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In any given cell, thousands of genes are expressed and work in concert to ensure the cell’s function, fitness, and survival.
Each gene, in turn, must be expressed at the proper time and in the proper amounts to ensure the appropriate functional
outcome. The regulation and expression of some genes are highly robust; their expression is controlled by invariable
expression programs. For instance, developmental gene expression is extremely similar in a given cell type from one
individual to another. The expression of other genes is more variable: Their levels are noisy and are different from cell to
cell and from individual to individual. This can be highly beneficial in physiological responses to outside cues and stresses.
Recent advances have enabled the analysis of differential gene expression at a systems level. Gene regulatory networks
(GRNs) involving interactions between large numbers of genes and their regulators have been mapped onto graphic
diagrams that are used to visualize the regulatory relationships. The further characterization of GRNs has already un-
covered global principles of gene regulation. Together with synthetic network biology, such studies are starting to
provide insights into the transcriptional mechanisms that cause robust versus stochastic gene expression and their re-
lationships to phenotypic robustness and variability. Here, we discuss GRNs and their topological properties in relation to
transcriptional and phenotypic outputs in development and organismal physiology.

Biological processes can be deterministic and robust, or more sto-

chastic and variable. For example, in development and differenti-

ation, little deviation is tolerated. However, responses to stress can

be more stochastic, thereby providing a population of cells or or-

ganisms with different outputs to adapt or survive under adverse

conditions. Biological robustness and stochasticity can be con-

trolled, at least in part, at the level of differential gene expression.

In the last decade or so, the field of systems biology has extensively

studied the mechanisms of differential gene expression at the level

of gene regulatory networks (GRNs). Technological advances in

high-throughput molecular biology have enabled the character-

ization of large sets of genes and their regulators. The computa-

tional modeling and analysis of GRNs, together with the field of

synthetic biology, have provided numerous insights into the im-

portance of network architecture and topology in generating dif-

ferential gene expression and phenotypic outputs. Here, we de-

scribe examples of robustness and stochasticity at the organismal

or cellular level, as well as at the gene expression level. We discuss

the GRN principles and mechanisms that generate these different

types of biological outputs (Fig. 1). An overview of frequently used

terms is provided in Table 1.

Differential gene expression
The human genome contains ;20,000 protein-coding genes. Most

of these genes are differentially expressed to generate proteins that

are present at specific levels and in specific cells and tissues. These

complex patterns of gene expression are generated in response to

specific intracellular and extracellular cues and can be controlled at

different levels, including transcription, mRNA stability, mRNA

translation, and protein stability.

At the level of mRNA synthesis, transcription factors (TFs)

control gene expression by directly interacting with cis-regulatory

genomic DNA sequences that are usually located in or around their

target genes. Changes in the abundance or activity of TFs can result

in an increase or decrease in the expression of their downstream

targets. Other regulators of gene expression include transcriptional

cofactors that can physically interact with TFs, chromatin or

components of the basal transcriptional machinery; RNA binding

proteins that interact with mRNAs and regulate translation or

mRNA stability; and microRNAs that repress mRNA stability by

hybridizing to sequences within their mRNA targets. Here, we

mainly focus on gene regulation at the transcriptional level.

In all complex organisms, specific transcriptional programs

are required for proper developmental patterning and to ensure

appropriate responses to changing environmental conditions

and stresses. During development, appropriate cell numbers and

cell fates together dictate the generation and organization of tis-

sues and organs at the right place and the right time. The ex-

pression of developmental genes is often tightly controlled to be

within particular levels and to only occur in certain cells irre-

spective of changes in environmental conditions. For instance,

Hox genes are expressed in precise patterns that provide anterio–

posterior positional information and segment identity to the

developing Drosophila embryo (Lewis 1978; Harding et al. 1985).

The specific expression of a subset of Hox genes within a particular

embryonic segment determines which body structure that seg-

ment will become, such as a leg or an antenna. As a consequence,

mis-expression of these genes can result in the formation of an

extra pair of wings or the generation of legs in the place of

antennae (Casares et al. 1996). The expression of other genes,

however, is more variable and can be differentially modulated in

response to environmental cues. For instance, yeast cells decrease

the expression of RNA metabolism and protein synthesis genes,

while increasing the expression of detoxification and protein-

folding genes, in response to a broad variety of stressful condi-

tions (Gasch et al. 2000).
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Gene regulation is not a linear one-to-one process, but rather

occurs in the context of complex networks of interactions between

multiple genes and multiple TFs. For instance, the TFs that control

the expression of a gene often act together with other TFs. Fur-

thermore, TFs are themselves extensively regulated. The study of

GRNs has already provided insights into the systems-level mech-

anisms of gene regulation that control growth, development,

physiology, and stress responses.

Gene regulatory networks
Over the last decade or so, several approaches have been developed

that enable the experimental or computational identification of

interactions between genes and TFs. These relationships have been

mapped onto graphic GRN diagrams that can be interrogated

to gain insight into the mechanisms of differential gene expression

at a systems level (for review, see Davidson and Levine 2005;

Stathopoulos and Levine 2005; Walhout 2006; Long et al. 2008).

These GRNs are useful for biologists who seek to understand the

regulatory relationships between genes that confer similar phe-

notypes. These networks can also be used

to understand the flow of information in

a biological system, to identify circuits

that may be used for a specific purpose,

and to model changes in gene expression

under different conditions.

GRNs are comprised of ‘‘nodes,’’ the

genes and their regulators, joined to-

gether by ‘‘edges,’’ which represent phys-

ical and/or regulatory interactions. Phys-

ical interactions between genes and TFs

can be delineated using two conceptually

and practically different strategies that

are highly complementary. The first, TF-

centered (protein-to-DNA) methods start

with a TF of interest and identify the re-

gions of the genome with which that TF

interacts. The most widely used TF-cen-

tered methods include chromatin im-

munoprecipitation (Kim and Ren 2006)

and DamID (van Steensel et al. 2001).

ChIP has been applied to the majority of

yeast TFs, under a variety of experimental

conditions (Harbison et al. 2004), as well

as to individual regulatory TFs in multi-

cellular organisms (e.g., Odom et al. 2004;

Carroll et al. 2005; Cao et al. 2010). The

second, gene-centered (DNA-to-protein)

methods for the identification of TF–tar-

get gene interactions start with a regula-

tory genomic DNA sequence and identify

the repertoire of TFs with which this

sequence can interact. One of the few

available gene-centered methods is the

yeast one-hybrid (Y1H) system, which

has been modified for use with large sets

of genes and many TFs simultaneously

(Deplancke et al. 2004, 2006; Vermeirssen

et al. 2007b). The Y1H system has been

used to delineate various medium-scale

Caenorhabditis elegans GRNs pertaining

to tissues, cells, or processes of interest

(Deplancke et al. 2006; Vermeirssen et al. 2007a; Martinez et al.

2008; Arda et al. 2010). More recently, the Y1H system has also

been used for the first gene-centered Arabidopsis GRN (Brady et al.

