot be a LASSO quasi-likelihood solution
since the sign restriction in Lemma 2 has already been violated. The following Quasi-
LASSO modification can be applied to ensure that we can get the LASSO regularized quasi-
likelihood solution path.

Quasi-LASSO modification—If S < T, stop the ongoing QuasiLAR step at S and remove

 from the active set  by set , where  is chosen such that . At the new
transition point S, the new path updating direction is calculated based on the new active

predictor set .

We have the following theorem to guarantee that the Quasi-LASSO modification leads to
the LASSO regularized quasi-likelihood solution path. We name the modified algorithm by
QuasiLASSO and use QuasiLARS to refer to both QuasiLAR and QuasiLASSO.

Note that at each transition point of our QuasiLARS solution path, two kinds of event can
happen: either an inactive predictor joins the active predictor set or an active predictor is
removed from the active predictor set. As in Efron et al. (2004), we assume that a “one at a
time” condition holds. With the “one at a time” condition, at each transition point t*, only
one single event can happen, namely either one inactive predictor variable becomes active or
one currently active predictor variable becomes inactive.

Theorem 1: With the Quasi-LASSO modification, and assuming the “one at a time”
condition, the QuasiLARS algorithm yields the LASSO quasi-likelihood solution path.

Remark 2: Here we make the “one at a time” assumption. However, even when the “one at
a time” condition does not hold, a QuasiLASSO solution path is still available. The same
discussion in Efron et al. (2004) applies. For practical applications, some slight jittering may
simply be applied, if necessary, to ensure the “one at a time” condition.

3.2 Updating via ODE
Our solution path algorithm QuasiLARS involves an essential piecewise updating step

 and  beginning at a transition point t* with
solution β(t*) and active predictor set . Note that the piecewise updating can be easily
achieved by setting  for  and t > t* and solving the following ODE system
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 with initial value condition . This is a standard
initial-value ODE system, for which there are many efficient solvers available. We have
implemented our QuasiLARS using Matlab ODE solver “ODE45.”

4 Details for deriving the path updating direction

Note that the path updating direction defined by (5) asks for 

and . By the chain rule, we are required to have the

implicit partial derivatives  and . Next we show how to obtain them.

According to its definition (3), β0(β) satisfies

, where

. Now treat β0 as a function of β and take derivative of each term with

respect to βj. We should get , where .

Thus by solving for , we get , where

for i = 1, ⋯, n. To get the second-order partial derivatives , we may apply

another layer of differential operator .

For some particular generalized linear models, it may be much simpler to get those partial
derivatives as shown in the following subsections.

4.1 Binomial
For the Binomial distribution, the data set is given by {(xi, yi) : i = 1, ⋯, n} with yi ∈ {0, 1}.
With the canonical logit link η(x) = log(μ(x)/(1−μ(x))), the corresponding loglikelihood
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function is given by . Then for any β, the

corresponding optimal β0(β) is given by the solution of  which

is equivalent to . We next differentiate both sides with

respect to βj and solve for  to get

. We may take another layer of
differentiation to get second-order partial derivatives.

4.2 Poisson
In the case of Poisson distribution with the canonical log link η(x) = log μ(x), the likelihood

function is given, up to a constant, by . For any β,

the maximizer β0(β) of is given by . We may take

differentiation to get partial derivatives  and .

With the closed-form formula of β0(β), we may simply plug it into the likelihood and get

, which corresponds to our notation R(β).

5 Properties of QuasiLARS
We next establish some properties of QuasiLARS solution path and prove Theorem 1.

With the “one at a time” condition, at each transition point t*, only one single event can
happen, namely either one inactive predictor variable becomes active or one currently active
predictor variable becomes inactive. For the first type of event, it means the active set
changes from  to  for some . We next show in Lemma 1 that this new
active variable j* joins in a “correct” manner. This is the key result for proving Theorem 1.
Lemma 1 applies to QuasiLARS (both QuasiLAR and QuasiLASSO).

