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Abstract
Mutations in fibroblast growth factor receptors (Fgfrs) are the etiology of many craniosynostosis
and chondrodysplasia syndromes in humans. The phenotypes associated with these human
syndromes and the phenotypes resulting from targeted mutagenesis in the mouse have defined
essential roles for FGF signaling in both endochondral and intramembranous bone development.
In this review, I will focus on the role of FGF signaling in chondrocytes and osteoblasts and how
FGFs regulate the growth and development of endochondral bone.
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1. Human skeletal disease syndromes: the FGF connection
Fgfrs were known to be expressed in the developing skeleton. However, a functional link
between FGF signaling and skeletal development was not appreciated until the discovery
that achondroplasia (ACH), the most common form of skeletal dwarfism in humans, was
caused by a missense mutation in Fgfr3 [1–5]. Following this initial discovery, a milder
form of dwarfism, hypochondroplasia (HCH) [6,7], and a more severe form of dwarfism,
thanatophoric dysplasia (TD) [3,8–10], were also found to result from mutations in Fgfr3.

In addition to the chondrodysplasia syndromes, many other human skeletal dysplasias have
been attributed to mutations in Fgfrs 1, 2 and 3 [11–17]. These disorders have in common
craniosynostosis (premature fusion of the cranial sutures) and variably other phenotypes that
affect the appendicular skeleton and other organ systems. The craniosynostosis syndromes
involving Fgfr2 include Apert syndrome (AS) [18], Beare-Stevenson cutis gyrata [19],
Crouzon syndrome (CS) [20–32], Pfeiffer syndrome (PS) [33–37,23,28,29], Jackson-Weiss
syndrome (JWS) [22,23,26] and a non-syndromic craniosynostosis (NSC) [38]. Recently a
family has been described with a double mutation in Fgfr2 (S2521, A315S) that is
associated with syndactyly but not craniosynostosis [39]. However, individually, these
mutations are associated with low-penetrance craniosynostosis.

In addition to the single mutation in Fgfr1 (P252R) that causes Pfeiffer syndrome [40–
42,29], a rare mutation has been identified that causes osteoglophonic dysplasia (OD), a
disease characterized by craniosynostosis, prominent supraorbital ridge, and depressed nasal
bridge, as well as the rhizomelic dwarfism and nonossifying bone lesions [43]. One patient
has also been described with Jackson-Weiss syndrome and a P252R mutation in Fgfr1
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(P252R) [44]. Loss of function mutations in Fgfr1 are associated with one form of Kalmann
syndrome (KS), a disease that does not directly affect skeletal development [45].

Recently, a mutation in Fgfr3 (P250R) has been described that causes Muenke syndrome
(MS), which is characterized by craniosynostosis and variably other skeletal and
neurological phenotypes [38,46,47]. Another mutation in Fgfr3 (A391E) causes Crouzon
syndrome with acanthosis nigricans, now referred to as crouzonodermoskeletal syndrome
[48–52,24].

All of the skeletal disease syndromes are caused by autosomal dominant mutations and
frequently arise sporadically. The mutations in Fgfrs are shown in Fig. 1. The genetics and
pathophysiology of these diseases are discussed in the need to refer to article by Andrew
Wilkie.

2. Endochondral bone development
Endochondral ossification is responsible for the formation of the appendicular skeleton,
facial bones, vertebrae and the medial clavicles. Appendicular skeletal development initiates
shortly after the formation of the limb bud with the formation of a histologically identifiable
mesenchymal condensation, marked by the expression of type II collagen and Sox9 [53–56].
This condensing mesenchyme forms an anlage for the endochondral skeleton and can either
branch or segment to form individual skeletal elements [57,58].

Condensing mesenchyme gives rise to a highly proliferative population of cells. The
centrally localized cells express type II collagen and will give rise to chondrocytes. The
more peripherally localized cells transiently express type II collagen and then adopt an
osteoblast fate characterized by the expression of alkaline phosphatase and eventually type I
collagen [53].