2011).

In addition to representing physical interactions, GRN edges

can also represent regulatory relationships that can, for instance,

be inferred by correlating gene expression profiles between genes

and potential regulators. Initially this approach was developed for

the yeast Saccharomyces cerevisiae (Segal et al. 2003). More recently,

a complex mammalian GRN involved in a pathogen response was

delineated using a similar strategy. The resulting relationships were

then tested in vivo by RNA interference (RNAi), combined with

expression profiling (Amit et al. 2009). While powerful, such

methods do not easily identify redundancies in the GRN that may

mask relevant relationships, and not all relationships inferred

necessarily reflect direct interactions between TFs and their target

genes. In addition, these predictive approaches are biased against

proteins that are constitutively expressed, but that require post-

translational modifications or interactions with cofactors for their

activity. Thus, ideally, physical and regulatory relationships need

Figure 1. Robust or stochastic gene expression can generate diverse phenotypes. (Left) Hypothetical
gene expression profiles for a population of cells or an individual cell over time (time). Network diagrams
are shown to highlight the relationship of gene expression and network dynamics. Cells colored dif-
ferently reflect different phenotypic fates.
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Table 1. Terms frequently used in network biology

Network terms Definitiona Biological examples or interpretation

GRN components GRN (gene
regulatory
network)

Collection of genes and regulators that
are connected by physical and/or
regulatory interactions

TF-target gene networks, microRNA-target gene
networks, integrated networks that combine
different types of regulators
Genes, TFs, microRNAs, RNA binding proteins
Physical and/or functional protein-DNA interactions,
protein-RNA interactions, protein-protein interactions

GRN nodes The players in the networks
GRN edges Relationships between nodes

GRN architecture Node degree The number of interactions a node
engages in, also referred to as
connectivity

In-degree: number of regulators that control a gene;
out-degree: number of target genes of a regulator

Node
betweenness

Measure of centrality; number
of shortest paths between any two
nodes in the network that pass through
combined in- and out-degree

The more that shortest paths go through a node, the
more central it is in the functionality of the GRN

Flux capacity The number of paths that go through a node Indicates information flow propensity
GRN module Collection of nodes that share interaction

partners
TF module: TFs that share target genes;

gene module: or genes that share TFs
GRN motif Small circuit that is overrepresented in

GRNs compared to randomized networks
Usually small GRN building blocks composed of

2 to 6 nodes
GRN feed forward

loop (FFL)
A regulator controls another regulator

and both control the same target
Can be coherent or incoherent; some are network

motif because they occur more frequently
than expected

GRN feedback
loop (FBL)

A target controls its regulator Can be direct or indirect via another node, can
be activating or repressing

GRN autoregulation A self-edge Can be autorepressor or autoactivator
GRN output Stability Fixed, not changing Useful in deterministic processes such as development

and differentiation
Bistability Two states that are stable but that can

switch from one to the other
Once the switch between states is accomplished, the

initial stimulus is not required to maintain that state
Variability Not fixed, fluctuating Variability in gene expression can be useful when a

cell or organism needs to respond to physiological
or environmental signals and stresses

GRN behavior Robustness Sturdy, resilient, able to withstand
changing conditions

Robustness can occur at many levels; a gene expression
program can be robust, a phenotype can be robust
and these are likely linked

Redundancy Perturbation of a node results in little
or no change in output because
another node(s) masks the effect

Highly homologous TFs can be (partly) redundant
molecularly and biologically; microRNAs from the
same family often regulate the same targets

Adaptation Change in output after exposure to cue or
stress that approaches new steady state,
or that moves back to initial state. The
latter is ‘‘perfect adaptation.’’

Adaptation can be at the level of gene expression that
then results in phenotypic adaptation

Plasticity The capacity to change in response to
a variety of signals/stresses

There is inherent plasticity in gene expression as the
activity of many TFs can quickly change in response
to outside signals

Stochasticity Randomness, fluctuating, variable Biological processes such as transcription and translation
are inherently noisy but genes expressed at low levels
are fluctuating more than highly expressed genes

Regulator behavior Activator Increases target gene expression TFs can activate gene expression by opening local
chromatin structure, by interacting with coactivators
and/or by interacting with components of the basal
transcription machinery

Repressor Reduces target gene expression TFs can repress gene expression by changing chromatin
structure or by interacting with corepressors;
microRNAs repress gene expression by interacting with
the 39untranslated region of their target mRNAs

Toggle switch Induces a change in state Can be repressor or activator, often in context of
network loops or motifs

Rheostat Dampens or amplifies signal
Fine-tuner Makes small changes/adjustments MicroRNAs overall function as fine tuners of gene

expression
Buffer Masks effect of perturbation of many

other nodes
Chromatin factors can buffer changes in gene

expression and phenotypes caused by network
perturbations

Target behavior Dampening Reduction in amplitude of an effect Can be accomplished by rheostats or fine tuners
Amplifying Increase in amplitude of an effect Can be accomplished by rheostats or fine tuners
Switching Changing from one to another state Can be accomplished by TFs that act in double

negative or double positive feedback loops
Oscillation Alternating or switching between two

states, important, for example, in cell
cycle, circadian clock

Can be accomplished by TFs that act in single
negative feedback loops

aWe use our definitions for these terms based on how they are most commonly used in the literature.
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to be combined to obtain the most complete and accurate GRN

models.

GRNs can be visualized and analyzed using a variety of

computational and mathematical tools (for review, see Babu et al.

2004). Cytoscape is a widely used and easy to implement tool that

has been extremely useful for GRN visualization (Shannon et al.

2003). GRNs can be analyzed at different levels (Babu et al. 2004;

Arda and Walhout 2010). At the level of overall network archi-

tecture and topology, measures include ‘‘node degree,’’ which in-

dicates the connectivity, or number of relationships in which

a node engages. There are two types of nodes: Genes and TFs, and

therefore GRNs are bipartite. GRNs are also directional as TFs reg-

ulate their targets and usually not vice versa. As a consequence,

there are two types of degree: The in-degree refers to the number of

TFs that bind a gene, and the out-degree refers to the number of

genes bound by a TF. While most GRN nodes have a relatively low

degree, some are extremely highly connected and are referred to as

either ‘‘TF hubs’’ that bind a disproportionately large number of

target genes or ‘‘gene hubs’’ that are bound by many TFs (Luscombe

et al. 2004; Deplancke et al. 2006; Yu and Gerstein 2006). When the

regulation of TF-encoding genes is included in GRNs, these nodes

can have both an in-degree and an out-degree. The number of po-

tential information paths that go through such a regulator is the

product of the in-degree and out-degree and is referred to by that

node’s ‘‘flux capacity’’ (Martinez et al. 2008). Finally, the ‘‘be-

tweenness’’ of a node is the number of shortest paths that connect

any pair of nodes in the network that pass through that node (Joy

et al. 2005). Nodes with high betweenness are centrally located in

the network and can connect different network modules.

