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Multiple MAP kinase pathways share components yet initiate
distinct biological processes. Signaling fidelity can be main-
tained by scaffold proteins and restriction of signaling com-
plexes to discreet subcellular locations. For example, the yeast
MAP kinase scaffold Ste5 binds to phospholipids produced at
the plasma membrane and promotes selective MAP kinase acti-
vation. Here we show that Pik1, a phosphatidylinositol 4-kinase
that localizes primarily to the Golgi, also regulates MAP kinase
specificity but does so independently of Ste5. Pikl is required
for full activation of the MAP kinases Fus3 and Hogl and
represses activation of Kss1. Further, we show by genetic epis-
tasis analysis that Pik1 likely regulates Stell and Ste50, compo-
nents shared by all three MAP kinase pathways, through their
interaction with the scaffold protein Opy2. These findings
reveal a new regulator of signaling specificity functioning at
endomembranes rather than at the plasma membrane.

Cells growing in complex environments are exposed to mul-
tiple chemical and physical stimuli. Many external stimuli acti-
vate MAP kinase pathways to elicit intracellular biological pro-
cesses. In some cases, a single stimulus will activate multiple
MAP kinases, yet signaling specificity is maintained (1). How
cells regulate the activation of different MAP kinase path-
ways to invoke the appropriate biological response is not
well understood.

The yeast Saccharomyces cerevisiae provides a versatile
model for understanding the coordinated regulation of multi-
ple MAP kinases. In yeast, three well characterized MAP kinase
pathways respond to different external stimuli to initiate dis-
tinct and sometimes mutually exclusive biological processes
(Fig. 1A) (2). First, mating pheromones activate a pathway that
induces cell cycle arrest, polarized cell expansion, and the
fusion of haploid a- and a-type cells to form an a/« diploid. This
process is mediated by a heterotrimeric G protein and a protein
kinase cascade comprised of Ste20, Stell, Ste7, and the MAP
kinase Fus3 (3). Second, nutrient deprivation results in the acti-
vation of the same kinase components, with the exception of
the MAP kinase Kss1 (4, 5), and induces filamentous growth as
well as increased adherence and invasion into the substratum
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(6). Third, osmotic stress activates the MAP kinase Hogl in the
high osmolarity glycerol (HOG)? response pathway (7) and
induces glycerol production to counterbalance osmotic pres-
sure and enable cell survival (8, 9).

Despite profound differences in stimulus and response, dif-
ferent MAP kinase pathways will often share signaling compo-
nents. For example, the MAP kinase kinase kinase Stel1 and its
adapter protein Ste50 are shared by the mating, filamentous
growth, and HOG pathways (10 —12). Ste7 is shared by the mat-
ing and filamentous pathways (2). Yet remarkably little pathway
cross-talk is observed. In the pheromone response pathway,
MAP kinase specificity is maintained by the scaffold protein
Ste5, which binds Stell, Ste7, and Fus3 (13). Upon pheromone
stimulation, Ste5 translocates to the plasma membrane by
binding to G protein By subunits (14) and facilitates signal
propagation through Fus3 but not Kss1 or Hogl (15). In the
HOG pathway, specificity is maintained by another scaffold
protein, Pbs2, which also functions as the kinase that activates
Hogl. However, despite the existence of these scaffolds, Kss1 is
still partially activated in response to pheromone (16, 17) and
osmotic stress (18). Therefore, scaffolds that associate with
Fus3 or Hogl are not sufficient to prevent activation of Kss1.
Additional mechanisms are likely to be required to maintain
proper balance between Fus3, Hogl, and Kss1 activation.

Previous reports demonstrated a role for phospholipids in
maintaining signaling fidelity. For example, deletion of the
PtdIns 3-kinase Vps34 alters Fus3 activation but not Kss1 (19),
indicating that phosphorylated phosphoinositides may play an
important role in maintaining MAP kinase specificity. Ste5 is
likewise required for Fus3 activation. Ste5 binds PtdIns-4-P and
PtdIns-4,5-P, in vitro (20, 21), and Ste5 translocation to the
plasma membrane in vivo requires the PtdIns 4-kinase Stt4 and
the PtdIns-4-P 5-kinase Mss4 (21, 22). Although both Stt4 and
Mss4 localize primarily to the plasma membrane (23, 24),
Vps34 localizes to endosomes (25, 26). Together these findings
show that phospholipids play an important role in maintaining
MAP kinase specificity and that these phospholipids do not
necessarily originate at the plasma membrane.

