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ABSTRACT
A new method for predicting protein fold-classes and
protein domains from sequence data is constructed and
used for generating a data base of protein fold-class
assignments. Any given sequence of amino acids is
assigned a specific prediction of one out of 45 typical
protein fold-classes, a prediction of one out of 4 super
fold-classes for the content of secondary structures
and a profile of fold-class predictions along the
sequence. The prediction accuracy for the super fold-
classes is around 91% correct and 82% correct for the
specific fold-classes. This accuracy is maintained down
to a few percent of sequence identity.

INTRODUCTION
The DEF (Database for Expected Fold-classes) contains protein
fold-class predictions from sequences in the SWISS-PROT protein
sequence data base and is used for making predictions of fold-
classes for any new sequence. In the DEF database a sequence
of amino acids is assigned a specific overall fold-class, a super
fold-class with respect to secondary structure content and a profile
of possible fold-classes along the sequence. The assignment of
a fold-class is one out of 45 well-known folds derived from the
3-dimensional protein structures in the Brookhaven Protein Data
Bank, PDB. Most of these 45 fold-classes are contained in the
set given by Pascarella and Argos [1] and are roughly in
accordance with similar selections of folds [2,3]. In this context
folds are protein domains with a distinct back-bone topology of
their 3-dimensional structure. An extra requirement for the
selection of the 45 classes, used as the basis for the predictions,
is that they contained at least two members in order to make an
assessment of the accuracy of the prediction [4,5]. Apart from
the fold-classes contained in reference 1, some extra fold-classes,
for example folds found in membrane-bound structures, were
added in order to cover a wider range of structures. A list of
the 45 protein fold-classes is given in Table 1. In terms of
secondary structure content this list of folds is rather complete
and well-balanced. This can be seen from the division of these
folds into 4 super classes of c-helical, $-sheet, ao3 and a + s3
structures which have ca-helical and ,B-sheet structures equally
well represented. (The third super class stands here for a-helices

and (3-sheets intertwined while the fourth super class has a-helices
and (-sheets separated in distinct domains).

METHODOLOGY
The following is a short presentation of the methodology
employed for the prediction of protein fold-classes. The main
tools are artificial neural networks that can be considered as
knowledge based classifiers. These networks will gradually
acquire a global information processing capacity of classifying
data when being exposed (trained) to many pairs of corresponding
input and output data such that new output can be generated from
new input. The reason for choosing these networks among many
other types is due to their renowned ability to generalize
molecular biology data [6-10] and their rather simple structure
both with respect to processing of data and training.

In the present application a special type of feed forward neural
networks called Cascade-Correlators [11] are utilized. The
training algorithm optimizes the weights and the number of hidden
units in a feed-forward network by adding units during the
training process. The process of adding new hidden units that
maximize the correlation between their activity and the error
remaining at the output layer is repeated until the mapping has
the desired accuracy.

IMPLEMENTATION
The actual neural networks for predicting fold classes are
constructed from the SNNS (Stuttgart Neural Network Simulator)
environment [12]. The networks are trained on a selection of
proteins from each of 45 fold classes containing domain segments
of proteins or often whole proteins. The input representation for
each protein domain is a 20 x20 matrix containing integer
numbers corresponding to the absolute frequencies of dipeptides
occuring in neighbouring positions in the primary sequence of
the domain. All protein domains are transformed in this way into
one input pattern of fixed size. Insertions and deletions from the
protein sequence cause only small changes in the dipeptide
frequencies. The same holds true for rearrangements of larger
elements in the sequence. There are many cases where members
of the same fold class differ mostly by permutations of sequence
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Table 1. Example of an entry of 9pap predicted correctly as pap

DEF Expected Fold Database Version 0.1
PROTEIN-ID 9pap
NOTATION(FOLD-ID):
1 helix-bndl., 2 cytc, 3 hmr, 4 wrp, 5 globin, 6 lzm, 7 cyp, 8 ca-bind., 9 tin, 10 cts, 11 pap, 12 crn,
13 cpp, 14 wga, 15 sns, 16 plipase, 17 gap, 18 inhibit, 19 xia, 20 kinase, 21 rn-binding, 22 TIM-barrel,
23 eglin, 24 pgk, 25 dir, 26 sbt, 27 s-protease, 28 cpa, 29 ferrodox 30 fxc, 31 phi, 32 rdx, 33 virus,
34 virus-protease, 35 gcr, 36 igb, 37 il, 38 ac-protease, 39 lox, 40 plasto, 41 Itn, 42 hoe

SUPER CLASS I (I:a, II:as6, III:a + 8, IV:,O)
TOTAL CLASS pap
DOMAINS 1-100 pap, 110-200 pap
*SEQUENCE FOLDCLASS PROFILE (entries are structural similarity score 1-100)

SeqNoTfoldclass
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1 1 U U U U U U U 1( 33 U

1 1 0 0 0 0 0 0 0 18 34 0
1 1 0 0 0 0 0 0 0 18 33 0
1 1 0 0 0 0 0 0 0 18 28 0
1 1 0 0 0 0 0 0 0 16 28 1
1 1 0 0 0 0 0 1 0 10 27 1
11 0 0 0 0 0 0 0 14 29 1
11 0 0 0 0 0 0 0 15 28 0
1 0 0 0 0 0 0 0 0 14 26 0
1 0 0 0 0 0 0 0 0 12 24 0
0 1 1 0 0 0 0 0 0 14 21 0
0 1 1 0 0 0 0 0 0 14 22 0
0 1 1 0 1 0 0 0 0 14 24 0
0 1 1 0 1 0 0 0 0 14 26 0
0 1 1 0 1 0 0 0 0 12 26 0
1 1 0 0 0 0 0 0 0 13 25 0
1 1 0 0 0 0 0 0 0 12 27 0
1 0 0 0 1 0 1 0 0 9 29 0
1 0 0 0 1 0 1 0 0 4 31 1
2 0 0 0 1 0 1 0 0 4 31 1