The overall topology of GRNs has been analyzed in many sys-

tems. First, GRNs are not random, as evidenced by the occurrence of

TF and gene hubs. Interestingly, however, the out-going degree

follows a power-law distribution, whereas the incoming degree best

fits an exponential distribution (Luscombe et al. 2004). At present,

the significance of this difference is not clear.

GRN modules are highly interconnected network neighbor-

hoods that point to shared functionality between the nodes in-

volved (Fig. 2). Two types of modules can be identified: ‘‘gene

modules,’’ which are defined as sets of genes bound by similar TFs;

and ‘‘TF modules,’’ which are sets of TFs that share similar target

genes (Vermeirssen et al. 2007a; Arda et al. 2010). A high degree

of modularity has been proposed to promote information flow

through the network, to generate rapid responses to outside cues

(Ravasz et al. 2002; Babu et al. 2004). In Caenorhabditis elegans, the

metabolic GRN that must respond to changes in food availability or

other stimuli is highly modular (Arda et al. 2010). This GRN contains

two modules that are mainly composed of nuclear hormone re-

ceptors: TFs that are poised to regulate their targets through in-

teractions with their cognate ligands. Interestingly, most of these

nuclear hormone receptors confer a metabolic phenotype when

knocked down by RNAi, which indicates that, indeed, they share

biological functions, as well as target genes in vivo.

GRNs can also be analyzed at the level of small circuits or

network building blocks that involve only few nodes. These in-

clude autoregulatory loops, feed-forward loops (FFLs), and feed-

back loops (FBLs) (Fig. 2). When such circuits occur more fre-

quently than expected by chance, they are referred to as ‘‘network

motifs,’’ which is analogous to the notion of TF binding motifs that

are overrepresented in TF target genes (Milo et al. 2002). Because

they occur frequently, network motifs likely represent circuits that

have provided selective advantages in evolution. Below, we discuss

how network topologies and circuits can confer distinct gene ex-

pression and phenotypic outputs, such as robustness, stochas-

ticity, and adaptation (Fig. 1).

Robustness
Robustness is the capacity to generate a reproducible trait despite

changing conditions. A trait can be a phenotype, as in phenotypic

robustness, or a level or pattern of gene expression. Biological

systems are overall highly robust because most genes or gene

products can be removed without compromising viability. Al-

though minor changes in growth rate have been observed in Sac-

charomyces cerevisiae for many single gene mutations (Breslow et al.

2008), <20% of the 6000 yeast genes confer lethality when deleted

(Giaever 2002; Dixon et al. 2009). Similarly, C. elegans can with-

stand individual knockdowns of the vast majority of its genes

without any obvious effects on viability, reproduction, or longev-

ity (Kamath et al. 2003). Obviously, the ability to disrupt most

individual genes with only minor consequences does not mean

that they are not important. Rather, there appear to be great levels

of redundancy because the effects of gene loss become more ob-

vious in double mutants (Lehner et al. 2006; Byrne et al. 2007;

Costanzo et al. 2010). At the level of gene expression, it has been

observed that essential genes display lower variability, i.e., are

more robust, than other genes, which demonstrates that robust-

ness in gene expression correlates with phenotypic robustness

(Batada and Hurst 2007; Lehner 2008).

Figure 2. Common network architectures in GRNs. Examples of mod-
ules and motifs are shown. (A) GRN modules. (Left) A TF module; (right)
a gene module. (B) GRN motifs. A, B, and C represent three genes that
interact in a GRN. FFLs can be divided into two types—coherent and in-
coherent. In coherent FFLs, the effects of A on C from direct and indirect
paths are the same. The type I coherent FFL is the most common (shown
here), where A activates B and C, and B activates C. In incoherent FFLs, the
effects from A on C are opposite. In this type II incoherent FFL, A represses
C, and it activates C by repressing the repressor B. (Right) A feedback loop
(FBL) is illustrated in which A activates B, B activates C, and the product of
C negatively regulates A.
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Stochasticity

Stochasticity indicates variability in phenotype and/or gene ex-

pression between genetically identical or highly similar cells that

are exposed to the same condition. Stochastic gene expression can

be highly advantageous because it can result in phenotypic dif-

ferences that generate diversity in a population of cells or organ-

isms. Together, different degrees of gene expression enable bi-

ological plasticity such that an organism is poised to change or

adapt in response to a variety of signals/stresses (Fig. 1). Indeed,

genes that are specialized for stress response and energy pro-

duction display greater variability in expression under stable op-

timal conditions than other genes (Bar-Even et al. 2006).

There are numerous examples in which stochastic gene

expression can be functionally beneficial. For instance, for sin-

gle-cell organisms, the survival of the population can be ensured

under rapidly changing conditions when individuals display

very different patterns of gene expression. Indeed, increased

gene expression noise has been shown to provide a fitness ad-

vantage when cells are exposed to extreme stress (Blake et al.

2006). Stochasticity in gene expression would thus be favored

in populations undergoing a broad variety of environmental

changes: Greater variability results in greater plasticity, and

therefore a higher probability that at least some cells can survive

many changes in condition. For instance, in a population of

bacteria, a small fraction of cells enters into a slow-growing state

called ‘‘persistence.’’ Entry into and exit from this state relies on

stochastic expression of the hipA gene. While in the persistence

state, bacteria are less sensitive to environmental stresses such

as antibiotic treatment and will therefore have a competitive

advantage (Rotem et al. 2010). However, when conditions are

optimal, these slow-growing cells are less competitive than their

fast-growing counterparts. Thus, cells within a bacterial pop-

ulation cycle between two growth states—one that favors

growth and reproduction, and one that favors survivability. This

type of ‘‘bet-hedging’’ does not depend on the bacteria first

sensing stresses in order to induce a response and thus provides

a higher probability of survival for the population following

sudden environmental changes.

In complex multicellular organisms, similar patterns of sto-

chastic gene expression can be used to cycle between two states.

Chang et al. (2008) analyzed SCA1 expression in a population of

hematopoietic progenitor cells. For the most part, SCA1 levels in

the population followed a normal distribution; however, sponta-

neously arising outlier cells display either very high or very low

levels of SCA1 expression. These outlier cells were isolated and

propagated, and the level of SCA1 was measured over time. Pop-

ulations arising from such outlier cells initially expressed similar

levels of SCA1 as the cloned parental cell. However, they displayed

a slow resetting to the more broadly distributed SCA1 levels of the

original cell population. In embryonic stem (ES) cells, the expres-

sion of the pluripotency marker NANOG is similarly noisy, with

two peaks in expression levels that define two populations of cells:

one that expresses low levels of NANOG and one that expresses

high levels of NANOG (Kalmar et al. 2009). These populations

differ in their expression of differentiation markers: The pop-

ulation with low levels of NANOG expresses these markers and is as

a consequence more susceptible to induced differentiation. For

both hematopoietic progenitor cells and ES cells, keeping two

populations may guarantee that some cells in the population are

poised to differentiate in response to a variety of cues, while a pool

of uncommitted cells is maintained as well.