Lemma 1
For any transition point t* during the QuasiLARS solution path, if predictor variable j* is
the only addition to the active set at t* with solution β(t*) and active set changing from  to

, then the path updating direction α(β(t*)) at t* has its j*th component agreeing
in sign with the current first-order partial derivative bj*(β(t*)).

Our next four lemmas concern properties of the LASSO regularized quasi-likelihood
solution. These lemmas will lead to the proof of Theorem 1. For any s ≥ 0, we denote the
solution of (9) by , which is unique for each s and continuous in s. The uniqueness is

due to the convexity of  and the strict convexity of −R(β, β0(β)). Throughout the
paper, the hat notation always refers to the LASSO regularized quasi-likelihood solution.

For any s ≥ 0, let  denote the index set of nonzero components
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of . We will show that the nonzero set  is also the active predictor set that determines
the QuasiLARS path updating direction.

Let  be a solution of (8). Next we can show that the sign of any non-zero component 
must agree with the sign of the current first-order partial derivative, namely

 for .

Lemma 2

A LASSO regularized quasi-likelihood solution  to (8) satisfies  for

any .

Let  be an open interval of the s axis, with infimum s, within which the nonzero set  of
the corresponding LASSO regularized quasi-likelihood solution  remains constant,
namely,  for  and some .

Lemma 3

For , the LASSO regularized quasi-likelihood estimate  updates along the
QuasiLARS path updating direction.

Lemma 4
For an open interval  with a constant nonzero set  over the LASSO regularized quasi-

likelihood solution path , let . Then for , the first-order partial

derivatives of R(β, β0(β)) at  must satisfy  for  and

 for .

Let s denote such a point,  as in Lemma 4, with the LASSO regularized quasi-

likelihood solution , current derivatives , and maximum absolute derivative

. Define , , and
. Define  for some , T(γ) = R(β(γ), β0(β(γ))) and

. Denote , , and .

Lemma 5
At s, we have

(11)

with equality only if dj = 0 for  and  for . If so,

(12)
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One implication of Lemma 5 is that, at any transition point, the active predictor set of the
LASSO regularized quasi-likelihood solution is a subset of . Note that the LASSO
regularized quasi-likelihood minimizes −R(β, β0(β)) subject to a constraint on the one norm
of β. Locally around , we are maximizing T(γ) subject to an upper bound on S(γ). The first
part of Lemma 5 implies that the instantaneous relative changing rate of T(γ) and S(γ) is at

most . For β(γ), its one norm S(γ) is increasing in γ as long as

 and the best instantaneous relative changing

rate is achieved whenever dj = 0 for  and  for . Note that
 is the same to say that the jth predictor variable is changing from inactive to active.

Then, with the “one at a time” condition, the set  is singleton and the requirement

 for  is thus guaranteed for our LARS path updating direction
due to Lemma 1.

The second part of Lemma 5 provides a closer look at the relative changing rate by checking
the second-order derivative . As we only care about direction, we assume that

 for some fixed △ > 0. Note that

. Then we need to find the best direction d to
maximize T(γ) among all the possible direction d satisfying

 and  for . By taking the
second-order information into account, we need to solve

(13)

for some △ > 0 to select the optimal solution updating direction d. As we only care about
direction, △ > 0 can be any number. Our next lemma shows that the optimal direction
corresponding to (13) is exactly given by our QuasiLARS path updating direction.

Lemma 6
Our QuasiLARS path updating direction matches the direction corresponding to the solution
to (13).

6 QuasiLARS in Action
In this section, we apply QuasiLARS to different datasets with different models. In our
implementation, we first calculate t0. Then set δt = −t0/K with a large positive K. For our
numerical examples, we set K = 2000. In addition to the transition points tks, we evaluate the
solution over our solution path at a grid of size δt. More specifically, for each piece of our
solution path over [tk, tk+1], we calculate our solution β(t) at t = tk + mδt for

, where  denotes the integer part of a.

