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Abstract

Principal stratification has recently become a popular tool to address certain causal inference
questions, particularly in dealing with post-randomization factors in randomized trials. Here, we
analyze the conceptual basis for this framework and invite response to clarify the value of
principal stratification in estimating causal effects of interest.
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1 Introduction

The past few years have seen a substantial number of studies claiming to be using

“The Principal Strata Approach” or “A Principal Strata Framework,” a term coined

by Frangakis and Rubin (2002). An examination of these studies reveals that they

fall into four distinct categories, each subscribing to a different interpretation of

“principal strata (PS)” and each making different assumptions and claims. The

purpose of this note is to clarify this distinction and to identify areas of application

where these interpretations may be useful.

2 Notation and preliminaries

We begin with the usual potential-outcome notation, Yx(u), which, for every unit

u, defines a functional relationship

y = f (x,u) (1)

between a treatment variable X and an outcome variable Y . Here y and x stand

for specific values taken by Y and X , respectively, and u may stand either for the

identity of a unit (e.g., a person’s name) or, more functionally, for the set of unit-

specific characteristics that are deemed relevant to the relation considered (Pearl,

2000, p. 94).

For any function f , the population of units can be partitioned into a set of

homogeneously responding classes, called “equivalence classes” (Pearl, 2000, p.

264), such that all units in a given class respond in the same way to variations

in X . For example, if X and Y are binary, then, for any given u, the relationship

between X and Y must be one of four functions:

f1 : y = 0, f2 : y = x,

f3 : y 6= x, f4 : y = 1. (2)

Therefore, as u varies along its domain, regardless of how complex the variation,

the only effect it can have is to switch the relationship between X and Y among

these four functions. This partitions the domain of U into four regions, as shown

in Fig. 1, where each region contains those points u that induce the same function.

If u is represented by a multi dimensional vector of unit-specific character-

istics, we can regard the class membership of u as a lower dimension variable,

R which, together with X , determines the value of Y . Pearl (1993) and Balke
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Figure 1: The canonical partition of U into four equivalence classes, each inducing

a distinct functional mapping from X to Y for any given function y = f (x,u).

and Pearl (1994a,b) called this variable “response variable” while Heckerman and

Shachter (1995) named it a “mapping variable,” (see Lauritzen, 2004).

The relation of this partition to the potential-outcome paradigm (Neyman,

1923, Rubin, 1974) is simple. Each equivalence class corresponds to an inter-

section of two potential outcomes (assuming binary variables), as shown in Table

1. The types described in Table 1 are often given problem-specific names, for

Response Functional Potential outcome

Type Description Description

Type-1 f (x,u) = 0 Y0(u) = 0 and Y1(u) = 0

Type-2 f (x,u) = x Y0(u) = 0 and Y1(u) = 1

Type-3 f (x,u) = 1− x Y0(u) = 1 and Y1(u) = 0

Type-4 f (x,u) = 1 Y0(u) = 1 and Y1(u) = 1

Table 1:

example, 1 - doomed, 2 - responders, 3 - hurt, 4 - always healthy (see Heckerman

and Shachter (1995) or Imbens and Rubin (1997)).

3 Applications

The idea of characterizing units by their response function, rather than their base-

line features has several advantages, stemming primarily from the parsimony achieved

by the former. Whereas each unit may have thousands of features, standing in un-

known relationships to X and Y , the number of functions that those features can

induce is limited by the cardinality of X and Y , and each such function defines the

response of Y unequivocally.
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Robins and Greenland were the first to capitalize on this advantage and have

used classification by response type as a cornerstone in many of their works, in-

cluding confounding (1986) attribution (1988, 1989a,b) and effect decomposition

(1992).

Pearl (1993) and Balke and Pearl (1994a,b) formulated response types as vari-

ables in a graph, and used the low dimensionality (16) of two response variables to

derive tight bounds on treatment effects under condition of noncompliance (Balke

and Pearl, 1997).

Chickering and Pearl (1997) as well as Imbens and Rubin (1997) used the

parsimony of response type classification in a Bayesian framework, to obtain pos-

terior distributions of causal effects in noncompliance settings. It is obviously

easier to assign meaningful priors to a 16-dimensional polytope than to a space of

the many features that characterize each unit (see Pearl, 2009a, Ch. 8).