Stochastic processes can also be used to generate noise in gene

expression that leads to permanent cellular variation within an

individual. For example, in mammals, the expression of olfactory

receptors is highly stochastic such that each olfactory sensory

neuron expresses only one of the hundreds of olfactory receptors

encoded by the genome (Mombaerts 1999). This selection results

in the generation of a population of cells in which each cell ex-

presses a different receptor. After exposure to an odor, it is impor-

tant to have this type of gene expression to enable a sophisticated

and appropriate response. This would not be feasible when all cells

express the same olfactory receptor, or when one cell expresses

all of them. Interestingly, however, this mechanism is not uni-

versal: The C. elegans genome also encodes hundreds of olfactory

receptors, but its sensory neurons each expresses multiple re-

ceptors, and likely in a nonstochastic manner (Bargmann 2006).

C. elegans only has a limited number of sensory neurons, and odors

are interpreted as attractants or repellents depending on the cell in

which these odorant receptors are expressed. Thus, even for similar

biological processes, evolutionary differences can result in ro-

bustness in one organism and stochasticity in another.

Stochastic gene expression can result
in robust phenotypes
Stochasticity and robustness are not mutually exclusive (Fig. 1). For

instance, stochastic gene expression is not restricted to phenotypes

that are variable. It can also be used to generate robust phenotypes.

Developmental processes often rely on the differentiation of a

single cell in a population of identical cells to guide the subsequent

formation of an organ or tissue. The differentiation of this in-

dividual cell is a random and rare event. It is caused by stochastic

gene expression that results in levels of expression of one or several

genes crossing a threshold level within an individual cell, which

promotes differentiation of that cell. Once this cell differentiates,

the same process in adjacent cells is blocked. For example, during

eye development in Drosophila, a single cell in each ommatidium is

selected to become the R8 photoreceptor. Once this cell is selected,

it prevents other cells from becoming R8 cells and directs assembly

of the rest of the photoreceptor cells within each ommatidium (for

review, see Roignant and Treisman 2009).

Stochasticity can also be used as a switch to a more robust state

that can subsequently become stabilized by additional mech-

anisms. One example of this is the reprogramming of somatic cells

into induced pluripotency (iPS) cells by the TFs OCT4 (also known

as POU5F1), SOX2, KLF4, and MYC (Wernig et al. 2007). Over-

expression of these TFs can induce de-differentiation; however, it is

a rare event, and after 3–4 wk of treatment with these factors, only

1%–20% of the cells present are iPS cells. Using individually isolated

B-cells, Hanna et al. (2009) expressed these factors and followed cell

fate over an extended period of time. Cells were separated into in-

dividual wells, and after 18 wk, iPS cells were present in 92% of the

wells. This demonstrates that following expression of these factors,

all B-cells are capable of reprogramming, but illustrates that it is not

a frequent event. Rather, the findings point to a stochastic process

whereby a rare event triggers a switch that promotes de-differenti-

ation. Once this switch has been triggered, however, the iPS state is

stable, and its gene expression program is likely highly robust; e.g.,

tissue-specific genes are turned off, and pluripotency genes are

turned on (Boyer et al. 2005).

The fact that some processes favor stochasticity while others

have selected robustness suggests that these are both extensively

regulated. We discuss below how robustness and stochasticity can
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be generated at the level of individual genes and regulators, or at

the network level.

Mechanisms of robustness and stochasticity
at the node level
Noise can be separated into two types: intrinsic and extrinsic

(Swain 2002). Noise that occurs as a result of the inherent proba-

bilistic nature of transcription or translation of a gene is called

‘‘intrinsic noise.’’ In contrast, ‘‘extrinsic noise’’ is transmitted to a

gene from elsewhere in the network, for instance, due to fluctua-

tions in the concentrations or activation of the trans-acting regu-

lators of that gene (Swain et al. 2002). Noise is inherent to bi-

ological systems, but it can be regulated or reduced in a gene-

specific manner to tailor the appropriate degree of variability.

Single-cell analysis in yeast has shown that noise in protein

expression is predominantly the result of changes in mRNA ex-

pression and stability (Newman et al. 2006). High-plasticity yeast

genes have been identified by the application of multiple stresses,

followed by expression analysis (Tirosh and Barkai 2008). High-

plasticity genes can be defined as genes that change in expression

between many different conditions. Such genes are generally

noisier in expression even under stable conditions (Bar-Even et al.

2006). Tirosh and Barkai (2008) compared these genes with low-

plasticity genes whose expression was unchanged under the dif-

ferent conditions, and identified two main classes of promoters.

The promoters of high-plasticity genes tend to exhibit high nu-

cleosome occupancy directly upstream of their transcriptional

start site but low nucleosome occupancy more distally. In contrast,

low-plasticity genes more frequently display nucleosome free re-

gions at their promoters and well-positioned nucleosomes further

upstream. Nucleosomes can decrease the accessibility of TFs to

their target DNA sequences. Therefore, competition between TFs

and nucleosomes may also be a source of variability (Raser and

O’Shea 2004; Choi and Kim 2009). Active promoters tend to have

overall decreased nucleosome occupancy. As such, essential genes

tend to cluster around open chromatin, which may lead to more

robust expression levels (Batada and Hurst 2007; Field et al. 2008).

Specific histones may also play a role, as H2A.Z is enriched at low-

plasticity gene promoters (Tirosh and Barkai 2008).

Several studies suggest that gene architecture may also be an

important determinant of gene expression noise. For instance,

genes that are controlled by promoters that possess a TATA box are

noisier in their expression (Becksei and Serrano 2000; Blake et al.

2006; Batada and Hurst 2007; Tirosh and Barkai 2008). It is likely

that other promoter or gene elements may be involved in the de-

termination of gene expression noise as well. Some of these ele-

ments may be more specific to small sets of genes, and others may

be more abundant (such as the TATA box).

In addition to mRNA levels, the timing of gene expression

can also be stochastic or robust. In Drosophila, many promoters of

genes that are required for embryogenesis are preloaded with RNA

polymerase II (Pol II), allowing accelerated induction of gene ex-

pression (Hendrix et al. 2008; Boettiger and Levine 2009). It has

been shown that such preloading can minimize variability be-

tween cells associated with transcriptional induction. Genes lack-

ing stalled Pol II exhibited greater variability in their activation

times across different cells in the Drosophila presumptive meso-

derm and much greater stochasticity in their expression profiles

(Boettiger and Levine 2009). The time between activated gene

expression in the first and the last nucleus is as little as 2–3 min for

genes with stalled Pol II. In contrast, this variation in activation is

15–20 min or more for promoters lacking stalled Pol II (Boettiger

and Levine 2009). Polymerase preloading may therefore minimize

stochasticity across a tissue to promote proper developmental

timing and coordination.