As development progresses, the condensation elongates. Medially localized cells proliferate,
while more distal cells form a slowly growing pool of reserve chondrocytes. Midway
between the ends of this elongated cartilaginous template, chondrocytes exit the cell cycle,
downregulate type II collagen expression and begin to differentiate into hypertrophic
chondrocytes, characterized by the synthesis of high levels of type X collagen [59]. The
process of chondrocyte hypertrophy is thought to contribute to the force driving bone
elongation [60].

Developing and mature bone is highly vascularized, whereas cartilage is an avascular
structure. The conversion of the cartilaginous template into bone involves several
developmental events. An early and essential step in the formation of bone requires
neovascularization of the avascular hypertrophic zone chondrocytes. Vascular invasion
allows the influx of periosteal-derived osteoblast precursors and hematopoietic derived
osteo(chondro)clasts. At this stage of development, distal hypertrophic chondrocytes begin
to ossify while the extracellular cartilaginous matrix is degraded by matrix metalloproteases
produced by the osteoclasts. Osteoblasts, osteoclasts and the newly developed vasculature
form a center of ossification that propagates toward the distal ends of the nascent bone. This
process converts cartilaginous matrix into trabecular bone. The trabecular ossification region
(primary and secondary spongiosa) and chondrocytes at various stages of differentiation
constitute a developmental structure called the epiphyseal growth plate. These well-
demarcated zones of cells follow an elegant developmental program that extends through
puberty and the closure of the growth plate [57,61–65].

Surrounding the growth plate is the perichondrium, a fibrous structure containing
osteoprogenitor cells. Centrally, the perichondrium forms a structure called the bone collar
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(periosteum), the precursor of cortical bone [61]. The periosteum is a well-vascularized
structure and contains precursor pools of cells that give rise to the mature osteoblasts that
line the endosteal (inner) surface of cortical bone. As mineralization proceeds, osteoblasts
become postmitotic (osteocytes) as they become embedded within cortical bone. A large
number of signaling pathways are required to coordinate chondrogenesis and osteogenesis.
This review will focus on the role of FGF signaling pathways in this process.

3. FGF and FGF receptor expression and signaling in condensing
mesenchyme

The formation of the mesenchymal condensation is associated with changes in gene
expression. Fgfr2, type II collagen and Sox9 are among the earliest genes upregulated in
condensing mesenchyme [53–56,66]. Fgfr1 continues to be expressed in surrounding loose
mesenchyme and is also expressed along with Fgfr2 in the periphery of the condensation
[66–69].

The physiologic ligands that activate FGFRs in the mesenchymal condensation have been
difficult to identify. Fgf9 is expressed within condensing mesenchyme early in development
[70]. Fgf2, Fgf5, Fgf6 and Fgf7 expression has been observed in mesenchyme surrounding
the condensation [71–75]. However, knockout mice lacking these FGFs have no apparent
defects in skeletal development [76–78]. It is possible that a combination of these and other
FGFs may constitute the complete FGF signal to the developing condensation.

The role of FGF signaling in condensing mesenchyme is poorly understood. In primary
chondrocytes and in undifferentiated mesenchymal cells, FGF signaling pathways induce the
expression of Sox9, an essential transcription factor for chondrocyte differentiation [79,55].
Additionally, FGFR3 signaling may enhance chondrocyte proliferation in the mesenchymal
condensation, even though it is well established that FGFR3 limits chondrocyte proliferation
in the mature growth plate [80,81]. Consistent with this, FGF2 and to a greater extent, FGF9
can stimulate proliferation of chondrocytes [82]. Defects in FGF signaling in the
mesenchymal condensation can result in skeletal abnormalities. For example, in the case of
Apert Syndrome, mutations in FGFR2 allow for inappropriate activation of FGFR2 in the
mesenchymal condensation by mesenchymally expressed ligands, such as FGF7 and FGF10,
that normally do not signal to this receptor [83,84]. Although ligand-binding specificity is
also lost for epithelial forms of FGFR2, the recent identification of mutations within the
mesenchymal-specific c exon of Fgfr2 (A315S) that allow binding to FGF10, suggests that
the primary etiology of Apert syndrome results from inappropriate activation of the
mesenchymal receptor [85,39]. The soft tissue and bony syndactyly characteristic of Apert
syndrome suggests that the phenotype may originate at the mesenchymal condensation stage
of development.