In a recent screen of essential genes we identified regulators
of pheromone signaling, including Stt4, as well as a second
PtdIns 4-kinase, Pikl (27). As noted above, Stt4 promotes the
activation of Fus3. Here we show that Pik1 regulates the activity

2 The abbreviations used are: HOG, high osmolarity glycerol; PtdIns, phospha-
tidylinositol; G6PDH, glucose-6-phosphate dehydrogenase; ts, tempera-
ture-sensitive; TetO,, tetracycline-repressible promoter; PH, pleckstrin
homology; C2, conserved region 2; CTM, C-terminal transmembrane
domain.
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of three different MAP kinases in yeast. Although Pikl
enhances Fus3 and Hogl activation, it inhibits Kss1 activation.
We demonstrate further that Pik1 regulates MAP kinase signal-
ing through a mechanism distinct from that of Stt4. Although
Stt4 acts by promoting Ste5 translocation to the plasma
membrane (22), Pik1 exerts its effects through Stell and the
adapter protein Ste50 and requires the scaffold protein
Opy2. These findings reveal a novel role for PtdIns-4-P at
endomembranes in maintaining specificity across multiple
MAP kinase pathways.

EXPERIMENTAL PROCEDURES

Strains, Plasmids, and Growth Conditions—Standard proce-
dures for the growth, maintenance, and transformation of yeast
and bacteria and for the manipulation of DNA were used
throughout. Cells were grown in selective medium containing
2% (w/v) dextrose or galactose to induce gene expression. Yeast
strains used are listed in supplemental Table S1. Plasmids used
are listed in supplemental Table S2. Plasmid pRS313 GAL-
STE5-CTM was created by Sacl and Apal digestion of pGS5-
CTM (14) and ligation into the corresponding sites of pRS313.

The yeast TetO, strains (28) were grown in selective medium
to an Agpo nm Of ~0.8, reinoculated at 1:80 into medium con-
taining doxycycline at a final concentration of 10 pg/ml, and
grown to an Ay, ,,, of ~0.8. To activate the pheromone path-
way, « factor pheromone was added at a final concentration of
3 uM for 30 min unless noted otherwise. To induce osmotic
stress, KCl was added to a final concentration of 0.5 M for 10
min unless noted otherwise. Time courses were halted by the
addition of trichloroacetic acid at a final concentration of 5%.

Cell Extracts and Immunoblotting—Protein extracts were
produced by glass bead lysis in trichloroacetic acid as described
previously (29). Protein extracts were resolved by 12.5% SDS-
PAGE and Coomassie-stained or subjected to immunoblotting
with phospho-p44/42 MAPK antibodies (9101L, Cell Signaling
Technology) at 1:500, Fus3 antibodies (sc-6773, Santa Cruz
Biotechnology, Inc.) at 1:500, phospho-p38 MAPK antibodies
(9211L, Cell Signaling Technology) at 1:500, Hogl antibodies
(sc-6815, Santa Cruz Biotechnology) at 1:500, and glucose-6-
phosphate dehydrogenase (G6PDH) antibodies (A9521, Sigma-
Aldrich) at 1:50,000. Immunoreactive species were visualized
by chemiluminescent detection (PerkinElmer Life Sciences) of
horseradish peroxidase-conjugated antibodies (170-5047 and
170-5046, Bio-Rad). Protein concentration was determined by
detergent-compatible protein assay (500-0112, Bio-Rad). Band
intensity was quantified by scanning densitometry using Image
J (National Institutes of Health). Phospho-Fus3 and phospho-
Kss1 values were normalized to G6PDH loading control, and
phospho-Hog]1 values were normalized to total Hogl.

Transcriptional Reporter Assay—FUSI-LacZ levels were
measured 90 min after treatment with « factor pheromone
using a 3-galactosidase assay and fluorescein di- 3-p-galactopy-
ranoside as described previously (30).

Microscopy—Cells were visualized with differential interfer-
ence contrast and fluorescence microscopy using an Olympus
Fluoview 1000 confocal microscope equipped with a 488-nm
laser (blue argon for GFP). Images were analyzed using Image]
(National Institutes of Health).
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RESULTS

Pikl Is Required for Proper Pheromone Signaling—In a recent
screen to identify essential genes required for proper phero-
mone signaling, we identified two PtdIns 4-kinases, Stt4 and
Pikl. Although Stt4 and Pik1 have the same enzymatic activity,
they are both essential, suggesting they have non-redundant
functions in vivo (31). Furthermore, Stt4 and Pik1 localize to
different parts of the cell: Stt4 at the plasma membrane (23) and
Pik1 at the Golgi and nucleus (32). Given that depleting the cell
of either STT4 or PIKI diminishes pheromone signaling (27),
we reasoned that they might likewise have non-redundant
functions in the pheromone response pathway. Stt4 has a
known role in promoting Ste5 translocation to the plasma
membrane (22). Here we investigate the signaling properties of
Pik1.