Mechanisms of robustness and stochasticity
at the network level

Redundancy

In the last few years, several organizing principles have been dis-

covered that can dictate different types of gene expression outputs

at the GRN level. For instance, robustness can be conferred

through the redundant wiring of TFs that converge onto individual

genes in three different ways. First, ‘‘shadow enhancers’’ have been

found in Drosophila that function redundantly with ‘‘primary en-

hancers’’ but that are often located relatively far from the tran-

scriptional start site (Fig. 3A; Werner et al. 2007; Hong et al. 2008;

Frankel et al. 2010; Perry et al. 2010). When cloned in front of

a reporter gene, primary and shadow enhancers both confer

a highly similar pattern of expression that recapitulates part of the

expression of the endogenous gene. A recent example involves the

Drosophila shavenbaby (svb [also known as ovo]) gene that is required

for the proper formation of hair-like projections called trichomes

(Frankel et al. 2010). svb expression is regulated by three enhancers

that generate the complete svb expression pattern as well as two

shadow enhancers that drive expression in overlapping regions. At

the optimal temperature, loss of these distal enhancers results only

in minor alterations in the number of trichomes. At higher tem-

peratures, however, loss of these enhancers results in a significant

decrease in trichome number. Similarly, in sensitized genetic back-

grounds, in which another gene involved is mutated, loss of these

enhancers resulted in increased defects in trichome formation.

Similar results were obtained for several targets of the Dorsal TF, and

with proximal and distal enhancers of the Drosophila snail gene

(Hong et al. 2008; Perry et al. 2010). When either the shadow or

the primary enhancer was deleted from the snail locus, embryos

reared at 22°C developed normally and no discernible differences

in expression were observed. At a higher temperature (30°C),

however, wild-type embryos were not affected, whereas 20% of the

Figure 3. Redundancy can be conferred by different mechanisms. (A)
Genes can be controlled by redundant enhancers: a primary, proximal
enhancer and a distal, secondary shadow enhancer. (B) Different TFs from
the same family can bind the same cis-regulatory site and control the gene
redundantly. (C ) Multiple different types of TFs can redundantly control
gene expression by together binding to a cis-regulatory module (e.g.,
enhancer).
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nuclei in the presumptive mesoderm

lacked expression in embryos where one

of the enhancers was deleted. Together,

these data demonstrate that one enhancer

is sufficient under optimal conditions, but

that redundancy is important under ad-

verse environmental conditions. Enhancer

redundancy, therefore, increases robust-

ness and buffers changes that might result

from environmental stresses. The mech-

anism of buffering gene expression and

downstream phenotypes has not yet been

elucidated. We speculate that adverse

conditions may perturb the upstream

networks that converge onto the two

enhancers and that these perturbations

together result in new network states that

cannot support full gene expression and,

as a result, wild-type phenotypes. This

mechanism is likely conserved in other

organisms, as similar redundant enhancers

have been identified in the mouse Sox10

gene (Werner et al. 2007). Finally, we

propose that shadow enhancers will be

enriched in essential and other devel-

opmental genes compared to stress genes

that benefit from higher degrees of sto-

chasticity.

The second mechanism that can

confer redundancy is when multiple TFs

from one TF family can bind the same cis-

regulatory DNA element (Fig. 3B). For

example, highly similar ETS-type TFs

control overlapping sets of targets in hu-

man T-cells (Hollenhorst et al. 2007). In

C. elegans, FLH-1 and FLH-2 are FLYWCH-

type TFs that both bind to a set of

microRNA gene promoters. In either flh-1

or flh-2 mutant embryos, little effect

on microRNA expression was observed.

However, in double mutants, microRNA

expression increased dramatically, and there was an increase in

larval lethality as well (Ow et al. 2008). Currently, we do not know

the extent to which this mechanism of redundancy is used in

different organisms, or which types of genes it applies to. Com-

prehensive GRN mapping studies will shed further light onto the

generality of this type of transcriptional redundancy.

The third mechanism by which redundancy can occur is

when TFs from different families interact with a single enhancer or

cis-regulatory module that harbors multiple cis-regulatory ele-

ments (Fig. 3C). For instance, C. elegans intestinal development is

a tightly regulated process that is controlled by a GRN of highly

connected TF-encoding genes (Maduro et al. 2007). A key com-

ponent in this network is SKN-1, a bZIP family TF that regulates the

expression of four GATA-type TFs: END-1, END-3, MED-1, and

MED-2. The output of the GRN is the activation of the elt-2 gene,

which encodes the master regulator of the downstream intestinal

gene program (Fig. 4). Interestingly, the expression of these TFs is

robust from embryo to embryo, and disregulation of the network

can result in partially penetrant lethality because the intestine fails

to develop. ‘‘Penetrance’’ refers to the proportion of genetically

identical organisms that exhibit a particular phenotype. While

some mutations result in a phenotype that is observed in all in-

dividuals carrying that mutation, other mutations can result in

phenotypes that are only observed in some individuals, despite

identical genotypes and environments. For the intestinal GRN, Raj

et al. (2010) have proposed that such incomplete penetrance can

result from variability in gene expression levels. The investigators

found that expression of END-1 becomes highly variable in skn-1

mutants, although the cause of this stochasticity is not fully un-

derstood. Interestingly, the percent of embryos that survived was

similar to the percent of embryos that express relatively high levels

of END-1. Although these data are correlative, they predict that

levels of END-1 must exceed a threshold level that results in acti-

vation of elt-2 expression, and thus intestinal development and

survival. Such threshold effects may be a general mechanism to

explain phenotypic differences between genotypically identical

cells or organisms.

Recently, it has become apparent that many TF binding

events, for instance, detected by ChIP, appear to be nonfunctional

because the removal of that TF does not result in a change in the

level of the mRNA encoded by the target gene bound (e.g., Li et al.

2008; Cao et al. 2010). In light of the mechanisms that govern

Figure 4. Stochasticity in gene expression underlies partial phenotypic penetrance. Summary of data
from Raj and colleagues (Raj et al. 2010) explaining partial penetrance of defects in skn-1 mutants. A
network controlling intestinal development in C. elegans in wild-type (left) and skn-1 mutants (right).
END-1 expression levels must reach a threshold to activate expression of elt-2 and downstream intestinal
expression programs.
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redundancy in GRNs that we discussed, it is likely that removal of

a single TF would not result in an observable gene expression or

biological phenotype. This is in agreement with the observation

that most genes and, indeed, also TFs are dispensable for viability

and other phenotypes that have been systematically examined.

Rather, the removal of multiple TFs would be required to unmask

their function in gene expression or a particular biological process.

It may well be, however, that loss of individual TFs does result in

a gene expression and phenotypic change under adverse condi-

tions, for example, when the organism is exposed to an environ-

mental or physiological stress.