The first toy example with a Poisson distribution is used to demonstrate that the LASSO
regularized quasi-likelihood does have a nonlinear solution path. In Example 2, we consider
Diabetes data with Gaussian distribution trying to compare QuasiLARS and LARS. The
response of the Diabetes data is actually positive integer valued, and thus can be thought of
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coming from some Poisson model. In Example 3, we apply QuasiLARS with Poisson
distribution to the Diabetes data. Binomial QuasiLARS is considered in Example 4 with the
Wisconsin Diagnostic Breast Cancer (WDBC) Data (available online at
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)).

Example 1 (A Poisson toy example) We set p = 3 and n = 40. The predictor covariates are
generated from X ~ N(0, ∑), where ∑ is the variance-covariance matrix with its (i, j) element
being 1 if i = j and 0.9 otherwise. Conditional on X = (x1, x2, x3)T, the response is generated
from a Poisson distribution with mean exp(4+3x1−5x2+x3). We apply our QuasiLARS with
the canonical link function η(x) = logμ(x) and the identity variance function V(μ(x)) = μ(x) of
the Poisson distribution.

For this toy example, the QuasiLAR and QuasiLASSO lead to the same solution path. In the
top panel of Figure 2, we plot our solution path by solid lines. The horizontal axis
corresponds to the one norm of β(t). If you connect the solutions at different transition points
by straight lines, then you get the dashed lines. It clearly demonstrates that the true solution
path for the LASSO regularized quasi-likelihood is not piecewise linear. In the bottom
panel, the solution β(t) is plotted with respect to t.

Example 2 (Gaussian with Diabetes data) In this example, we use the diabetes data (Efron et
al., 2004) to compare the solution path of our extension QuasiLARS and that of the original
LARS algorithm. In this data set, ten baseline variables, age, sex, body mass index, average
blood pressure, and six blood serum measurements were obtained for each of n = 442
diabetes patients, as well as the response of interest, a quantitative measure of disease
progression one year after baseline. We run our extension QuasiLAR algorithm for this data
set. Our QuasiLAR solution path matches the LAR solution path obtained by the R package
LARS which is shown in the top left panel of Figure 1. The maximum solution difference at
all transition points is very small and in fact bounded from above by 5.0×10−7, namely,

, where βLAR and βQuasiLAR denote the
LAR and QuasiLAR solution, respectively. Comparing to QuasiLAR, the QuasiLASSO
solution path has two more transition points. This is consistent with the result of R package
LARS. With LASSO, the maximum solution difference at all transition points is also

bounded from above as . This
example confirms that the QuasiLARS matches the LARS in the Gaussian case and works
correctly. However to save space, we do not plot our QuasiLAR and QuasiLASSO paths.

Example 3 (Poisson with Diabetes data) The response in the diabetes data is in fact positive
integer valued. We apply our QuasiLARS algorithm by choosing Poisson distribution with
the canonical log link function and identity variance function, namely, η(x) = log μ(x) and V
(μ(x)) = μ(x). Results are shown in Figure 3. As in the Gaussian example, some discrepancy
between the QuasiLAR and QuasiLASSO solution paths is observed. The QuasiLASSO has
four more transition points than the QuasiLAR does.

Example 4 (Binomial with WDBC Data) The WDBC data is based on n = 569 patients. The
number of predictors is p = 30. The response is binary in that each patient is diagnosed
either as malignant (Y = 1) or benign (Y = 0). We first standardize each predictor variable to
have mean zero and variance one. Our QuasiLARS with Binomial distribution is applied to

this data set with the logit link  and variance function V (μ(x)) = μ(x)(1 −
μ(x)). There are a lot of predictor variables available. To locate an “optimal” solution along
the QuasiLARS solution path, we use the Bayesian Information Criterion (BIC) defined by
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, where L(xi, yi; β(t), β0(β(t)))
denotes the Binomial likelihood and k(β(t)) = #{1 ≤ j ≤ p : ∣βj(t)∣ > 0} denotes the number of
nonzero coefficients of β(t). For the LASSO regularized least squares regression, Zou,
Hastie and Tibshirani (2007) proved that the number of nonzero coefficients is an unbiased
and asymptotically consistent estimator of the degrees of freedom. Park and Hastie (2007)
provided a heuristic proof for the case of generalized linear models. The optimal solution is
given by β(t*) with t* = argmint∈[t0,0] BIC(β(t)).