Previous research on Pik1 and Stt4 was conducted using tem-
perature-sensitive (Zs) alleles. The use of fs alleles requires
growth at suboptimal temperatures and introduces destabiliz-
ing mutations that could alter enzyme function or protein-pro-
tein interactions. Growth at high temperatures can impair
MAP kinase activity independent of any gene mutations. For
example, Garrenton et al. (22) reported an ~50% reduction in
Fus3 activation in wild-type cells grown at 37 °C versus 26 °C
(see Fig. 5 in 22). Thus, the use of higher growth temperatures
could obscure small differences resulting from partial loss of
function ts alleles.

To best determine the contribution of Pikl in pheromone
signaling and to verify a role for Stt4, we used strains where
the native promoter was replaced with a doxycycline-repressi-
ble (TetO,) promoter. Cells were grown in the presence or
absence of doxycycline to repress gene expression. Pathway
activation was measured using a highly specific pheromone-
inducible promoter (from FUSI) fused to the B-galactosidase
gene. As a control we established that knockdown of PIKI or
treatment with doxycycline alone had no effect on overall pro-
tein expression (supplemental Fig. S1). As shown in Fig. 1,
knockdown expression of TetO,-PIK1 or TetO,-STT4 results
in dampened transcriptional output upon pheromone stimula-
tion. Furthermore, knockdown of PIK1 results in constitutive
activation in the absence of pheromone (27). Thus, knockdown
of PIKI paradoxically yields both a dampened maximum
response and increased basal activity. To confirm the integrity
of these strains, we expressed single-copy plasmids containing
the wild-type gene in the corresponding TetO, strain. For both
PIK1 (Fig. 1B) and STT4 (C), introduction of the absent gene
restored normal pheromone responses.

To determine whether depletion of PIKI results in a subse-
quent loss of intracellular PtdIns 4-P, we visualized PtdIns 4-P
in vivo using three well characterized GFP-tagged biosensors.
First, the pleckstrin homology (PH) domain from phospho-
lipase C8 (PH"“°-GFP) binds specifically to PtdIns-4,5-P, at
the plasma membrane and has been used to monitor plasma
membrane pools of both PtdIns 4-P and PtdIns-4,5-P, (33).
Second, the PH domain from FAPP1 (PH¥A""'-GFP) binds spe-
cifically to PtdIns 4-P at the Golgi (33). Third, the conserved
region 2 domain from bovine lactadherin (C2"*“*-GFP) binds
phosphatidylserine, an abundant component of all membranes
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FIGURE 1. Pik1 is required for proper pheromone signaling. A, Three yeast MAP kinase pathways respond to different stimuli and regulate distinct biological
processes, yet all three pathways share signaling components. The MAP kinase kinase kinase (MAPKKK) Ste11 and the adapter Ste50 regulate all three
pathways. Some pathway components are not shown for the sake of clarity. MAPKKKK, MAP kinase kinase kinase kinase. B, TetO,-PIK1 cells were transformed
with the FUST-lacZ transcription reporter and pRS315-PIK1 (pPIKT) or pRS315 (Vector) and treated with « factor pheromone at the indicated concentration for
90 min. B-galactosidase activity was measured spectrofluorometrically. The inset shows activity in cells not stimulated with « factor. Dox, doxycycline; RFU,
relative fluorescence units. C, TetO,-STT4 cells were transformed with the FUST-lacZ reporter and pRS315-STT4 (pSTT4) or empty vector and treated with «
factor pheromone. Results are the mean = S.E. for three individual experiments each performed in triplicate.

(34), and serves as a reference control. Knockdown of PIKI
resulted in a partial loss of Golgi staining of PHFA?"!-GFP but
no change in localization of PH"“>-GFP or C2'*“*-GFP (sup-
plemental Fig. S24). In contrast, knockdown of STT4 resulted
in a partial loss of plasma membrane staining of PH""“>-GFP
but no change in localization of PHF*""!-GFP or C2"***-GFP
(supplemental Fig. S2B) (23). Thus, partial knockdown of either
PIK1 or STT4 is sufficient to observe a dampened pheromone
response, underscoring the importance of PtdIns 4-P in main-
taining proper pheromone signaling.