4. FGF and FGF receptor expression and signaling in endochondral bone
4.1. Fgf receptors expressed in developing bone

Shortly after formation of a mesenchymal condensation, Fgfr3 expression is activated in
chondrocytes located in the central core of the mesenchymal condensation (Fig. 2) [86]. At
this stage of development, overlap in expression may exist with Fgfr2 and Fgfr3. As the
epiphyseal growth plate develops, Fgfr1 expression is upregulated as chondrocytes
hypertrophy. Fgfr1 and Fgfr3 have very distinct domains of expression with little overlap;
Fgfr3 is expressed in proliferating chondrocytes, whereas Fgfr1 is expressed in
prehypertrophic and hypertrophic chondrocytes [87,88,66]. This juxtaposition of FGFR1
and FGFR3 expression domains suggests unique functions. Expression of Fgfr3 in the
reserve and proliferating zone suggests a direct role for FGFR3 in regulating chondrocyte
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proliferation and possibly differentiation [67,89,88]. In contrast, the expression of Fgfr1 in
hypertrophic chondrocytes [67,66] suggests a role for FGFR1 in regulating cell survival, cell
differentiation, extracellular matrix production and cell death. Interestingly,
immunohistochemical localization of FGFR3 in costal cartilage identifies FGFR3
extracellular domains within the extracellular matrix of hypertrophic chondrocytes. This
suggests that proteolytic processing could regulate the activity of FGFR3 and that the
FGFR3 ectodomain could compete with FGFR1 for ligand-binding [90]. In mature bone,
Fgfr1 and Fgfr2 continue to be expressed in osteoblasts. Interestingly,
immunohistochemistry has also identified FGFR3 expression in mature osteoblasts and in
osteocytes [86].

4.2. Fgf ligands expressed in developing bone
Several FGFs are expressed in developing endochondral bone [16]. FGF2 (basic FGF) was
first isolated from growth plate chondrocytes [91]. Subsequently, Fgf2 expression has also
been observed in periosteal cells and in osteoblasts [92–95]. Targeted deletion of FGF2
caused a relatively subtle defect in osteoblastogenesis leading to decreased bone growth and
bone density. However, no defects in chondrogenesis were observed [94]. Further analysis
of Fgf2−/− mice revealed decreased osteoclastogenesis [96], which may in part compensate
for the observed mild phenotype in Fgf2−/− bones. Fgf9 is also expressed in immature
chondrocytes in condensing mesenchyme [70,97].

In the perichondrium, expression of Fgf7, Fgf8, Fgf9, Fgf17 and Fgf18 has been observed
([72,74,98–100] I. Hung and DMO, unpublished data), suggesting a possible paracrine
signal to the growth plate. Recent genetic studies have identified a defect in chondrogenesis
and osteogenesis in mice lacking FGF 18 [98,99]. Mice lacking FGF7, FGF8 and FGF17
have apparently normal chondrogenesis, or in the case of FGF8, die prior to skeletal
development [77,101,102]. The skeletons of newborn Fgf9−/− mice are slightly smaller than
of wild type littermates and their proximal skeletal elements are disproportionately short (I.
Hung and DMO, unpublished observation). Issues of functional redundancy among these
and other FGFs will need to be addressed in the future.

4.3. FGF signaling pathways in the growth plate
Mice either lacking Fgfr3 or expressing an activated form of Fgfr3 develop skeletal
pathology in the perinatal and young adult stages of development. Mice lacking Fgfr3
develop skeletal overgrowth, while mice overexpressing an activated form of Fgfr3 develop
skeletal dwarfism. These phenotypes demonstrate that the primary effect of signaling
through FGFR3 is to negatively regulate chondrocyte proliferation and differentiation [103–
106,81,89,14,15]. This effect is mediated in part by direct signaling in chondrocytes [107–
109] and in part indirectly, by regulating the expression of the IHH/PTHrP/BMP signaling
pathways [107,63,110,89]. Mice harboring an activating mutation in FGFR3 have decreased
expression of Ihh, Ptc and Bmp4 [104,105,89], whereas in mice lacking FGFR3, Ihh, Ptc
and Bmp4 expression are upregulated ([89] and data not shown). The overall function of
FGFR3 is consistent with a direct action of FGFR3 on proliferating chondrocytes (see
below) and an indirect consequence of modulating Hedgehog and BMP signaling.