Baker and Lindeman (1994) and Imbens and Angrist (1994) introduced a new

element into this analysis. Realizing that the population averaged treatment ef-

fect (ATE) is not identifiable in experiments marred by noncompliance, they have

shifted attention to a specific response type (i.e., compliers) for which the causal

effect was identifiable, and presented the latter as an approximation for ATE. This

came to be known as LATE (Local Average Treatment Effect) and has spawned

a rich literature with many variants (Angrist, Imbens, and Rubin, 1996, Heckman

and Vytlacil, 2001, Heckman, 2005) all focusing on a specific stratum or a subset

of strata for which the causal effect could be identified under various combinations

of assumptions and designs. However, most authors in this category do not state

explicitly whether their focus on a specific stratum is motivated by mathemati-

cal convenience, mathematical necessity (to achieve identification) or a genuine

interest in the stratum under analysis.

Though membership in response-type classes is generally not identifiable and

is vulnerable to unpredictable changes,1 such membership may occasionally be

at the center of a research question. For example, the effect of treatment on sub-

jects who would have survived regardless of treatment may become the center of

interest in the context of censorship by death (Robins, 1986). Likewise, survival

in cancer cases caused by hormone replacement therapy need be distinguished

from survival in cancer cases caused by other factors (Sjölander, Humphreys, and

Vansteelandt, 2010). In such applications, expressions of the form

P(Yx = y|Zx = z,Zx′ = z′) (3)

1For example, those who comply in the study may or may not comply under field conditions,

where incentives to receive treatment are different.
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emerge organically as the appropriate research questions, where Z is some post-

treatment variable, and the condition (Zx = z,Zx′ = z′) specifies the response-type

stratum of interest.

4 The Frangakis-Rubin Framework

Thus far, we discussed principal strata as a classification of units into equiva-

lence classes that arises organically from the logic of counterfactuals and the

inference challenges posed by the study. A different perspective was proposed

in the paper of Frangakis and Rubin (2002) who attached the label “principal

strata” to this classification. Frangakis and Rubin viewed the presence of a stra-

tum (Zx = z,Zx′ = z′) behind the conditioning bar (Eq. (3)), as a unifying con-

ceptual principle, deserving of the title “framework,” because it seems to be cor-

recting for variations in Z without the bias produced by standard adjustment for

post-treatment variables. In their words: “We are aware of no previous work that

has linked such recent approaches for noncompliance to the more general class of

problems with post-treatment variables.” The approach that subsequently emerged

from this perspective, and came to be known as the “principal strata framework”

presumes that most if not all problems involving post-treatment variables can, and

should be framed in terms of strata-specific effects.

We have seen in Section 3, however, that the class of problems involving post-

treatment variables is not monolithic. In some of those problems (e.g., noncompli-

ance), post-treatment variables serve as useful information sources for bounding

or approximating population-wide questions, while in others, they define the re-

search question itself. More importantly, while some of those problems can be

solved by conditioning on principal strata, others cannot. In those latter cases,

constraining solutions to be conditioned on strata, as in (3), may have unintended

and grossly undesirable consequences, as we shall see in the sequel.

4.1 The principal strata direct effect (PSDE)

A typical example where definitions based on principal stratification turned out

inadequate is the problem of mediation, which Rubin (2004, 2005) tried to solve

using an estimand called “Principal Stratification Direct Effect” (PSDE). In me-

diation analysis, we seek to measure the extent to which the effect of X on Y is

mediated by a third variable, Z, called “mediator.” Knowing the direct (unmedi-

ated) effect permits us to assess how effective future interventions would be which
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aim to modify, weaken or enhance specific subprocesses along various pathways

from X to Y . For example, knowing the extent to which sex discrimination affects

hiring practices would help us assess whether efforts to eliminate educational dis-

parities have the potential of reducing earning disparity between men and women.

Whereas causal notions of “direct effect” (Robins and Greenland, 1992, Pearl,

2001) measure the effects that would be transmitted in the population with all

mediating paths (hypothetically) deactivated, the PSDE is defined as the effects

transmitted in those units only for whom mediating paths happened to be deac-

tivated in the study. This seemingly mild difference in definition leads to un-

intended results that stand contrary to common usage of direct effects (Robins,

Rotnitzky, and Vansteelandt, 2007, Robins, Richardson, and Spirtes, 2009, Van-

derWeele, 2008), for it excludes from the analysis all individuals who are both

directly and indirectly affected by the causal variable X (Pearl, 2009b). In linear

models, as a striking example, a direct effect will be flatly undefined, unless the

X → Z coefficient is zero. In some other cases, the direct effect of the treatment

will be deemed to be nil if a small subpopulation exists for which treatment has no

effect on both the outcome and the mediator (Pearl, 2011). These definitional in-

adequacies point to a fundamental clash between the Principal Strata Framework

and the very notion of mediation.

