
Introduction

The close link between hematopoiesis/lymphopoiesis and
stromal cell compartment has been well known for many
years. In bone marrow, the hematopoietic stem cell (HSC)
niche represents a peculiar microenviroment that ensures the
balance between proliferation and self-renewal of HSCs to
maintain long-term hematopoiesis [1, 2]. Subendothelial stro-
mal cell precursors, which give rise to stromal cell compo-
nents (reticular cells, fibroblasts, adipocytes, and osteoblasts)
and express the typical immunophenotypic pattern of mes-

enchymal stem cells (MSCs) including specific molecules such
as CD146, have been recently shown in bone marrow [3].
MSCs are multi potent non-hematopoietic progenitor cells ca-
pable of differentiating not only into various tissues of meso-
dermal origin (fibroblasts, osteocytes, adipocytes, and chon-
drocytes), but also into tissues of endodermal and neuroecto-
dermal lineages, including hepatocytes [4], epithelia [5], and
neurons [6, 7]. MSCs constitutively secrete regulatory mole-
cules and cytokines, most of which are shared also by stromal
cells, which enhance the proliferation/differentiation of
hematopoietic stem/pro genitor cells as well as of mature lym-
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Summary
Mesenchymal stem cells (MSCs) and their stromal prog-
eny may be considered powerful regulatory cells, a sort
of dendritic cell counterpart, which influence all the main
immune effectors and functional roles in vivo, as well as
potential applications in the treatment of a number of
human immunological diseases. By choosing MSC tis-
sue origin, cell dose, administration route, and treatment
schedule, all the potential side effects related to MSC
use, including tumor growth enhancement, have to be
well considered to maximize the benefits of MSC-depen-
dent immune regulation without significant risks for the
patients.
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Zusammenfassung
Mesenchymale Stammzellen (MSC) sowie davon ab-
stammende Stromazellen können als leistungsstarke re-
gulatorische Zellen (eine Art Gegenstück zu den dendriti-
schen Zellen) betrachtet werden, die in vivo Auswirkun-
gen auf die wichtigsten Immuneffektoren und Funktio-
nen haben sowie die potentielle Anwendung in der
Behandlung einer Reihe von immunologischen Erkran-
kungen beim Menschen beeinflussen. Bei der Auswahl
des MSC-Ursprungsgewebes, der Zelldosis, der Art der
Verabreichung sowie des Behandlungsplans müssen alle
potentiellen Nebenwirkungen einer MSC-Gabe (inklusive
Förderung des Tumorwachstums) gut bedacht werden,
um die MSC-abhängige Immunregulierung ohne maß-
gebliche Risiken für die Patienten maximal nutzen zu
können.
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phoid cells, such as macrophage-colony stimulating factor (M-
CSF), Flt-3L, stem cell factor (SCF), interleukin (IL)-6, IL-7,
IL-8, IL-11, IL-12, IL-14, and IL-15 [8–10]. Upon IL-1α stimu-
lation, MSCs can produce IL-1α itself, leukemia inhibitory
factor (LIF), granulocyte(G)-CSF, and granulocyte-
macrophage(GM)-CSF [10]. In addition, there is strong evi-
dence that MSCs and their stromal progeny play a fundamen-
tal role in lymphopoiesis [11]. After bone marrow transplan-
tation, stromal cells appear to migrate to the thymus where
they participate in the positive selection of thymocytes [12,
13]. Furthermore, in the absence of the thymus, the majority
of T cells adhering to bone marrow stroma display an imma-
ture phenotype [14, 15]. B cell development also requires
close association of B cell progenitors with stromal cells [16,
17] through the interaction between pre-B cell receptor (pre-
BCR) and its stromal ligand Galectin-1 [18], which is essential
for pre-B-cell survival, proliferation, and differentiation [19].
Stromal cell precursors with the immunophenotype and mul-
tilineage differentiation potential of MSCs are present also in
adult lymphoid tissues, such as lymph nodes [19], spleen, and
thymus [20]. Finally, co-transplantation of human ex vivo-ex-
panded MSCs together with HSCs supports hematopoietic
and lymphoid recovery in animal models [21–24] and in hu-
mans [25–27]. More recently, MSC regulatory activity on a
large number of effector cells of adaptive and innate immuni-
ty has been extensively characterized, including CD4+ and
CD8+ T cells [28–36], B cells [28, 37], natural killer (NK) cells
[28, 30, 38, 39], monocyte-derived dendritic cells (DCs)
[40–43], and neutrophils [44]. The interaction with MSCs
leads to lymphocyte [32] and DC [45] anergy due to early
proliferation arrest, and it inhibits apoptosis of resting and ac-
tivated neutrophils [44]. MSCs may suppress immune reac-
tions in vitro and in vivo in a major histocompatibility com-
plex (MHC)-independent manner [28–30, 46]. Interestingly,
the immune regulatory properties are expressed not only by
bone marrow MSCs, but also by MSCs derived from other tis-
sues, including fat [47], thymus, and spleen [20]. Moreover,
MSCs differentiated into fibroblasts, adipocytes, and os-
teoblasts [48–51] retain similar functions.
At present, there is no unique and hierarchically prevalent
mechanism responsible for MSC immune regulation, but there
is a redundant panel of mechanisms that suggests the in vivo
relevance of immune regulation by the stromal cell compart-
ment. Some contradictory results have been produced by dif-
ferent groups, probably due to different experimental factors
related to MSC origin, culture conditions, and lymphocyte
subset and activation state. On the whole, these data suggest
that both soluble factors and cell-cell contact are involved.
MSC regulatory effects are operational in vivo, as MSC infu-
sion can significantly prolong the survival of MHC-mis-
matched skin grafts in baboons [46], lower the incidence and
cure the refractoriness to treatment of graft-versus-host dis-
ease (GvHD) after allogeneic HSC transplantation in humans
[52], and improve experimental autoimmune encephalo -