Loss of Pikl Induces Elongated Growth—Cells exposed to
pheromone undergo cell cycle arrest and form mating projec-
tions in preparation for mating (“shmoo” morphology). At low
doses of the pheromone, cells continue to divide in a bipolar
fashion and elongate along pheromone gradients in the direc-
tion of a potential mating partner (chemotropic growth) (35—
38). When elongated cells encounter a sufficiently high level of
pheromone, they undergo cell cycle arrest and form shmoos.
Because knockdown of PIKI results in constitutive induction of
pheromone-responsive genes (see Fig. 1, B and inset), we con-
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sidered whether these cells also exhibit an altered morphology.
Differential interference contrast microscopy revealed that
PIKI knockdown results in large and elongated cells, even in the
absence of pheromone (Fig. 24). The observed cellular elonga-
tion was most similar to that of cells exposed to low doses of
pheromone (35-38) and is consistent with our observation that
PIK1 knockdown results in a small but significant increase in
basal activation of the pheromone pathway. Considering that
the MAPK Kss1 induces chemotropic growth at low doses of
pheromone, we asked whether the elongated growth phenotype
was dependent on Kss1. We found that deletion of KSSI from
the TetO,-PIK1 strain restored normal cellular morphology,
suggesting that PIKI knockdown leads to constitutive activa-
tion of Kss1 (Fig. 24). In contrast, knockdown of STT4 had no
effect on cell morphology, suggesting further that Pik1 and Stt4
regulate signaling in fundamentally different ways.

Pikl Regulates Pheromone Signaling Independently of Ste5—
Prior to pheromone stimulation, the MAP kinase scaffold Ste5
is localized diffusely in the nucleus and cytoplasm. After pher-
omone stimulation, Ste5 translocates to the plasma membrane.
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FIGURE 2. Pik1 alters cell morphology but does not alter Ste5 localization. A, differential interference contrast image of TetO,-STT4, TetO,-PIK1, and
TetO,-PIK1 kssTA cells treated with 10 ng/ml doxycycline for 15 h where indicated (+ Dox). B, GFP fluorescence of TetO,-PIK1 cells expressing pRS316-Ste5-
(GFP),5. Cells were treated with doxycycline for 15 h and 3 um « factor pheromone for 90 min. Arrow heads indicate Ste5-GFP localized to shmoo tips.
C, TetO,-STT4 cells treated as in B. Arrows indicate the absence of Ste5-GFP at shmoo tips. D, quantitation of the percentage of shmoos with polarized Ste5-GFP

from B and C (n > 50 shmoos).

In an s#t4* strain, however, Ste5 is no longer localized to the
plasma membrane, most likely because of diminished synthesis
of PtdIns 4-P or PtdIns-4,5-P, (14, 21, 22). Accordingly, Stt4
(like Ste5) is required for full activation of Fus3. Pik1 also gen-
erates PtdIns-4-P and is required for Fus3 activity, yet Pikl is
absent from the plasma membrane. Thus, we investigated
whether Pikl affects Ste5 localization in some other way. To
this end, we expressed STES5-(GFP),, in a TetO.-PIK1 strain
and treated cells with and without « factor pheromone. Con-
sistent with previous data from ts strains, knockdown of PIK1
had no effect on Ste5-GFP localization (Fig. 2, B and D),
whereas knockdown of STT4 resulted in a marked loss of Ste5-
GEFP from the shmoo tip (Fig. 2, Cand D). These results indicate
that Ste5 translocation to the plasma membrane requires Stt4
but is largely unaffected by Pik1.

In addition to binding phospholipids, Ste5 binds several sig-
naling components, including GBvy (14) and all three kinases in
the MAP kinase cascade: Stell, Ste7, and Fus3 (39, 40).
Although available evidence indicates that Stt4 helps to recruit
this scaffolded complex to the plasma membrane, the differ-
ences between Stt4 and Pik1l suggest that Pikl might activate
the complex without contributing to Ste5-membrane associa-
tion. To test this model, we tethered Ste5 to the plasma mem-
brane using a C-terminal transmembrane (CTM) fusion pro-
tein and expressed it under the control of a galactose-inducible
promoter. Ste5-CTM results in constitutive association of the
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MAP kinase cascade with upstream activators and therefore
results in constitutive activation of Fus3. Ste5-CTM is localized
only at the plasma membrane and therefore should not interact
with Pik1 or PtdIns 4-P at the Golgi or nucleus (14). We then
monitored Fus3 activation using an antibody that recognizes
the dually phosphorylated and fully activated form of the
kinase. As shown in Fig. 3, Ste5-CTM strongly activates Fus3
(14). As expected, Fus3 activity was largely unaffected by the
loss of STT4 (Fig. 3A, lane S versus lane 7). In contrast, this
response was substantially diminished by the loss of PIKI (Fig.
3B, lane 5 versus lane 7). Thus, Stt4 and Pikl regulate MAP
kinase signaling by distinct mechanisms. Whereas expression
of Ste5-CTM bypasses a need for PtdIns-4-P at the plasma
membrane, these cells remain sensitive to changes in PtdIns-
4-P by Pikl within the cell.