We propose that genes bound by many TFs (high in-degree)

could exhibit either high robustness or high plasticity, depending

on the (local) network configuration. First, as discussed above, a

gene that is bound by a relatively large number of TFs that provide

different degrees of redundancy could exhibit more robust expres-

sion. This notion is supported by two observations: (1) it has been

shown that master regulators of development or differentiation

often have a high in-degree (Borneman et al. 2006; Vermeirssen

et al. 2007a); and (2) such essential genes generally exhibit less noise

than other genes (Batada and Hurst 2007). A high in-degree can also

correlate with high plasticity in gene expression (Promislow 2005).

This could be a consequence of multiple cis-regulatory elements

each of which has its own intrinsic level of noise. In the absence of

an outside signal and the resulting activation of one of the inter-

acting TFs, each element could provide a little bit of noise. When

many elements occur in a cis-regulatory module, these elements

could function additively. However, a robust activation of that gene

could ensue when one of the interacting TFs is activated. Further

systematic analyses will reveal which of these mechanisms is more

pervasive and to which types of genes these apply (see below).

Hierarchy

Analysis of transcriptional networks in yeast revealed a hierarchi-

cal organization of regulatory interactions (Jothi et al. 2009). TFs

could be organized into three layers: top, core, and bottom. Pro-

teins within a given layer have similar properties. Surprisingly,

proteins at the top level are abundant and display high levels of

noise when compared to proteins at the bottom level. Low levels of

noise in the bottom layer may suggest that additional mechanisms

act to buffer noise at this level. Jothi et al. (2009) suggest that this

organization may have evolved to minimize transcriptional

changes resulting from inadvertent activation of pathways. In

addition, they hypothesize that higher levels of noise in the top

layer of these hierarchical networks could result in different cells

within a population using the same network in different ways and

thus be a general strategy to facilitate adaptation to diverse envi-

ronments.

Noise propagation

The expression level and activity of TFs can affect the variability in

expression of their downstream targets. This is because protein–

DNA interactions are inherently noisy, probabilistic events: The

interaction strength and residence time of a TF with any of its

regulatory DNA sites is determined by its concentration, diffusion

rate through the nucleus, affinity for each particular DNA se-

quence, and accessibility to the DNA. When the expression level of

a TF is low, the probability of it finding any target sequence is de-

creased relative to a more highly expressed TF that binds the same

DNA sequence. This results in greater variability between cells

that respond to the lowly expressed TF. In general, genes that are

expressed at low levels display greater variability (Bar-Even et al.

2006). Noise in a network can be transmitted from a TF to its

downstream targets (Becksei and Serrano 2000; Pedraza and van

Oudenaarden 2005). When some of these targets are themselves

TFs, further noise propagation follows. In sum, TFs that are

expressed at low levels display greater noise, and this noise is likely

transmitted to their target genes.

Within a GRN different nodes can display different levels

of noise. In protein–protein interaction networks, for example,

highly connected nodes display less expression noise compared to

nodes with fewer edges (Lehner 2008). In addition, highly con-

nected nodes are more pleiotropic (i.e., they are involved in mul-

tiple biological processes) and more likely to be essential than other

nodes, and as stated above, essential nodes are less noisy. Thus,

although noise can generate diversity, it is not advantageous for

every node in a network.

GRN modules, motifs, and biological outputs
GRN modules can be identified using topological overlap co-

efficient analysis that determines the sharing of targets between

TFs or vice versa (Ravasz et al. 2002; Vermeirssen et al. 2007a). A

modular network organization has been postulated to confer sev-

eral advantages. First, TF modules can provide redundancy in tar-

get gene regulation and therefore affect the robustness of the

network. Second, the compartmentalization of functions into

modules could act to insulate the rest of the network from large

changes in expression that occur within a module. Finally, mod-

ularity can ensure the coordinated regulation of genes in response

to a specific stimulus. Indeed, modularity is often a feature of net-

works that respond to environmental changes. For instance, bac-

teria that are subject to greater environmental variation display

greater modularity in their metabolic networks than bacteria that

are subject to a constant environment (Parter et al. 2007). Similarly,

as stated above, a C. elegans metabolic GRN is highly modular and

likely responds to different nutritional states (Arda et al. 2010).

Different types of network motifs can generate different gene

expression and phenotypic outputs. In GRNs, autoregulation is

common, wherein a TF binds to its own promoter and either ac-

tivates or represses its own expression. Positive autoregulation has

been suggested to enhance stochasticity, while negative auto-

regulation can decrease stochasticity (Alon 2007). Positive auto-

regulation can induce variability in a population. This is especially

true when the initial stimulus generates a weak pulse of TF ex-

pression. At low levels of expression, the induced mRNA pro-

duction is slow because it relies on probabilistic interactions be-

tween the TF and its own promoter. Production accelerates

gradually as protein levels accumulate (Maeda and Sano 2006).

Negative autoregulatory loops function conversely to positive

autoregulatory loops. They can be used in situations in which

steady-state levels need to be reached quickly. An initial stimulus

can induce a strong induction of the promoter resulting in pro-

duction of the TF. Following the initial stimulus, production levels

are decreased as protein levels increase, generating a steady-state

level of expression with decreased variability (Becksei and Serrano

2000; Dublanche et al. 2006).

FFLs are one of the most widely occurring network motifs

(Milo et al. 2002; Shen-Orr et al. 2002). They are defined as a set of

three genes, with two regulators controlling a downstream target

and one regulator also affecting the other regulator (Fig. 2). There

are a total of eight possible FFLs because regulatory interactions can
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be either positive or negative, and these can be divided into two

types, coherent and incoherent. If we consider three genes—A, B,

and C, where C is regulated by both A and B and A regulates

B—then both pathways leading from A (direct and indirect) have

the same net effect on C in a coherent FFL. In an incoherent FFL,

however, the two paths from A would have opposing effects, for

example, A activates B and C, but B represses C. FFLs can modulate

the timing of gene expression following a stimulation. The most

common coherent FFL is the type-1 FFL, wherein A activates B and

C, and B activates C (Fig. 2). This circuit can generate delays fol-

lowing either introduction or removal of a stimulus. If A and B are

both required for the activation of C (an ‘‘AND gate’’), the FFL can

induce a delay in the activation of C following introduction of

a stimulus, but no delay occurs following the removal of a stimu-

lus. A delay can be used to ensure that only a sustained stimulus

activates expression of C. This circuit can thus filter out the

propagation of noise to C that may occur due to the random, brief

activation of A. In contrast, if either activation of A or B is sufficient

for the activation of C (an ‘‘OR gate’’), the FFL can induce a delay

following the removal of stimulus but no delay following addition of

a stimulus (Alon 2007). The incoherent FFL can be used to generate

a transient pulse of expression (Kuttykrishnan et al. 2010). Such

a circuit is used in response to glucose in S. cerevisiae: Following

stimulation with glucose, an incoherent FFL involving Rgt1 and

Mig2 transcriptional repressors generates a brief pulse of expres-

sion of the glucose transporter Hxt4. Rgt1 suppresses transcription

of both MIG2 and HXT4; Mig2, in turn, also suppresses expression

of the HXT4. Interestingly, the same circuit regulates expression of

both HXT2 and HXT3, neither of which displays a pulse in gene

expression following glucose stimulation. In this instance, the ef-

ficiency with which Rgt1 and Mig2 repress expression determines

whether or not a pulse in expression will result from this circuit

(Kuttykrishnan et al. 2010). This raises an important point, that

although certain network motifs are capable of generating a spe-

cific behavior, they do not necessarily always do so because they

are also subject to input from elsewhere in the network. Examples

of all possible FFLs have been identified in a range of organisms.