myelitis (EAE) in mice [53]. Thus, it is important to know the
kinetics, mechanisms, and administration modalities of MSC-
based immune therapies to achieve clinical benefit with no or
only a small number of potential side effects.

Immunogenicity of Mesenchymal Stem Cells

MSCs are unable to induce significant alloreactivity [30].
Human MSCs express a low-intermediate level of HLA class I
and LFA-3, and they do not express the co-stimulatory mole-
cules CD80 (B7–1), CD86 (B7–2), CD40, or CD40L, even
after IFN-γ stimulation [28, 48, 54] which in turn may induce
HLA class II molecule up-regulation [28]. MSCs may escape
not only the recognition by alloreactive T cells [30] but also
the cell-specific lysis by CD8+ cytotoxic cells [55] and freshly
isolated NK cells [34]. By contrast, activated NK cells are
 capable to lyse MSCs efficiently [38]. Moreover, MSCs exoge-
nously loaded with the relevant MHC class I peptide epitopes
still remain resistant to lysis [56]. At a low MSC/effector ratio
(1:0.2 to 1:0.01), the number of proliferating T cells increases
after 96 h of mixed lymphocyte reaction (MLR), thus suggest-
ing that the balance between T cell suppression and activation
by MSCs may be finely tuned [57]. Alternatively, the enhance-
ment of T cell survival could derive from the MSC-mediated
inhibition of T cell apoptosis through the T cell receptor
(TCR) engagement [58]. 
At basal conditions, human MSCs do not express surface
MHC class II molecules, although some intracellular deposits
of class II alloantigens are present [59, 60]. In the presence of
low IFN-γ levels, MSCs express MHC-class II molecules and
acquire phagocytic function and antigen presentation activity
to CD4+ T cells [61, 62]. High IFN-γ levels down-regulate the
expression of MHC class II molecules by MSCs, thus leading
to a shift in MSC function to immunosuppression [61]. MSC
number in culture and transforming growth factor (TGF)- β
signaling regulate in an opposite fashion the IFN-γ-driven
MHC class II expression by acting on CIITA expression [63].
Transplanted allogeneic, MHC-mismatched MSCs fail to in-
duce specific rejection, thus engrafting in adult rodent,
porcine, and baboon experimental models [46, 64, 65]. En-
graftment of allogeneic MSCs in immune-compromised hosts
or inside immune-privileged sites have been shown in animals
and in humans [52, 66–68]. Xenogenic transplantation (mouse
MSCs into rats) may induce immunological tolerance [69]. By
contrast, allogeneic MSC transplantion into hosts with intact
immune system may determine MSC rejection [70–72]. Some
data show that infusion of allogeneic MSCs can prime naive 
T cells in immunocompetent mice [72]. Moreover, intra-coro-
nary injection of adult human MSCs into rat myocardium is
associated with rejection and macrophage infiltration [73].
Thus, allogeneic or xenogeneic MSC transplantation may lead
to MSC rejection; this should always be considered in the
 clinical setting. 
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Mesenchymal Stem Cells and T Lymphocytes 