Ligands that signal to FGFR3 during skeletal development should fit the criteria of
expression proximal to zones of proliferating chondrocytes (but not within proliferating
chondrocytes) and should produce a phenotype similar to that of Fgfr3−/− mice when
knocked out. Fgf18, and more recently, Fgf9 expression has been observed in the
perichondrium and periosteum of developing bone ([98,99] and I. Hung, unpublished data).
Growth plate histology of mice lacking Fgf18 is similar to that of mice lacking Fgfr3. Both
knockout mice show an upregulation of Ihh and Ptc expression and increased chondrocyte
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proliferation. These phenotypic similarities strongly suggest that FGF18 is a physiological
ligand for FGFR3 in chondrocytes [98,99]. In vitro studies show that FGF18 can activate
FGFR3c [102] and stimulate the proliferation of cultured articular chondrocytes [111].
However, mice lacking Fgf18 have a more severe phenotype than mice lacking Fgfr3 [98].
Unlike Fgfr3−/− mice, Fgf18−/− mice exhibit delayed ossification which may be due to
direct signaling to osteoblasts or hypertrophic chondrocytes or to a delay in vascular
invasion of the growth plate. The simplest explanation is that FGF18 is signaling bi-
directionally to osteoblasts in the endosteum and primary spongiosa, and to periosteal
mesenchyme. Signals to periosteal mesenchyme could either directly or indirectly regulate
vasculogenesis. With the recent observation that Fgfr3 is expressed in mature osteoblasts
[86], it is not clear which FGFR (FGFR1, FGFR2 or FGFR3) is actually responding to FGF
18 in osteoblasts.

4.4. Signaling pathways regulating chondrocyte and osteoblast proliferation and
differentiation

During early embryonic development, constitutive FGFR3 activation enhances proliferation
of immature chondrocytes [80,81]. However, as chondrocytes mature, the primary role of
FGFR3 is to restrain chondrocyte proliferation and differentiation [89]. The signaling
pathways regulating chondrocyte proliferation and differentiation are not unique to FGFR3,
even though FGFR1 and FGFR3 appear to have different signaling properties in some cell
types in vitro [112–114]. Both FGFR1 and FGFR3 kinase domains appear to have similar
activities when expressed in growth plate chondrocytes in vivo [115]. Therefore, observed
differences between these receptors must be attributable to differences in the strength of the
tyrosine kinase signal rather than the specific signaling pathway activated [116]. This
property of FGF signaling in chondrocytes supports the hypothesis that the proliferating
chondrocyte itself is uniquely responsive to an FGFR signal.

Endochondral bone growth requires regulated chondrocyte proliferation, differentiation to
hypertrophic chondrocytes, and ossification. The signaling pathways mediating growth
arrest in mature proliferating chondrocytes are thought to require activation of the MAP
kinase pathway [117]. In vivo, activation of MEK1 in chondrocytes caused a dwarfism
phenotype but did not affect chondrocyte proliferation [118]. A clue to the signaling
mechanism downstream of FGFR3 comes from studies that show that activation of FGF
signaling in chondrocytes can increase expression and induce nuclear translocation of
STATs 1, 3 and 5 and induce the expression of the cell-cycle inhibitor p21 (WAF1/CIP1) in
chondrocyte cell lines [119–122]. Furthermore, chondrocytes isolated from patients with
Thanatophoric dysplasia (constitutive activation of FGFR3) exhibited nuclear localized
STAT1 [123]. In vivo, the dwarfism phenotype observed in mice expressing activating
mutations in FGFR3 correlated with the activation of STAT proteins and upregulation of
cell-cycle inhibitors (pl6, pl8 and pl9) [103,105]. Additionally, mating FGF2-expressing
transgenic mice into a Stat1 null background corrected the chondrodysplasia phenotype
characteristic of this transgenic line [124]. These data support a model in which STAT1
activation acts either downstream or in parallel to the MAP kinase pathway in chondrocytes
to mediate inhibition of endochondral growth by FGFR3.