Indeed, taking a “principal strata” perspective, Rubin found the concept of

mediation to be “ill-defined.” In his words: “The general theme here is that the

concepts of direct and indirect causal effects are generally ill-defined and often

more deceptive than helpful to clear statistical thinking in real, as opposed to ar-

tificial problems” (Rubin, 2004). Conversely, attempts to define and understand

mediation using the notion of “principal-strata direct effect” have concluded that

“it is not always clear that knowing about the presence of principal stratification

effects will be of particular use” (VanderWeele, 2008). It is now becoming widely

recognized that the natural direct and indirect effects formulated in Robins and

Greenland (1992) and Pearl (2001) are of greater interest, both for the purposes

of making treatment decisions and for the purposes of explanation and identi-

fying causal mechanisms (Joffe, Small, and Hsu, 2007, Albert and Nelson, 2011,

Mortensen, Diderichsen, Smith, and Andersen, 2009, Imai, Keele, and Yamamoto,

2010, Robins et al., 2007, 2009, Pearl, 2009a, Petersen, Sinisi, and van der Laan,

2006, Hafeman and Schwartz, 2009, Kaufman, 2010, Sjölander, 2009).

This limitation of PSDE stems not from the notion of “principal-strata” per

se, which is merely a benign classification of units into homogeneously respond-

ing classes. Rather, the limitation stems from adhering to an orthodox philosophy

which prohibits one from regarding a mediator as a cause unless it is manipulable.
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This prohibition prevents us from defining the direct effect as it is commonly used

in decision making and scientific discourse – an effect transmitted with all me-

diating paths “deactivated” (Pearl, 2001, Avin, Shpitser, and Pearl, 2005, Albert

and Nelson, 2011), and forces us to use statistical conditionalization (on strata) in-

stead. Path deactivation requires counterfactual constructs in which the mediator

acts as an antecedent, written Yz, regardless of whether it is physically manipula-

ble. After all, if we aim to uncover causal mechanisms, why should nature’s path-

ways depend on whether we have the technology to manipulate one variable or

another. The whole philosophy of extending the potential outcome analysis from

experimental to observational studies (Rubin, 1974) rests on substituting physi-

cal manipulations with reasonable assumptions about how treatment variables are

naturally chosen by the so called “treatment assignment mechanism.” Mediating

variables are equally deserving of such substitution.

4.2 Principal surrogacy

A second area where a PS-restricted definition falls short of expectation is “surro-

gate endpoint” (Frangakis and Rubin, 2002). At its core, the problem concerns a

randomized trial where one seeks “endpoint surrogate,” namely, a variable Z that

would allow good predictability of outcome for both treatment and control (El-

lenberg and Hamilton, 1989). More precisely, “knowing the effect of treatment

on the surrogate allows prediction of the effect of treatment on the more clinically

relevant outcome” (Joffe and Green, 2009).

To meet this requirement, Frangakis and Rubin offered a definition called

“principal surrogacy” which requires that causal effects of X on Y may exist if

and only if causal effects of X on Z exist (see Joffe and Green (2009)). Again,

their definition rests solely on what transpires in the study, where data is available

on both the surrogate (Z) and the endpoint (Y ), and does not require good pre-

dictions under the new conditions created when data on the surrogate alone are

available.2

Pearl and Bareinboim (2011) present examples where a post-treatment vari-

able Z passes the “principal surrogacy” test and yet it is useless as a predictor

under the new conditions. Conversely, Z may be a perfect surrogate (i.e., a robust

predictor of effects) and fail the “principal surrogacy” test. In short, a fundamen-

2Note that if conditions remain unaltered, the surrogacy problem is solved trivially by corre-

lation. Therefore, no formal definition of surrogacy is complete without making change in condi-

tions an integral part of the definition.
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tal disconnect exists between the notion of “surrogate endpoint,” which requires

robustness against future interventions affecting Z and the class of definitions that

the principal strata framework can articulate, given its resistance to conceptualiz-

ing such interventions.3

5 Conclusions

The term “principal strata (PS)” is currently used to connote four different inter-

pretations

1. PS as a partition of units by response type,

2. PS as an approximation to research questions concerning population aver-

ages (e.g., bounds and LATE analysis under noncompliance),

3. PS as a genuine focus of a research question (e.g., censorship by death),

4. PS as an intellectual restriction that confines its analysis to the assessment

of strata-specific effects (see Addendum, p. 13).

My purpose in writing this note is to invite investigators using the PS frame-

work to clarify, to their readers as well as to themselves, what role they envision

this framework to play in their analysis, and how it captures the problem they truly

care about.4

I have no reservation regarding interpretations 1-3, though a clear distinction

between the three would be a healthy addition to the principal stratification litera-

ture. I have strong reservation though regarding the 4th; frameworks should serve,

not alter research questions.