T cell proliferation, activation, and effector functions may be
affected by MSCs in vitro [31] and in vivo [46]. Inhibition of 
T cell proliferation by MSCs occurs not only when T cells are
triggered by non-specific stimuli such as allogeneic peripheral
blood lymphocytes, DCs, or mitogens such as phytohemag -
glutinin (PHA) or IL-2 [31], but also when T cells are activated
by their specific antigen [30]. Similarly, T cell-mediated IFN-γ
production [28–30, 32, 33] and cytotoxic activity [30, 55] may  
be inhibited. Proliferation of CD4+ and CD8+ T cells is equal-
ly inhibited by MSCs [28, 30, 31]. This effect does not seem to
be related either to the lack of activation or the induction of
apoptosis [28, 30, 32]. In fact, in T cell/MSC co-culture, the
number of T cells expressing early activation markers, i.e.
CD25 and CD69, is not affected [28] although some data are
contradictory [48, 54, 55, 74, 75]. CD8+ T cell-mediated lysis is
suppressed by MSCs if they are added at the beginning of the
mixed lymphocyte culture [34], but not when T cells are al-
ready in the cytotoxic phase [55, 60, 76], thus suggesting that it
is the generation of activated lytic effector cells that is affect-
ed, rather than the lytic effector phase. MSCs interfere with
naive CD4+ T cell differentiation into T helper (Th)-1 effector
cells by decreasing the amount of IFN-γ produced. By con-
trast, MSCs may induce a Th-2 shift by increasing the produc-
tion of IL-4 [43]. Both naive and memory T cells can be inhib-
ited by MSCs [30]. In a mouse model, IFN-γ production by 
T cells may be restored after MSC removal from culture [30];
by contrast, T cell proliferation is irreversibly abrogated by cy-
clin D2 inhibition, thus suggesting a mechanism of T cell arrest
anergy in the early G1 phase of the cell cycle [32]. This anergic
state is only partially reverted by exogenous IL-2 [32]. Other
studies with human MSCs show that T cell unresponsiveness
is transient and may be restored by MSC removal [59].
The presence of CD4+/CD25+ T cells is not required for the
anti-proliferative effect of MSC on T-cells [30]; however,
MSCs may induce the expansion of these regulatory T cells
[43, 76]. The addition of CD4+, but also CD8+ regulatory T
lymphocytes, obtained from lymphocyte/MSC co-cultures,
may inhibit mixed lymphocyte reactions and T cell activation
by alloantigen, PHA, and CD3-triggering [77]. MSC-induced
suppression of T cell proliferation does not require MHC re-
striction, but it may be mediated also by allogeneic MSCs [29]
in a dose-dependent and antigen-independent manner [30,
49]. The optimal ratio between MSCs and responder T cells is
quite variable, from 1:10,030 to 1:142, depending on the MSC
model (human or animal), the culture conditions, and the ori-
gin and purity of MSCs, but most studies show that the maxi-
mum inhibitory effect normally occurs at a 1:10 ratio [28, 30,
31, 43]. It is difficult to assess if these ratios are reached inside
the tissues, but it is not unlikely; in addition, the persistence of
the immune regulatory properties in MSC-derived tissue stro-
mal cells [48–51] would suggest that this phenomenon may
also have a physiological role in vivo.

MSC may inhibit the apoptosis of proliferating thymocytes
cultured in the absence of trophic factors and resting T cells
[50, 58]. Moreover, MSCs may rescue from activation-induced
cell death (AICD) T cells over-stimulated by TCR engage-
ment, through a down-regulation of Fas receptor and Fas lig-
and [58]. MSC-induced immunosuppression is due to both sol-
uble factors and cell-cell contact, but the latter mechanism is
prevalent in rodent MSCs [28–36]. Most of the inhibitory solu-
ble factors are not constitutively secreted by MSCs, but they
can be induced by the interaction between activated effector
cells and MSCs. A broad range of factors is involved in the
immune regulation induced by MSCs, including IFN-γ [20, 28],
IL-1β [74], TGF-β1 [31, 35, 49], indoleamine 2,3-dioxygenase
(IDO) [20, 28, 33], IL-6 [78, 79], IL-10 [40, 41], prostaglandin
E2 (PGE2) [43], hepatocyte growth factor (HGF) [31], tumor
necrosis factor(TNF)-α [42, 59, 60, 80],  nitric oxide (NO) [81],
heme oxygenase-1 (OH-1) [82], HLA-G5 [83, 84], and other
unidentified factors. This probably reflects the redundancy of
the MSCs immune regulatory mechanisms. It is interesting
that cytokines favoring the immune responses, such as IFN- γ
produced by activated T lymphocytes or NK cells, may pro-
mote immune modulation by MSCs which in turn suppress 
T or NK cell proliferation. This effect is related, at least in
part, to the enhancement of the IDO activity [28, 85]. More-
over, tryptophan depletion associated with IDO activity re-
sults in cell cycle arrest of activated T cells [86]. However,
human IFN-γ receptor 1(R1)-deficient MSCs do not elicit
IDO transcription, despite the preservation of immune regula-
tion [87]. Following interaction with effector cells, MSCs se-
crete TGF-β1 which is partially responsible for T cell inhibi-
tion. When anti-TGF-β1 and anti-HGF are simultaneously
added, T cell proliferation can be restored at values compara-
ble to those detected in absence of MSCs [31]. IL-6 may inhib-
it both T cell proliferation and apoptosis. The addition of a
neutralizing anti-IL-6 antibody, however, restores partially the
proliferation of T cells, but it abrogates most of the protection
from apoptosis [78, 79]. MSCs constitutively express and up-
regulate both COX-1 and COX-2 which both increase PGE2
production. PGE2 inhibitors lower MSC-mediated immune
modulation, but only when lymphocytes are stimulated with
PHA, not in a mixed lymphocyte reaction. TNF-α may en-
hance as much as 100-fold the production of immunosuppres-
sive prostaglandins by MSCs [42, 59, 60]. However, in a mouse
model of rheumatoid arthritis, the addition of TNFα may re-
vert the inhibition of proliferation of allogeneic T cells in-
duced by MSCs [80]. The production of NO and OH-1 ap-
pears to be involved, in part through Stat5 inhibition, in the
suppression of T cells by MSCs [81, 82]. Following cell-cell
contact with T cells, MSCs can secrete the soluble isoform of
HLA-G5; this molecule seems to mediate, at least in part, the
expansion of functional CD4+ CD25high FoxP3+ regulatory 
T cells [83]. 
Recently, a new mechanism affecting the immunosuppressive
activity of MSCs has been described. MSCs were found to ex-
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press some Toll-like receptors, such as (TLR) 1, TLR3, TLR4,
and TLR5. The triggering of TLR3 and TLR4 by their natural
ligands may suppress MSC immune regulatory activity, thus
suggesting that T cell responses may arise efficiently during
infections, leading to pathogen elimination [88].