Interestingly, in primary chondrocytes derived from mice lacking STAT1, FGF signaling
failed to induce chondrocyte growth inhibition [121]. Furthermore, constitutive activation of
MEK1 in chondrocytes resulted in a dwarfism phenotype in mice without affecting
chondrocyte proliferation [118]. Mating MEK1 mice to Achondroplasia mice or to mice
lacking FGFR3 suggests a model in which FGFR3 signaling inhibits bone growth by
inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting
chondrocyte proliferation through a STAT1 pathway [118].
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In a chondrocyte cell line, FGF signaling induces differentiation and inhibits proliferation,
as demonstrated by inhibition of growth promoting molecules, such as Rb and p107, and up-
regulation of genes associated with hypertrophic differentiation, such as MMP13,
osteopontin and FGFR1 [107]. The relationship between STAT1 and the regulation of these
molecules remains to be determined.

Another role for FGF signaling in chondrocytes may be to promote cell death.
Overexpression of Fgf2 or activating mutations in Fgfr3 in chondrocytes promoted
apoptosis [124,125]. This is consistent with the observed decrease in AKT phosphorylation
in chondrocytes in response to FGF [117,124]. Also consistent with this signaling pathway,
treatment of Fgfr3(ACH) cells with growth hormone or IGF-1, which activates PI3 kinase,
or with PTHrP, which induces Bcl-2, blocked the apoptosis [125]. Furthermore, in patients
with thanatophoric dysplasia, there is an increased expression of Bax, decreased expression
of Bcl2 and an increase in the number of apoptotic chondrocytes [123]. In achondroplasia
mice, however, no increase in chondrocyte cell death was observed during embryonic
development [14].

FGF signaling is also an important regulator of osteoblast function. Mice conditionally
lacking FGFR2 or harboring a mutation in the mesenchymal splice form of FGFR2 develop
skeletal dwarfism and decreased bone mineral density [126,127]. Examination of the bones
of these mice revealed decreased osteoblast proliferation and quiescent osteoblast
morphology but otherwise normal differentiation. Thus in osteoblasts, FGFR2 signaling
positively regulates bone growth. Interestingly, mice lacking FGF2 also show osteopenia,
though much later in development than in FGFR2-deficient mice [94]. This suggests that
FGF2 may be a homeostatic factor that replaces the developmental growth factor, FGF18, in
adult bones. Osteoblasts also express FGFR3, and mice lacking FGFR3, have decreased
bone mineral density and osteopenia [128,86]. In osteoblasts lacking STAT1, FGFR3 and
the cell cycle inhibitor, p21WAF/CIP, expression are down regulated and FGF18 expression
is increased [86]. Thus STAT1 may regulate the balance between osteoblast proliferation
and differentiation by modulating an FGF2/FGF18 to FGFR3 autocrine signal in osteoblasts.
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Fig. 1.
FGF receptor mutations in humans. Left (Blue): Mutations in FGFR3 – achondroplasia
(ACH), thanatophoric dysplasia (TD), hypochondroplasia (HCH), crouzonodermoskeletal
syndrome syndrome (Crouzon syndrome with acanthosis nigricans) (CDS), non-syndromic
craniosynostosis (NSC), Muenke syndrome (MS). Right (Red): Mutations in FGFR2 –
Crouzon syndrome (CS), Jackson-Weiss syndrome (JWS), Pfeiffer syndrome (PS), Apert
syndrome (AS), Beare-Stevenson cutis gyrata (BS), unclassified (U). The line connecting
S252L and A315S indicates the double mutation found in patients with Apert syndrome-like
syndactyly without craniosynostosis. Right (Pink): A single mutation in FGFR1 causes
Pfeiffer syndrome (PS) and osteoglophonic dysplasia (OD). Multiple mutations in FGFR1
cause Kallmann syndrome (KS). The numbers represent the position of the mutant amino
acid in the human coding sequence. Amino acids are abbreviated using standard single letter
abbreviations (adapted from [16]).
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Fig. 2.
FGF and FGFR expression patterns in the growth plate. Chondrocytes progress through
reserve (R), proliferating (P), prehypertrophic (PH) and hypertrophic (H) stages.
Hypertrophic chondrocytes are then replaced by trabecular bone (T). FGF 18 is expressed in
the perichondrium and may signal to FGFRs in both osteoblasts and chondrocytes.
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