Interestingly, gene expression simulations suggest that the most

abundant coherent FFLs display the lowest noise, while the most

abundant incoherent FFLs display the highest noise (Ghosh et al.

2005). These observations highlight the importance of FFLs, and

likely other network motifs, in the generation and management of

gene expression noise.

Surprisingly, FBLs are rare in pure transcriptional networks

(Milo et al. 2002; Shen-Orr et al. 2002). By mapping a genome-scale

and integrated C. elegans microRNA GRN, however, we found

a composite FBL of reciprocal regulation between TFs and micro-

RNAs (Martinez et al. 2008). This type of FBL is a network motif

because it is overrepresented in the experimentally mapped net-

work, compared to computationally randomized networks. This

suggests that this type of circuitry may provide a selective advan-

tage. Because microRNAs repress target gene expression, there are

only two types of TF–microRNA FBLs: one in which the TF acti-

vates the microRNA (single-negative FBL) and one in which it re-

presses the microRNA (double-negative FBL). In double-negative

FBLs, only one of the two nodes is ‘‘on,’’ and thus such FBLs can

function as toggle switches that create bistable states, depending

on additional inputs. The activity of single-negative FBLs can result

in oscillatory behavior or in stable coexpression of both nodes.

An example of a GRN circuit that uses both autoregulation

and positive and negative FBLs is entry into and exit from com-

petence in Bacillus subtilis (Fig. 5). Competence is the ability to take

up DNA from the environment and occurs transiently in a small

number of cells in the population. It relies on stochastic gene ex-

pression of ComK, a TF that is necessary and sufficient to induce

competence (Suel et al. 2006). ComK promotes its own expression,

but is negatively regulated by a protease complex, CLP–ClpC–

MecA. ComK inhibits ComS, which competitively inhibits degra-

dation of ComK by ClpC–MecA. The positive autoregulatory loop

of ComK generates stochastic gene expression that, after reaching

threshold levels, promotes entry into the competence state. Fol-

lowing the buildup of ComK levels, the negative feedback loop

that occurs through ComS and CLP-ClpC-MecA promotes ComK

degradation and thus decreases ComK levels and promotes exit

from competence. This combination of motifs generates stochastic

ComK expression that results in cycling between these two states.

In the future, individual network motifs that occur in GRNs

may allow us to predict the behavior of the target genes with re-

spect to noise generation or noise control. Knowledge of the

concentration, expression pattern, and activity of the TFs involved

will be of crucial importance. It will also be critical to understand

the local network context in which different FFLs and FBLs oper-

ate: For instance, when FFLs or FBLs can be affected by many other

nodes, they could confer a variety of gene expression outputs,

potentially under different conditions.

Adaptation
Adaptation occurs widely in biology and can be defined as ad-

justing the state of a system following continued exposure to

physiological, environmental, or pathological signal (Fig. 1). Either

a new state can be acquired, or in the case of perfect adaptation, the

system returns precisely to its original state. A clear example of

adaptation is the neuronal response to stimuli. This has been ex-

tensively studied with respect to odor response. Following an ini-

tial stimulus, there is a rapid increase in the frequency of nerve

impulses in sensory neurons. The frequency of these impulses then

decreases until they reach a plateau level. Although the initial

stimulus is still present, the frequency of nerve impulses has re-

turned to a level similar to the unstimulated state (for review, see

Kaissling et al. 1987). A recent study by Ma et al. (2009) investigated

Figure 5. Entry and exit from competence relies on stochastic gene
expression induced by a circuit composed of ComK, ComS, and the
protease complex MecA ClpP/C. (A) ComK is necessary and sufficient to
induce competence in bacteria. The ComK protein is degraded by the
MecA ClpP/C protease complex. ComK negatively regulates the expres-
sion of ComS, which, in turn, negatively regulates the protease complex
by competing for binding with ComK. (B) The entire circuit cycles over
time, resulting in changing levels of ComK, and cycling between com-
petent and vegetative states. (C ) The changes that occur over time to
network components that result in entry into the competence state.
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different three-node network structures that could accommodate

biochemical adaptation. They focused on enzymatic networks and

found, surprisingly, that only two core topologies support adap-

tation: one that includes negative FBL with a buffering node, and

another that includes an incoherent FFL with a ‘‘proportioner

node’’ that is activated in proportion to the most upstream node in

the FFL. Their observations suggest that there are clear design

principles that enable adaptation in enzymatic networks and that

such designs are highly robust because they may provide a selec-

tive advantage. Future studies will show whether similar topologies

are required for adaptation in GRNs and how such small network

circuits behave in the context of larger, system-scale networks.

GRN evolution
Non-coding regions evolve much faster than coding regions,

which can result in the loss or gain of TF binding sites. Changes in

TF binding can result in alterations of gene expression, which can

drive speciation. TF binding sites can differ greatly between spe-

cies, even in genes and pathways that are highly conserved. For

example, CEBPA and HNF4A binding in livers of human, mouse,

and dog revealed that binding was shared only 10%–22% of the

time between any two of these mammals (Schmidt et al. 2010).

Differences in TF binding have also been observed between dif-

ferent individuals of the same species. Analysis of NFKB and Pol II

binding in human lymphoblastoid cell lines revealed a significant

difference in binding sites between individuals. One-quarter of

NFKB binding and 7.5% of Pol II binding differed between in-

dividuals (Kasowski et al. 2010). Considering that only a single

regulatory TF was examined in this study, the generality of this

observation is not yet clear. The extent of variability in binding for

essential TFs during development or in other deterministic pro-

cesses remains an open question. It could be that some TFs func-

tioning throughout the lifetime of the organism are divergent in

binding, whereas others are not. In the future, more comprehen-

sive studies, both TF-centered and gene-centered, will reveal the

distribution of differential TF binding between and within species.

Finally, regulation of a gene by a TF may be conserved between

species or individuals, but the physical binding may occur at

a different genomic location, either within the same cis-regulatory

module, or elsewhere. Indeed, a comparison of similar genomic

regions bound by HNF4A between mouse and human revealed

that the binding sites for these TFs do not precisely align in two-

thirds of the cases examined (Odom et al. 2007). Altogether, these

analyses demonstrate the rapid evolution of regulatory regions,

and the consequences of this on TF binding.

As GRNs evolve, regulatory interactions are lost and gained.