Mesenchymal Stem Cells and NK Cells

In vitro studies on the interactions between NK cells and
MSCs are of potential interest for cancer immunotherapy in-
volving NK cells [89], as well as for GvHD treatment and pre-
vention [52]. Anti-cancer activity of NK cells may be ham-
pered not only by the difficulty of penetrating inside the
tumor mass [90], but also by the interactions with the tumor-
associated stroma which is of MSC-origin and retains similar
immune regulatory properties [48, 50, 91].
The mechanisms underlying MSC-mediated NK cell modu -
lation have been partially unraveled. MSCs may inhibit both
IL-2- and IL-15-induced NK proliferation [28, 38]. Soluble fac-
tors or cell-cell contact mediate different effects depending on
the experimental settings. Thus, IFN-γ secretion following IL-
2-mediated NK stimulation is responsible for the inhibition of
NK proliferation by MSCs [28]; on the other hand, MSC-de-
pendent inhibition of IL-15-activated NK cells requires both
cell-cell contact and soluble factors, such as TGF-β1 and PGE2,
that are produced during MSC/NK co-culture [38]. The influ-
ence of MSCs on cytotoxicity of freshly isolated NK cells is
still controversial. In some studies with freshly isolated NK
cells, no MSC-mediated modulation of cytotoxicity has been
observed towards HLA class I-negative targets (K562 cell
line), whereas MSCs may impair the cytolytic activity against
HLA class I-positive targets [38]. In other experience, MSCs
not only inhibit the cytokine-induced proliferation of freshly
isolated NK cells, but also prevent their effector functions and
cytokine production against HLA class I-positive, as well as
class I-negative target cells (SKNBE and HTLA-30 cell lines)
[92]. Thus, MSC suppression of NK cytolitic activities may be
stronger against HLA class I-negative targets expressing a
limited number of ligands for different NK receptors [93]. In-
stead, when considering IL-15-activated NK, the suppressive
effect of MSCs on NK cytotoxicity depends on culture time. In
fact, short-term co-culture of IL-15-stimulated NK cells and
MSCs leads to the inhibition of NK cytolytic activity against
both the HLA class I-negative and -positive cells. This phe-
nomenon is associated with the reduction of IL-15-induced cy-
tokines, such as IFN-γ, IL-10, and TNF-α, and it requires cell-
cell contact [39]. Similar results have been obtained with long-
time co-culture of IL-2-activated NK cells with MSCs, leading
to the decrease of killing against the HLA class I-negative
K562 cell line [28]. Taken together, these data show that MSCs
may inhibit NK functions against HLA class I-negative and 
-positive targets which, in turn, become less susceptible to NK
attacks. The suppression of NK lytic activity and IFN-γ secre-

tion has been related to the release by MSCs of HLA-G5, a
soluble isoform of non-classical HLA class I usually expressed
in a few healthy tissues such as cytotrophoblasts [94], but is
also involved in tumor-driven immune escape [95], and IDO
activity [92].
Although most studies based on freshly isolated NK cells sup-
port the concept of a sort of MSC immunoprivilege [34], there
is also evidence of MSC susceptibility to NK-mediated killing
when activated NK cells are employed [38, 39, 92]. In fact,
MSCs express some ligands for NK receptors, such as NKp30,
NKG2D, and DNAM-1 KK, which make themselves suitable
to be lysed [39]. After IL-2 activation, NK cells may lyse MSCs
in both autologous or allogeneic settings [95]. However, this
phenomenon may be partially prevented by IFN-γ which up-
regulates the expression of HLA I molecules by MSCs [95]; in
addition, MSCs may inhibit the surface expression of NKp30
and NKG2D, as well as NKp44-activating receptor, thus im-
pairing NK effector functions [92].