For the QuasiLAR, nonzero elements of the optimal solution are given by the second
column of Table 1. The BIC score is plotted with respect to the solution’s one norm

 in the top left panel of Figure 4 for t ∈ [t0, T], where T is a little beyond t*
corresponding to the “optimal” solution. The top right panel of Figure 4 gives the solution
path for t ∈ [t0, T]. Here we truncate the figures at T to make it look more clear.

For the QuasiLASSO, the optimal solution’s nonzero elements are shown in the third
column of Table 1. The corresponding plots of the BIC and solution path are given in the
two bottom panels of Figure 4.

From the QuasiLAR solution path given in the top right panel of Figure 4, we can see that
one solution component has changed sign between the second and third transition points.
This change causes the violation of the sign constraint of the LASSO regularized quasi-
likelihood solution path. Thus in the QuasiLASSO solution path, another transition is added
at this point to avoid sign constraint violation.

This example demonstrates that our extension QuasiLARS may be applied to high
dimensional data sets. However there is no need to complete the whole solution path. We
may design an optimal criterion, say the BIC. This optimal criterion may be used to identify
the optimal solution as the QuasiLARS solution path progresses. Thus an earlier termination
is possible to save computational effort in that it is computationally expensive to solve the
ODE system when the active predictor set is large.

7 Conclusion
In this work, we extend the LARS algorithm to the QLM. Over each piece, the solution path
is obtained by solving an initial-value ordinary differential equation system. Several
examples are used to demonstrate how it works with real data. In particular, Example 4 uses
the BIC to select the “optimal solution” along the solution path to show that the QuasiLARS
algorithm may be applied to high dimensional data and an earlier termination is possible.
One interesting future research topic is to study how to define degrees of freedom for the
QuasiLARS as studied in Zou et al. (2007). This will provide an elegant criterion to select
the “optimal solution.”

The LARS is attractive because of its super fast speed. This is made possible because the
corresponding path is piecewise linear. However the QuasiLARS solution path is not
piecewise linear due to the nature of the QLM. Thus we can not expect the QuasiLARS to
be as fast as the LARS. We have implemented the primitive version of our algorithm using
the Matlab ODE solver “ODE45,” which works fairly fast.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
LAR solution path of the diabetes data: the top left panel gives the solution path of the LAR;
the top right panel and the bottom panel plot the derivatives of (2) and their absolute values,
respectively, along the LAR solution path.
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Figure 2.
Poisson QuasiLARS solution path of the toy example: the top panel gives the solution path
of the Poisson QuasiLARS with respect to the one norm of β(t); the bottom panel plotted
with respect to t.
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Figure 3.
Poisson QuasiLAR (top) and QuasiLASSO (bottom) solution paths for the Diabetes data.
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Figure 4.
Binomial QuasiLARS paths for the WDBC data: the top left panel plots the BIC score along
the Binomial QuasiLAR solution path; the top right panel gives part of the Binomial
QuasiLAR solution path; the bottom left panel plots the BIC score along the Binomial
QuasiLASSO solution path; the bottom right panel gives part of the Binomial QuasiLASSO
solution path;
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Table 1

Nonzero elements of the optimal solution selected by BIC for Example 3

QuasiLAR QuasiLASSO

β 2 0.2077 0.1624

β 8 0.6170 0.5767

β 11 1.5370 1.4667

β 20 −0.3169 −0.2833

β 21 4.3576 3.4047

β 22 1.0325 1.0343

β 23 −0.9287

β 25 0.5470 0.5339

β 27 0.5176 0.4395

β 28 1.1496 1.0998

β 29 0.3378 0.3257
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