The popularization of Frangakis and Rubin “Principal Strata Framework” has

had a net positive effect on causal research; it attracted researchers to the lan-

guage of counterfactuals and familiarized them with its derivational power. At

the same time, it has created the impression that conditioning on strata somehow

3The resistance, as in the case of mediation, arises from the prohibition on writing expressions

containing the term Yz, in which Z acts as an counterfactual antecedent.
4I purposely refrain from discussing the issue of identification, namely, the assumptions needed

for estimating principal strata effects in observational studies. Such issues tend to conflate the

more fundamental problems of definition and interpretation which should take priority in method-

ological discussions. Joffe and Green (2009) compare identification conditions for both principal

surrogacy and mediation-based surrogacy.
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bestows legitimacy on one’s results and thus exonerates one from specifying re-

search questions and carefully examining whether conditioning on strata properly

answers those questions. It has further encouraged researchers to abandon policy-

relevant questions in favor of a framework that restricts those questions from being

asked, let alone answered.

I hope by bringing these observations up for discussion, a greater clarity will

emerge as to the goals, tools and soundness of causal inference methodologies.

Addendum – Questions, Answers, Discussions

Question to Author

You state that you are concerned that individuals might be using principal stratifi-

cation ‘as an intellectual restriction that confines its analysis to the assessment of

strata-specific effects.’ Can you provide any examples in the literature where you

felt that researchers might be using principal stratification in this manner?

Author’s Reply

In retrospect, I feel that way about ALL PS papers that I have read, with the

exception of ONE - Sjölander et al. (2010) on Hormone Replacement Therapy,

which explicitly justifies why one would be interested in stratum-specific effects.

To substantiate the basis of my perception I cite the lead articles by Rubin

(2004, 2005) where the PSDE is motivated and introduced. What if not an “intel-

lectual restriction” could spawn a definition of “Direct Effect” that excludes from

the analysis all units for whom X has both direct and indirect effect on Y ?

According to Rubin (2005), the problem was originally posed by Fisher (1935)

and Cochran (1957) in the context of agricultural experiments. Forgiving their

mistaken solutions for a moment (they had no graphs for guidance), we find that

both Fisher and Cochran were very clear about what their research questions were:

To estimate the effect of X on Y after allowance is made for the variations in Y

DIRECTLY DUE TO variations in Z itself.

The phrase “due to variations in Z” clearly identifies Z as a secondary CAUSE

of Y , for which allowance needed to be made.

What, if not an “intellectual restriction” could compel us to change the re-

search question from its original intent and replace it with another, in which Z is

NOT treated as a secondary cause of Y , but only as a variable affected by X . This

is, in essence, a restriction against writing down the counterfactual Yxz.
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Frangakis and Rubin (2002) state explicitly that they refrain from using “a pri-

ori counterfactuals,” namely Yz. In their words: “This [Robins and Greenland’s]

framework with its a priori counterfactual estimands, is not compatible with the

studies we consider, which do not directly control the post-treatment variable (p.

23).” This resolution to avoid counterfactuals that are not directly controlled in

the study is a harsh and unjustifiable “intellectual restriction,” especially when the

problem statement calls for an estimand involving Yxz, and especially when re-

fraining from considering Yxz leads to unintended conclusions (e.g., that the direct

effect of a grandfather’s income on a child education can only be defined in those

families where that income did not affect the father’s education.)

One should note that in the agricultural experiments considered by Fisher and

Cochran, the post-treatment variables (e.g., plant-density or eelworms) were not

controlled either, yet this did not prevent Fisher and Cochran from asking a rea-

sonable, policy relevant question: To what extent do these post-treatment variables

affect the outcome?

But your question highlights an important observation: most PS-authors do

not view PS as a restriction. True; they actually view it as a liberating intellectual

license; a license to assess quantities with a halo of legitimacy, without telling us

why these quantities are the ones that the author cares about, or how relevant they

are for policy questions or scientific understanding.

This is the power of the word “framework”; working within a “framework”

assures an investigator that someone would surely find a reason to appreciate the

quantity estimated, as long as it fits the mold of the “framework.”

But how do we alert researchers to the possibility that they might be solv-

ing the wrong problem? One way is to present them with weird conclusions that

emerge from their method, and ask them: “Do you really stand behind such con-

clusions?” This is what I tried to do with “PS direct effects,” and “principal sur-

rogacy.” I hope the examples illuminate what the PS framework computes.
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