Mesenchymal Stem Cells and Dendritic Cells 

DCs are the cells mostly specialized in the uptake, transport,
and presentation of antigens. Depending on their activation
and maturation stage, DCs may act in the primary immune re-
sponses as either inducers of T cell immunity or mediators of
T cell tolerance [96]. The interactions between DCs and MSCs
have been investigated in several studies to assess whether
MSCs may alter DC functions and contribute to the genera-
tion of tolerogenic antigen-presenting cells (APCs). The pre-
sentation of alloantigens by APCs to T cells leads to T cell ac-
tivation and proliferation which are both inhibited by the
presence of MSCs [46, 30, 31]; this evidence raises the question
whether the immune regulation by MSCs on T cell functions
involves, directly or indirectly, also the role of DCs. In the
presence of MSCs, CD14+ monocytes induced to differentiate
into fully mature DCs with endotoxin, IL-4, G-CSF, and TRL
stimulation, retain high CD14 expression without expressing
at high levels CD1a, CD40, CD80, CD83, CD86, and HLA-
DR which are all necessary to induce efficient T cell responses
[40, 41]. Moreover, MSCs may partially hamper immature
(such as endocytic activity) and mature DC functions (such as
IL-12 secretion), thus lowering DC ability to induce lympho-
cyte proliferation [41]. The use of CD14+ monocytes as APCs
in MSC/CD4+ or CD8+ T cell co-cultures may prevent T cell
proliferation and IFN-γ secretion in a dose-dependent fash-
ion, thus confirming that tolerogenic immature APCs persist
instead of mature DCs [40, 41]. APCs generated in the pres-
ence of MSCs express low levels of proinflammatory mole-
cules (IL-12, TNF-α, MHC class II), and high levels of IL-1β
and IL-10, the anti-inflammatory molecule inducing T cell un-
responsiveness, although CD86 expression is similar to nor-
mal controls without MSCs [42]. MSCs may determine the
shift from the DC1 to the DC2 signaling pathway as suggested
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by the decrease of TNF-α secretion by activated DCs that
leads to the reduction of IFN-γ-producing Th1 cells [43, 76]; on
the other hand, MSCs may induce DCs to secrete IL-10 that,
in turn, may favor IL-4-producing Th2 cells and increase the
proportion of regulatory T cells [43]. MSCs, when added to
GM-CSF- and IL-4-stimulated peripheral blood monocytes,
may impair their differentiation into DCs by determining divi-
sion arrest anergy, with complete loss of the ability of activat-
ing T cells [45]. Interestingly, MSC effect on monocyte differ-
entiation appears stronger than that exerted by fibroblasts
[97] as shown by the lower MSC/monocytes ratio employed
and by the lack of functional recovery by supplementing 
TNF-α to the initial co-culture [41]. In addition, the develop-
ment of Langerhans cells from CD34+ cells using GM-CSF
and TNF-α is not impaired by MSC presence at the beginning
of the differentiation culture. Instead, MSCs make DCs main-
tain an intermediate CD14+ CD1a– phenotype without ex-
pressing CD1a, which is typical of dermal/interstitial DCs,
even after MSC removal. Soluble factors secreted by MSCs,
such as IL-6 and M-CSF [72, 79], as well as cell-cell contact
[98] may mediate MSC modulation of DC maturation.

Mesenchymal Stem Cells and B Cells

MSCs may affect B cell proliferation, apoptosis, immunoglob-
ulin (Ig) production, and chemotaxis. Mouse B cell prolifera-
tion, induced by either anti-CD40 monoclonal antibody and
IL-432 or pokeweed mitogen [99], is inhibited by MSC co-cul-
ture. The results are similar with B cells stimulated with endo-
toxin and obtained from BXBS mice, the animal model for
human systemic lupus erythematosus (SLE) [100]. Human B
cell proliferation, induced by CpG, rCD40L, anti-Ig antibodies,
IL-2, and IL-5, is inhibited by MSC co-culture [28, 37], but the
maximum effect is observed at the B cell/MSC ratio of 1:1 of
which it is unknown if it can be reached inside the tissues in
vivo [37]. In the presence of CpG DSP30F ODN and allogenic
T cell-depleted peripheral blood mononuclear cells, human
MSCs do not affect B cell proliferation, unless IFN-γ, a typical
T cell-dependent B cell-promoting cytokine, is added. B cell
response to pokeweed mitogen is completely suppressed by
cognate contact with MSCs, and partially by soluble factors
present in the supernatant [99]. The addition of blocking anti-
bodies against the molecules of the programmed death path-
way (PD-1, PD-L1, and PD-L2) [101] may restore about 30%
of B cell proliferation [99]. However, MSCs may also have
MHC-independent, anti-apoptotic effects [78]. MSC-depen-
dent inhibition of human B cell proliferation appears to be
due to the arrest of the cell cycle in the G0/G1 phases, rather
than to the induction of apoptosis [37].
MSCs may also modulate Ig secretion, both in vitro and in
vivo. MSC/B cell co-culture at a 1:10 ratio leads to stimulation
of IgG secretion when both kinds of cells are in contact, but to
a significant reduction in IgG production in transwell experi-