Pikl Is Required for Full Fus3 Activation and Inhibits Kssl
Activation—Although necessary for Fus3 signaling, Ste5 actu-
ally slows the rate of Fus3 activation (41). A second MAP kinase,
Kssl, is also activated by pheromones but is not scaffolded and
is activated comparatively quickly (35). To determine whether
STT4 or PIKI affects the kinetics of activation, we monitored
Fus3 and Kssl at multiple time points following pheromone
treatment. Although knockdown in either case reduced the
magnitude of Fus3 phosphorylation, the dynamics of activation
were largely unchanged: Fus3 activation remained slow
whereas Kss1 activation remained fast (Fig. 4, A and B). There
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FIGURE 3. Pik1 regulates pheromone signaling independently of Ste5. A, TetO,-STT4 cells were transformed with pRS313-GAL1-STE5-CTM and grown in
selective medium containing dextrose or galactose to induce Ste5-CTM protein expression. Cells were treated with 10 ug/ml doxycycline (Dox) for 15 h and 3
um a factor pheromone for 30 min, as indicated. Cell lysates were resolved by 12.5% SDS-PAGE and immunoblotting with phospho-p44/42 antibodies (P-Kss1
and P-Fus3) and G6PDH antibodies as a loading control. Phosphorylated and activated Fus3 (P-Fus3) was quantified by scanning densitometry and analyzed
with ImageJ software. Results were normalized to P-Fus3 levels of untreated samples. B, TetO,-PIK1 cells treated as in A. Results are the mean = S.E. for three

individual experiments.
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FIGURE 4. Pik1 is required for full Fus3 activation and represses basal Kss1 activation. A, TetO,-PIK1 cells were treated with 10 ug/ml doxycycline for 15 h
and 3 um «a factor pheromone for the times indicated. Cell lysates were resolved by 12.5% SDS-PAGE and immunoblotting with phospho-p44/42 antibodies
(P-Fus3 and P-Kss1), Fus3 antibodies, or G6PDH antibodies as a loading control. Note that pheromone stimulation induces FUS3 but not KSST expression. Bands

were quantified by scanning densitometry and analyzed with ImageJ software.

Results are the mean = S.E.for three individual experiments. B, TetO,-STT4 cells

treated as in A. C, BY4741 (WT) and isogenic vps34A cells treated as in A, except that no doxycycline was added to the cultures.

were, however, notable differences in the behavior of Kss1. In
contrast to STT4, loss of PIKI resulted in marked elevation of
Kss1 activity, particularly in the absence of pheromone stimu-
lation (Fig. 44). The 22-51% increase in Kss1 activation is par-
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ticularly striking when compared with the 28 - 61% reduction
in Fus3 activation. Thus, knockdown of PIKI results in the con-
stitutive activation of Kss1, which subsequently drives elon-
gated growth (Fig. 2A). Treatment of cells harboring the TetO,
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FIGURE 5. Pik1 acts via Ste11 or a pathway component downstream of Ste11. A, TetO,-PIK1 cells were transformed with pRS315-GAL1-STE4 and grown in
selective medium containing dextrose or galactose to induce Ste4 (GB) protein expression. Cells were treated with 10 ng/ml doxycycline for 15 hand 3 um «
factor pheromone for 30 min, as indicated. Cell lysates were resolved by 12.5% SDS-PAGE and immunoblotting with phospho-p44/42 antibodies (P-Kss7 and
P-Fus3) and G6PDH antibodies as a loading control. B, TetO,-PIK1 cells were transformed with pRS425 (Vector) or pRS425-STE11-4. C, P-Fus3 levels from A and
B were quantified by scanning densitometry and analyzed with ImageJ software. Results are the mean = S.E. for three individual experiments. D, TetO,-STT4
cells treated as in A. E, TetO,-STT4 cells treated as in B. F, P-Fus3 levels from D and E were quantified as in C.

promoter attached to a non-expressible genetic element
(TetO,-WT) with doxycycline had no effect on activation of
Fus3 or Kss1, indicating that doxycycline alone has no effect on
pathway activation (supplemental Fig. S34).