1211110312
1221110311
0121100311
0111010311
0111010311
01 1 101031 1
01 1001031 1
01 10010221
0110010221
0110010120
0210010120
0210000120
0210000120
0210000120
0210000120
0210010110
0200010110
020001011 1
020012111 1
0200131112

0 03 0 0 10
0 03 0 1 2 1 0
0 02 0 1 2 0 0
0 02 0 1 2 0 0
0 02 0 1 2 0 0
001 0 1 2 1 0
00 0 0 12 1 0
001 0 3 1 0
001 0 1 2 0 0

elements. Such permutations of the primary sequence lead to very
similar dipeptide matrices which supports similar classification
results. Each fold class is represented by one output unit which
should have an activation close to 1.0 if the domain coded in
the input layer is a member of that fold class. In all other cases
the activity should be close to 0. When an unknown sequence
is classified, the fold class corresponding to the largest activation
at the output unit is assigned to the sequence.

DATASET OF KNOWN FOLD-CLASSES

The selection of protein structures that were used as basis for
the fold-class predictions are listed in the top of Table 1. In some
cases they were whole proteins and in other cases just distinct
domains of proteins. Only classes that contained more than 1
structural fold was used and each class represented a particular
distinct topology of the protein backbone chain. A suff'icient but
not necessary requirement for protein domains to be member of
a given class was that they had more than 50 % sequence
similarity to the other folds in the class but members could in
some cases be down to 10 % sequence identical to other members
of the same class. Most of the classes were contained in the set
proposed by several authors [1I-3] but some newer structures
were incorporated in order to represent membrane-bound proteins
and nucleotide binding proteins.

FORMAT

The format of the entries in the database is best explained by
an examnple. The example is of an entry of the protein 9pap given
in Table 1. In the first line just after the database name the
sequence name is given. The next five lines give the full list of
all the fold-classes which are used as basis for the prediction.
The names of the fold-classes are taken from reference 1 and
both in reference 1 and 6 all the proteins contained in the fold-
classes are given. In the next line the super class predictio'n is

given in Roman numbers and explained in a parenthesis. The
next line gives the prediction of the specific fold-class. Next
comes a line with the predicted domain specification. Finally
comes the table with the profile of fold-class predictions made
from a window of 100 residues moved along the sequence. The
different fold-classes are numbered along the horizontal line and
the sequence number down along the vertical axis.
.The format for a new sequence to be assigned a predicted fold-

class and profile is the following: 1. line contains the identifier
(name of the sender), 2. line contains the sequence name and
3. the forthcoming lines should give the sequence of amino acids
in the one-letter code with 80 characters on each line.

DISTRIBUTION

The database will be available from the end of August 1994 and
can be obtained from:

Department of Molecular Bio-physics,
DKFZ, Heidelberg 69120, Germany.
Telephone: +49-6221-422372,
Telefax: +49-6221-422333

and is also available through the anonymous ftp address:
mbp-sgi4.inet.dkfz-heidelberg.de in the directory/pdb/data-
bases/def. The database can be easily accessed and is in principle
public domain. The net-node number is 193.174.48.50. The
database on the e-mail address will also be connected to an
automatic mail server that can make fold-class predictions for
any incoming sequence in the GCG format mentioned above.

DATABASE PROGRAM

The program that runs the test of the network and thereby the
one that generates fold-class predictions for new sequences is
installed in the directory /pdb/databases/def and is written in C +.-

. . d% #% 1% 0% 1% I -P 12 -2 f%
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Figure 1. Graphical representation of the fold profile for 9pap. The protein is consisting of two distinct domains with separate folds which is clearly seen in the
division of the white band for the pap fold (no. 11). The window of the profile prediction is 100 residues wide which means that the profile starts at the 51 'th residue.
A profile can also be made from the beginning of the sequence by adding a number of neutral characters corresponding to half the window size.

It is within the environment of the Stuttgartt Neural Network
Simulator, SNNS, and basically assumes sequences written in
the one-letter code and will give out a definite fold-class for the
overall structure. However, for proteins with structures containing
different domains the fold-class profile can give knowledge about
the partition of the structure (see Fig. 1).

Prediction of 42 fold-classes (out of the 45 classes) is nicely
illustrated in the permutation matrix shown in a figure in
references 5 and 6 but similar results are seen in the Figure 1
below, where the profile or spectrum of similarities to all fold-
classes and along the sequence in question. In that way each
possible domain of a protein sequence around each residue can
be evaluated for structural similarity. It is seen that most mistakes
are made between classes close to the diagonal which means
among similar classes. The classes are so arranged that the a-
helical rich protein classes are at the upper end and the fl-strand
rich protein classes are on the bottom.

PERFORMANCE OF THE DATABASE PROGRAMS

The present networks appear to train acceptably well (about 100%
correct in recall, and a similar Matthews's correlation coefficient

[ 13,14]) on the task of predicting fold classification and distance
matrix geometry [15]. Their predictive performance turned out
to be rather successful with a score of around 82% for predicting
fold classes (with a total of 42 classes). An improvement was
obtained when the prediction of super classes was combined with
the 42 fold-class predictions in a hierarchical way. In the case
of predicting a correct super fold-class (out of a total of 4 classes)
we obtained a correctness score of 90%. There have been other
successful attempts recently in predicting fold classes on a less
fime grained scale [16-18].
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