ments [102]. Moreover, MSCs may lower IgG production in-
duced by endotoxin and herpes viruses, but not in the case of
weak responses [102]. MSCs may also inhibit IgM, IgG, and
IgA production, but at higher MSC/B cell ratios (1:1) [37].
This phenomenon has also been described with BXSB hyper-
reactive B cells [100]. The modulation of Ig secretion by MSCs
has been reported in in vivo models. In experimental EAE-
 affected mice, the production of antigen-specific Igs has been
measured after MSC infusion which led to a significant de-
crease in both total antigen-specific IgG and IgG subclasses
[103]. In addition, MSCs may modify the chemokine receptor
expression by B cells: significant decrease of CXCR4, CXCR5,
and CCR7 expression, as well as inhibition of chemotaxis by
CXCL12 and CXCL13 have been observed at a 1:1 MSC/B
cell ratio [37].
All these variable results reflect different experimental condi-
tions. The proliferative stimuli can be T-independent [28, 78]
or T-dependent [32, 99], specific [37] or not specific [99]. The
effects of MSCs on B cells are dose-dependent, but the
MSC/B cell ratios at which these effects have been observed
may vary according to culture conditions. Most results have
been observed at a 1:1 ratio [37], but recent studies suggest
that lower ratios, such as 1:10 [100, 102] and 1:30 [78] are still
effective. Figure 1 shows some of the mechanisms discussed
here.

In vivo Immune Modulation by Mesenchymal 
Stem Cells

Animal Models

A large number of animal models have been used to evaluate
in vivo MSC immune regulatory properties related to allore-
active responses in tissue transplantation and autoimmunity.
The evidence of the induction of immunological tolerance by
MSCs derives from preliminary data in a mouse model in
which allogeneic or xenogeneic (rat) HSCs were transplanted
with their marrow microenvironment under the kidney cap-
sule. In these conditions, the authors observed the decrease of
GvHD incidence and the onset of immunological tolerance to-
wards xenogeneic rat HSCs23. Subsequently, long-term donor-
specific hyporesponsiveness, in absence of cytotoreductive
conditioning regimens, and acceptance of donor skin grafts
have been achieved [66]. Similarly, fetal sheep co-transplanted
in utero with allogeneic HSCs and human MSCs, show in-
creased levels of engraftment and shorter periods of
hematopoietic reconstitution [104]. With a single dose of allo-
geneic MSCs derived from baboon bone marrow, only a mod-
est, although significant, prolongation of skin graft survival is
observed [46]. Similar results have been achieved with the sys-
temic infusion of ex vivo-expanded adipose derived MSCs
(ADAS) which may control lethal GvHD in mice transplanted
with haploidentical HSC grafts [105]; this phenomenon may
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occur only in the early phases after MSC transplantation so
that repeated MSC infusions are required to ameliorate
GvHD [105]. This might explain why the infusion of a single
MSC dose in allogeneic bone marrow transplantation does not
affect the incidence and severity of GvHD in mice [71].
The mechanism behind the enhanced engraftment in vivo is
still unknown. At present, it is unclear whether the im-
munomodulatory properties of MSCs are independent from
the engraftment-enhancing effect of these cells. One possibili-
ty is that cytokine release by MSCs may promote either hom-
ing or proliferation of HSCs, without requiring either MSC
persistency inside the bone marrow or the interaction with
other cell types, including immune effector cells. In fact,
human culture-expanded MSCs, co-transplanted with human
cord blood CD34+ cells in irradiated NOD/SCID mice, are
not detected inside the bone marrow at 6 weeks after trans-
plantation despite the improvement of hematological recov-
ery, as compared to controls without MSCs [106]. Conversely,
other studies have shown that human MSCs can be detected
inside the mouse bone marrow microenvironment after 4–10
weeks from transplantation; these cells appear to be involved
in the maintenance of human hematopoiesis via both soluble

factors and contact with hematopoietic cells [24, 107]. Howev-
er, MSC infusion is not always followed by their stable en-
graftment and function. In vivo studies have shown that the
administration of allogeneic MSCs into an MHC-mismatched
host may result in their rejection [72]. Moreover, co-infusion
of allogeneic MSCs in mice receiving allogeneic bone marrow
transplantation may not prevent bone marrow rejection as
 efficiently as in mice infused with autologous MSCs [70].
MSC-based immune modulation is considered a potential
novel strategy for autoimmunity. It has been shown that
mouse MSCs may improve EAE, a model of human multiple
sclerosis, through the induction of peripheral T cell tolerance
against the pathogenic antigen; however, MSCs seem to be ef-
fective only at the disease onset and peak, but not after dis-
ease stabilization [53, 108]. In a mouse model of rheumatoid
arthritis (DBA/1 mice immunized with type II collagen in Fre-
und’s adjuvant), a single injection of MSCs prevents the occur-
rence of severe, irreversible bone and cartilage damages, by
inducing T cell hyporesponsiveness and modulation of inflam-
matory cytokines, such as TNF-α [80, 109]. MSCs may also pro-
vide protective effects in rat models of kidney and myocardial
injury, based on ischemia/reperfusion processes, by secreting
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Fig. 1. Regulatory ef-
fect of MSCs on im-
mune effector cells. (A)