As an additional control, we monitored MAP kinase activity
in cells lacking Vps34, a PtdIns 3-kinase required for full acti-
vation of Fus3 (19) (Fig. 4C). Again, the dynamics of activation
were largely unaltered (Fig. 4C), even as overall Fus3 activity
was diminished by 29 — 66%. The reduction we observed here is
comparable with that reported by Slessareva et al. (19) but
somewhat greater than the ~20% difference reported by Gar-
renton et al. (22). These data reveal that Pik1 differentially reg-
ulates MAP kinase activation and is required to maintain MAP
kinase specificity. Although Pikl is required for stimulus-de-
pendent activation of Fus3, it is also required to limit the acti-
vation of Kss1.

Pikl Functions at the Level of Stel1—Given that Pikl acti-
vates Fus3 while inhibiting Kss1, we hypothesized that Pikl
must regulate a pathway component upstream of both kinases.
To better define which component is targeted by Pik1, we took
a genetic epistasis approach. Using constitutively active
mutants, we stimulated the pathway at multiple points, bypass-
ing the need for pheromones and the pheromone receptor. First
we overexpressed the G protein By subunits (STE4SP expressed
using a galactose-inducible promoter). Because Gpal cannot
sequester excess GB7y (42—44), the overproduced Ste4F is free
to activate effectors even in the absence of any stimulus. As
shown in Fig. 5, knockdown of PIK1 dampened Gf3y-mediated
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activation of Fus3 (Fig. 5, A and C). Next, we overexpressed the
constitutively active STE11—-4 mutant (45). STE11 encodes the
kinase that phosphorylates Ste7, which in turn phosphorylates
and activates Fus3 and Kss1. Once again knockdown of PIKI
dampened STE11-4-mediated activation of Fus3 (Fig. 5, B and
C). Knockdown of STT4 likewise dampened STEI1-4-medi-
ated activation of Fus3 (Fig. 5, E and F). Thus, Pikl promotes
signaling upon activation by pheromone, the G protein, the
kinase scaffold, and the protein kinase Stell.

Pikl Regulates the HOG Pathway—The data presented above
indicate that Pikl regulates the pheromone pathway and that
Pik1 acts on or downstream of Stel1l. We have largely excluded
Ste5 as a target for Pik1 regulation, leaving three likely targets:
Stell, its binding partner Ste50, or its direct substrate Ste7 (Fig.
1A). To further distinguish between these candidate targets, we
examined Pikl regulation of the HOG pathway (10-12). The
pheromone and HOG pathways share the use of Stell and Ste50
but not Ste7. We measured activation of Hogl and Kssl in
response to the addition of 0.5 M KCl. Knockdown of PIK1 resulted
in diminished Hogl activity (supplemental Fig. S4). Furthermore,
we again observed constitutive activation of Kssl as well as an
overall increase in Kss1 activation in response to salt stress.

The HOG pathway has two signaling branches that converge
to activate Hogl. Our candidate target proteins, Stell and
Ste50, only function in the Shol branch. To determine which
branch of the HOG pathway is targeted by Pikl, we deleted
SSK1 (eliminates signaling via the SIn1 branch, see Fig. 14) and
measured the activation of Hogl in response to osmotic stress.
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FIGURE 6. Pik1 acts via Ste11. A, TetO,-PIK1 ssk1A cells were treated with doxycycline (Dox) for 15 h and 0.5 m KCl for the times indicated and analyzed by
immunoblotting with phospho-p38 (P-Hog1) antibodies, phospho-p44/42 (P-Kss1) antibodies, Hog1 antibodies, or GGPDH antibodies as a loading control.
B, TetO,-PIK1 and TetO,-PIK1 kssTA cells were treated with doxycycline for 15 h and 3 um « factor pheromone for 30 min, as indicated. Immunoblots were
analyzed with phospho-p44/42, Fus3, and G6PDH antibodies. C, TetO,-PIK1 and TetO,-PIK1 kss7A cells were treated with doxycycline for 15 h and 0.5 M KCl for
10 min. Immunoblots were analyzed with phospho-p38 and G6PDH antibodies. D, Wild-type, TetO,-PIK1, and isogenic cells carrying ste4A, ste5A, ste11A, ste7A,
ste20A, ste50A, opy2A, or cla4A mutations were treated with doxycycline for 15 h and « factor («F) for 30 min and analyzed with phospho-p44/42 antibodies
(P-Kss1). E, TetO,-PIK1 opy2A cells were treated as in B. All bands were quantified by scanning densitometry and analyzed with ImageJ software. Results are the

mean = S.E. for three individual experiments.

Once again we observed diminished Hog1 activity and elevated
Kss1 activity (Fig. 6A). These data indicate that Pik1 regulates
the Shol branch of the HOG pathway.