These changes affect not only the edges that are created or lost but

also often cause larger changes in network dynamics that affect the

expression of additional genes. Landry et al. (2007) measured the

effects of nonlethal spontaneous mutations on global gene ex-

pression in yeast. Specifically, they measured gene expression in

four separate populations that were generated by serially trans-

ferring random colonies over 4000 generations. Gene expression

that is more sensitive to noise is also more sensitive to mutation.

Genes with the greatest changes in expression tended to be un-

derrepresented in key biological processes such as the cell cycle,

cell growth, maintenance, and transcription, which suggests that

robust and stable gene expression is favored and selected for in

these processes (Landry et al. 2007).

Studies comparing a common laboratory strain and a wild

isolate of S. cerevisiae revealed a total of 1528 genes, about one-

quarter of all yeast genes, that showed significant differences in

their expression, and 62 genes differed by greater than eightfold.

After mating these two strains, haploid segregants were isolated for

gene expression profiling. Analysis of gene expression levels

combined with linkage analysis demonstrated that the expression

level of most genes is affected by multiple loci. In fact, the in-

vestigators estimated that at least five loci affect each gene. In-

terestingly, a high rate of cis-acting alleles but a relatively small

number of trans-acting alleles affected such variation in gene ex-

pression (Brem et al. 2002). Similarly, in a study using hybrids of

S. cerevisiae and Saccharomyces paradoxus, it was found that under

most conditions, differences in gene expression between the two

species could be attributed to cis-effects (Tirosh et al. 2009). This

indicates that most variation between similar species or strains

occurs in regulatory DNA sequences, rather than in protein regu-

lators such as TFs. Interestingly, however, in the presence of glyc-

erol, in which S. cerevisiae grows poorly, the number of differences

due to trans-effects was higher (Tirosh et al. 2009). The analysis

of gene expression profiles under a number of conditions led to

the conclusion that trans-effects are more condition-dependent,

whereas cis-effects are more condition-independent. Condition-

dependent effects could result from changes in the activity of

a sensory TF between the two species, which is then transmitted to

its downstream target genes. Mutations in regulatory TFs that re-

spond to particular environmental or physiological conditions are

probably less likely to affect the viability of the organism under

optimal conditions, whereas mutations in TFs that control genes

involved in essential processes are likely less tolerated, and, thus

less frequently observed.

In a robust system, it is likely that mutations in cis-regulatory

sequences can be tolerated because they can be buffered by the

different redundancy mechanisms discussed above. However, it

could be that such mutations are unmasked under detrimental

environmental conditions or if multiple mutations perturb the

same GRN module or motif. The rapid evolution of non-coding

DNA sequences is likely more easily tolerated because non-coding

mutations can frequently occur without dramatically altering gene

function. Most TFs can bind a variety of highly similar DNA se-

quences (Badis et al. 2009; Grove et al. 2009), and, therefore,

a single change in a TF binding site may not result in a complete

loss of TF binding. Trichome patterning in different species of

Drosophila provides an example of the evolution of regulatory re-

gions, because it differs greatly in Drosophila sechellia compared

to Drosophila melanogaster. Body segments that are covered by tri-

chomes in D. melanogaster are not in D. sechellia, and this correlates

with the expression of the trichome-regulating gene svb (as dis-

cussed above). These differences are the result of individual

changes in three enhancers. This suggests that the evolution of svb

expression was the result of multiple small changes rather than

a more drastic mutation resulting in the elimination of an entire

enhancer region (McGregor et al. 2007). Interestingly, shadow

enhancers are located relatively far from their target gene, at least

in the few cases examined, whereas the primary enhancer is lo-

cated close to the gene. This organization may permit genetic

changes in promoter regions that drive evolution or speciation,

while maintaining at least some functionality through the shadow

enhancer, or vice versa.

Finally, changes in TF binding sites may change stochasticity

in downstream target gene expression. Either for transcriptional

activators or repressors, a mutation that results in a lower binding

affinity could result in more noise in the expression of the target

(see above). Conversely, when a binding site becomes closer to the
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optimal TF motif, robust binding may be favored, which can result

in more robust expression of the downstream target gene. For some

target genes, such changes in noise can be beneficial, e.g., stress

genes; whereas it would be detrimental to genes involved in es-

sential processes such as development and reproduction.

Future challenges
Knowledge regarding the relationships between the organization

of GRNs and stochastic or robust gene expression and phenotypic

outputs is only just beginning to emerge. In the future, it will be

important to interrogate increasingly comprehensive GRNs, in

a broad variety of species and under many different conditions, to

gain insights into the differential GRN topologies and circuits that

drive specific outputs. In addition, it will be important to integrate

different types of networks with GRNs, including protein–protein

interaction, microRNA, RNA binding protein, and metabolic and

signaling networks.

Variance in binding between different types of TFs in different

species or within species has only been studied for a handful of

TFs. In the future, more TFs will be examined using various TF-

centered methods and preferably under different developmental

or physiological conditions. Additionally, gene-centered methods

need to be used to shed light on the collection of TFs that con-

tribute to the regulation of homologous or orthologous genes. It is

likely that the degree of variance in regulation differs greatly from

one TF or gene to another.

Throughout development there is a theme of conserved

building blocks that can be combined in different ways to produce

different outcomes. Indeed, the same signaling pathways can be

used for very different purposes within an organism, but also be-

tween different species. For instance, Ras signaling is used in vulval

development and germline function in C. elegans and in eye de-

velopment in the fly, and mutations in the Ras pathway can result

in cancer in humans (Han 1992). It is likely that networks are

coopted for different functions as well. At the network level, an

exciting possibility is that there are ‘‘core networks’’ that are con-

served between related species, with additional differences in

nodes and edges contributing to species-specific adaptations. Al-

ternatively, some networks may be highly conserved between

species, but the levels of expression or noise of individual nodes

may be vastly different, resulting in different outcomes in different

species using the same overall network connections. It is in-

teresting to speculate that changes in robustness or stochasticity in

a network add to this diversity and could essentially generate two

very different network dynamics and as a consequence different

outputs. The incorporation of different models for TF action, such

as Boolean or thermodynamic models, will help to gain further

insights into how TF concentration and activity affect GRN states.

It will also be essential to incorporate GRN dynamics, for instance,

by correlating GRN states, expression outputs, and phenotypes in

single cells.

Finally, it will be important not only to study networks that

pertain to development or physiology, but also to address the

network perturbations that may cause or correlate with disease. It is

likely that changes in GRN robustness could play a part in human

disease. For instance, when robustness is favored, the introduction

of stochasticity can be detrimental. Increased transcriptional noise

has been observed in aging cardiomyocytes, leading researchers to

hypothesize that cell death resulting from DNA damage in the

aging heart may in part be due to an increase in stochasticity in

gene expression (Bahar et al. 2006). Many diseases show linkage to

multiple loci; others have mutations identified in a number of

different genes in different individuals. These findings indicate

that the genes that are involved in these diseases are connected in

a network and that the disease state is a result of perturbations in

that network. Identification of these networks and a better un-

derstanding of their dynamics may allow the identification of key

nodes or edges that could be targets for therapeutic intervention.
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