MSCs delay matura-
tion of monocytes and
dendritic cell (DC)
precursors, decrease
TNF-α and IL-12 se-
cretion by DCs type 1
(DC1), thus inhibiting
T-helper cell type 1
(Th1), and increase IL-
10 secretion by endo-
toxin-stimulated DCs
type 2 (DC2), thus in-
creasing regulatory T
cells. (B) MSCs inhibit
the development of cy-
totoxic T cells and their
IFN-γ production. (C)

MSCs decrease prolif-
eration and immuno -
globulin secretion by B
cells. (D) MSCs de-
crease cytotoxycity and
IFN-γ production by
NK cells. (E) MSCs de-
crease IFN-γ secretion
by Th1 and increase
IL-4 secretion by Th2.
Several factors pro-
duced by MSCs have been suggested to inhibit immune effector cells, such as indoleamine 2.3-dioxygenase (IDO), prostaglandin E2 (PGE2), trans-
forming growth factor-β1 (TGFβ1), hepatocyte growth factor (HGF), IL-6, IL-10, IL-1β, TNF-α, HLA-G5, nitric oxide (NO), and heme oxygenase-1
(OH-1). (F) Cell-cell contact: the absence of co-stimulatory molecules, such as CD80 and CD86, may contribute to the immunomodulatory effect of
MSCs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



soluble immune-modulating factors [110] or by inhibiting the
release of pro-inflammatory mediators [111]. Similarly, the
 infusion of MSCs in an experimental rat model of glomeru-
lonephritis accelerates the glomerular healing, probably
through the release of growth factors [112]. In mice with 
type 1 diabetes, it has been recently shown that MSCs and
bone marrow cells may have a synergistic effect, by supporting
the regeneration of recipient-derived pancreatic insulin-
 secreting cells and by inhibiting T cell-mediated immune re-
sponses against newly formed beta-cells [113].

Clinical Experience

Because of their immunosuppressive properties, MSCs are
considered a potential strategy to prevent graft rejection and
GvHD. Infusion of MSCs in autologous or allogeneic hema -
topoietic stem cell transplantation may accelerate hemato -
poietic recovery and reduce the risk of graft failure and the
 incidence of acute GvHD [24–27, 114–116], even in the ab-
sence of long-term persistence after successful allogeneic stem
cells transplantation [117]. To assess the safety of ex vivo-ex-
panded MSCs, a phase I trial has been designed with 15 volun-
teers with hematological malignancies in complete remission.
Patients received intravenous autologous MSCs at different
doses, but no adverse effects have been reported [114]. Simi-
larly, 28 patients with advanced breast cancer received autolo-
gous hematopoietic stem cell transplantation with ex vivo-ex-
panded MSCs at the dose of 1–2.2 × 106/kg body weight, thus
achieving faster hematopoietic recovery with no toxicity [25]. 
Autologous MSCs are not always available for autologous
transplantation as high-dose chemotherapy before hematopoi-
etic stem cell transplantation may damage the bone marrow
stroma [118]. Allogeneic MSCs derived from healthy donors
may be an alternative choice, at least for immunocompro-
mized patients. In a multicenter clinical trial, 46 patients with
heterogeneous hematological malignancies have been co-in-
fused, after a myeloablative conditioning regimen, with HSCs
and bone marrow culture-expanded MSCs, both derived from
HLA-identical sibling donors [26]. MSCs (1–5 × 106/kg body
weight) were infused 4 h before HSCs with neither adverse
events nor ectopic bone and cartilage formation, nor increase
of the incidence or severity of GvHD. However, hematopoi -
etic recovery and prevention of graft rejection were similar to
controls [26]. Similarly, 7 patients of different ages, diagnosis,
and disease status were treated with allogeneic (3 cases) or
haploidentical (4 cases) MSCs together with HSCs. A neu-
trophil count of > 0.5 × 109/l and a platelets count of > 30 ×
109/l were both achieved after a median of 12 days. Acute
GvHD grade 0–I occurred in 5 patients, and grade II acute
GvHD in the 2 other patients, evolving into chronic GvHD in
1 patient [27]. Comparable results have been obtained in an
European phase I–II study: 14 children received haploidenti-
cal HSC grafts in combination with expanded MSCs derived