Recent reports indicate that Kss1 activates a Hogl-specific
phosphatase Ptp2 (46). To determine whether high basal acti-
vation of Kss1 was in any way responsible for the diminished
Hogl response, we deleted KSSI from the TetO,-PIK1 strain.
As shown in Fig. 6, the loss of KS§S1 did not affect the ability of
Pik1 to regulate activation of either Fus3 (Fig. 6B) or Hogl (C).

The available data indicate that Pik1 and Stt4 act in differ-
ent ways to promote Fus3 signaling. Pikl acts via Stell,
whereas Stt4 acts via Ste5. However, Pikl also acts to limit
Kss1 signaling. To further establish the site of Pik1 action, we
monitored Kssl activity in the absence of several signaling
components that lie upstream of Kss1. In accordance with
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the model, we found that constitutive activation of Kss1 was
dependent on Stell and Ste7 but not on Ste4 or Ste5 (Fig.
6D). Constitutive activation of Kssl was also partially
dependent on Ste50 and the MAP kinase kinase kinase
kinase (MAPKKKK) Ste20, but not on another MAPKKKK
Cla4.

Furthermore, we found that constitutive activation of Kss1
was dependent on the protein Opy2 (Fig. 6D), which binds
Ste50 and recruits Ste50 and Stell to the plasma membrane
(47). These data are consistent with our hypothesis that Pikl
regulates signaling at the level of Stell and indicate that Pik1l
may regulate Stell via its interaction with Ste50 and Opy?2.
According to this model, deletion of OPY2 should restore nor-
mal pathway activity. As expected, deletion of OPY2 in the
TetO.-PIK1 cells restored normal Fus3 and Kss1 activation in

VOLUME 286+NUMBER 17+APRIL 29, 2011



response to pheromones (Fig. 6E) and restored normal cell
morphology (supplemental Fig. S5). These data indicate that
Pik1 regulates MAPK signaling through Opy2 and Stell.

DISCUSSION

Signal transduction systems will often share core signaling
components yet maintain specificity and avoid pathway cross-
talk. In yeast, three proteins have been found to preferentially
regulate Fus3 and not Kss1. First, the scaffold protein Ste5 binds
Fus3 and is required for Fus3 catalytic activity. Ste5 is not
required by other MAP kinases and thus helps to differentiate
pheromone signaling from other signaling systems (15, 39).
Second, the PtdIns 4-kinase Stt4 promotes activation of Fus3
and does so by helping to recruit Ste5 to the plasma membrane
(20-22). Like Ste5, Stt4 is required by Fus3 but not by other
MAP kinases. Third, the PtdIns 3-kinase Vps34 promotes acti-
vation of Fus3, again in preference to Kss1 (19). Although func-
tionally similar to Stt4 (see Fig. 4), Vps34 is expressed at endo-
somes rather than at the plasma membrane (25). Here we have
investigated the function of another PtdIns kinase, Pikl. Like
Stt4, Pikl generates PtdIns 4-P and selectively regulates MAP
kinase activity. Like Vps34, Pikl is an endomembrane protein.
Thus, Pikl joins a small but growing number of factors that
promote MAP kinase signaling specificity. Unlike any of the
previously characterized regulators, however, Pikl activates
two MAP kinases (Fus3 and Hog1) while simultaneously inhib-
iting a third, competing MAP kinase (Kss1).

Although much has been learned, important questions
remain for the future. Currently, there is little evidence to suggest
the enzymatic activity of any PtdIns kinase (in yeast) is dynamically
regulated. Garrenton et al. (22) showed that pheromone treatment
does not change total cellular PtdIns-3-P or PtdIns-4-P levels.
Thus, it is likely that activation by PtdIns-4-P occurs in coopera-
tion with another, as yet unidentified, signaling event.

Another question is how the location of Pikl at endomem-
branes contributes to its unique function in signaling. Activa-
tion of signal transduction pathways usually requires the
assembly of signaling components at the plasma membrane. In
pheromone signaling, several mechanisms are required to
recruit components to activated transmembrane receptors.
The heterotrimeric G protein subunits Ga and Gy (48, 49) and
the small G protein Cdc42 (50) are covalently modified with
lipid moieties that anchor them to the plasma membrane. The
scaffold Ste5 translocates from the cytoplasm to the plasma
membrane by binding to the Gy dimer (14) as well as to Stt4-
derived PtdIns-4-P and PtdIns-4,5-P, (20, 21). Additionally, the
PAK-family kinase Ste20 and the closely related kinase Cla4 trans-
locate to the plasma membrane by binding both PtdIns-4,5-P, and
Cdc42 (51, 52). Therefore, spatial restriction of signaling compo-
nents to areas near activated receptors may help prevent aberrant
activation of parallel pathways. By analogy, Pikl may function to
redirect a signaling protein from its normal location at the plasma
membrane to another location within the cell.