from donor bone marrow. Faster leukocyte recovery was ob-
served, with no immediate adverse effects [115]. Allogeneic
MSCs have been used also for the treatment of severe idio-
pathic aplastic anemia refractory to conventional treatment
and not eligible for allogeneic HSC transplantation [116]. One
patient was infused twice with allogeneic MSCs (2 × 106 and 
6 × 106 MSCs/kg body weight), without any conditioning regi-
men. No signs of hematopoietic recovery were evident 34 days
after the second infusion, and the patient died of invasive fun-
gal infection. However, donor MSC engraftment was detected
in the endostium by bone marrow biopsy, but not in the mar-
row aspirates, thus suggesting that transplanted MSCs are pri-
marily located in the bone and can be transplanted across
HLA barriers [116]. Third-party (mother’s), haploidentical
MSCs were used to treat severe, refractory, grade IV acute
GvHD of the gut and liver in a 9-year-old boy, at the dose of 
2 × 106 MSCs/kg body weight. No toxicity after MSC infusion,
rapid disappearance of symptoms, and strong immunosuppres-
sion in vivo were observed [52]. At present, there are different
phase II clinical trials running to study the optimal MSC dose
and administration schedules that have the best efficiency in
preventing or treating GvHD following allogeneic HSC. Simi-
lar approaches are used with adipose-derived MSCs which are
effective in controlling GvHD [105], as well as inflammatory
damages following tissue irradiation [119].
In the future, a large number of autoimmune diseases could
benefit from the use of MSCs, such as rheumatoid arthritis,
multiple sclerosis, and type I diabetes, as shown by the in vivo
studies in animal models [53, 80, 108, 109, 113]. Similarly,
MSCs could be used for tissue regeneration in some genetic
diseases, such as osteogenesis imperfecta [120], and for wound
healing [121].

Safety Concerns for in vivo Use of MSCs

Overall, data show the lack of significant acute or chronic toxi-
city following systemic MSC administration, the wide tissue
distribution of infused MSCs, their long-lasting survival (over 1
year) [122], and the absence of ectopic tissue formation during
a follow-up of 3 years [27]. Still, open questions are the tumori-
genic potential of MSC infusion and the MSC-mediated sup-
port of developing cancers by preventing specific anti-cancer
immune responses. In vitro cultured human bone marrow-de-
rived MSCs show a normal karyotype before transplantation
into the patients [123], they are not susceptible to malignant
transformation after long-term in vitro culture until senescence
or passage [25], and they do not exhibit telomere maintenance
mechanisms [124]. However, MSCs co-infused with bone mar-
row into irradiated allogeneic recipients mice may develop sar-
coma and display cytogenetic abnormalities [125].
MSCs are capable of homing to the sites of injury, and they
may therefore provide site-specific and local immune regula-
tion. However, MSCs may also promote tumor growth and
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prevent the rejection of allogeneic tumor cells [19, 20, 90, 91,
95, 126–131]. MSCs, infused either systemically or subcuta-
neously inside growing B16 melanoma cells, determine the
 enhancement of tumor formation [131]. MSCs within tumor
stroma favor breast cancer metastases in mice bearing subcu-
taneously MCF7/Ras or MDA-MB-231 human breast cancer
xenografts [126]. In vitro studies suggest that molecules be-
longing to the epidermal growth factor family may play a role
in the expansion and differentiation of stromal cell precursors
inside tumors [132]. More importantly, MSCs may inhibit in
vitro and in vivo the specific anti-tumor immune response
against Sp6 plasmacytoma in Balb/c mice previously immu-
nized and refractory to tumor development [20]. On the other
hand, some studies have shown that MSCs may inhibit tumor
growth in mouse [131] and rat [127, 128] models. Similarly,
human MSCs exhibit a dose-dependent anti-proliferative ac-
tivity on different tumor cells lines of hematopoietic and non-
hematopoietic origin, producing the transient arrest of tumor
cells in the G1 phase of the cell cycle, which disappears after
MSC removal [129]. However, when tumor cells are co-
 injected with MSCs into NOD-SCID mice, tumor engraftment

and growth are favored [129]. Therefore, the clinical use of
large doses of MSCs must always consider the potential side
effects in terms of tumor development. However, because of
their preferential migration to sites of tumor growth, MSCs
may be used as vehicles for specific and precise anti-cancer
drugs  delivery, such as IFN-β [91, 127] and NK4130, with a
small number of side effects.

Conclusion

MSCs and their stromal progeny may be considered powerful
regulatory cells, a sort of DC counterpart, which influence all
the main immune effectors and functional roles in vivo, as well
as potential applications in the treatment of a number of
human immunological diseases. By choosing MSC tissue ori-
gin, cell dose, administration route, and treatment schedule, all
the potential side effects related to MSC use, including tumor
growth enhancement, have to be well considered to maximize
the benefits of MSC-dependent immune regulation without
significant risks for the patients
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