Although localization studies can be informative, a more
pressing (and difficult) question is the direct target of Pik1 and
PtdIns-4-P. Our epistasis analysis reveals that Pik1 likely regu-
lates Ste11 and Ste50. Ste50 is required for Stell catalytic activ-
ity, and both are shared among the three MAP kinase pathways
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(11, 47, 53-56). This makes Ste50 or Stell an ideal target for
coordinated regulation of all three pathways. Furthermore,
Stell and Ste50 translocate from the cytoplasm to puncta after
exposure to osmotic stress (10). Although the puncta were not
identified by colocalization with known organelle markers, it
might be useful to determine whether they coincide with the
distribution of Pikl or PtdIns-4-P. However, we consider it
unlikely that either Stell or Ste50 bind directly to PtdIns-4-P.
Neither protein contains a typical phospholipid-binding motif
such as a PH or Phox homology domain (57). However, the
BLAST CDD database does predict a low confidence Bin/Am-
phiphysin/Rvs domain in Ste50 (E value = 0.19). Bin/Am-
phiphysin/Rvs domains are dimerization, lipid-binding, and
curvature-sensing modules found on many proteins involved in
protein trafficking (58). It is possible that this putative Bin/
Amphiphysin/Rvs domain is responsible for osmotic stress-
induced localization of Stell and Ste50 at puncta. Alterna-
tively, Stell and Ste50 could interact with a third protein
containing a known lipid-binding domain. This model is par-
ticularly attractive because Ste50 binds to the transmembrane
protein Opy2 (47). Opy?2, in turn, functions as a scaffold protein
that recruits Ste50 and Stell to the plasma membrane where
they initiate signaling in the HOG and FG pathways (46, 47).
Thus, Opy?2 serves a function analogous to Ste5 in the phero-
mone pathway (14). Given the parallels between Opy2 and Ste5,
it is possible that they are also regulated in a similar manner.

Recent investigations have revealed that MAPK function can
be controlled by the association and dissociation of Ste50 and
Opy?2 (59). Specifically, feedback phosphorylation of Ste50 by
Fus3, Kss1, or Hogl disrupts Ste50-Opy2 binding and inhibits
the HOG pathway. Here, we show that knockdown of Pikl
likewise inhibits Hog1 activation. Conversely, knockdown of
Pik1 leads to constitutive Kss1 activation and accompanying
changes in cell morphology. Moreover, deletion of OPY2
restores normal MAPK signaling in the face of PIKI depletion.
Taken together, these data indicate that Opy2 could inhibit
mating by sequestering Ste50-Stel1l. In support of this hypoth-
esis, Edwards et al. (60) reported that overexpression of Opy2
inhibits the pheromone response. However, the exact role of
Pikl and PtdIns-4-P in regulating Opy2, Ste50, and Stell will
require further investigation.

Finally, our data show that Pik1 positively regulates Fus3 but
negatively affects Kss1. Fus3 is known to down-regulate Kss1
(17). Although we propose that Pik1 affects a shared upstream
component that results in the differential regulation of both
Fus3 and Kss1, it is possible that Pik1 regulates Fus3 directly but
Kss1 indirectly. We consider this unlikely, however, because
loss of STT4 or VPS34 dampens Fus3 activation without a con-
comitant increase in Kss1 activation. Thus, simply dampening
Fus3 does not result in a constitutively active Kss1. We also
considered a previous suggestion that Pikl is needed for effi-
cient mRNA export and protein synthesis (22). Under condi-
tions where MAP kinase activity is severely affected, however,
we observed no changes in the expression of control proteins,
including alcohol dehydrogenase (P, ,;;,-RFP), glucose 6-phos-
phate dehydrogenase, or Hogl (27). We also observed no
change in global protein expression as determined by Coomass-
ie-staining of whole cell lysates.
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In conclusion, we show that Pikl and PtdIns-4-P promote the
activation of Fus3 and Hog1 while repressing activation of Kss1. By
acting on all three MAP kinases, Pikl appears well positioned to
coordinate cellular responses in the face of competing signals.
Together with previous demonstrations of signal regulation by a
PtdIns 3-kinase at the endosome, there is growing evidence for
signal coordination by endomembrane-associated second mes-
sengers (19, 61— 64). Stell is homologous to human MEKKS3, and
Ste50 is similar to human OSM (osmosensing scaffold for
MEKK3) (65). Given this conservation across species, our findings
are likely to translate to human MAP kinase pathways as well.
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