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Abstract

Background: A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of
additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in
freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission,
which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female
parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-
encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein
for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F-
and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but
this remains to be demonstrated.

Methodology/Principal Findings: We investigated all complete (or nearly complete) female- and male-transmitted marine
mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves.
Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (.100aa) and located in the
control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus
species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ,13 million years. Furthermore,
this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the
subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino
acid and nucleotide levels.

Conclusions/Significance: Our results offer support for the hypothesis that ‘‘novel F genome-specific mitochondrial genes’’
are involved in key biological functions in bivalve species with DUI.
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Introduction

Apart from the nucleus, mitochondria are the only known

organelles with their own DNA in animal cells. Given the

abundance of animal mitochondrial DNA (mtDNA) in animal

tissues, strict maternal inheritance, the different evolutionary rates

of its genes and the absence (or very low level) of recombination

[1–3], this genome has come to be considered a reliable and robust

marker for phylogenetic and population genetic studies as well as a

model for the study of genome evolution [3,4]. Comparative

mitochondrial genomics has revealed that animal mtDNAs are

very conserved in terms of gene content [4]. These small circular

and typically intron-less molecules encode 2 ribosomal RNAs, 22

transfer RNAs and 13 protein subunits of the mitochondrial

respiratory chain complexes and ATP synthase. The other

subunits of the electron transport system (i.e., ,65 subunits in

mammals) as well as all the proteins and factors involved in other

mitochondrial functions, such as mtDNA replication and mtDNA

expression, are nuclear-encoded [4,5]. However, with the

increasing number of published mitochondrial genome sequences,

examples of species that deviate from the gene content norm have

been described in different animal groups including multiple

species lacking one of the standard mitochondrial protein-coding

genes [3]. In contrast, additional mitochondrial protein-coding

genes, usually found in mtDNAs of the closest unicellular relatives

of animals (e.g., mutS, dnaB, atp9, tatC in protists), have only been

identified and annotated in the mitochondrial genomes of non-

bilaterian animals (i.e., Cnidaria and Porifera; [3]).

One intriguing observation that emerged from sequencing

studies of whole animal mtDNAs is the occurrence of numerous
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open reading frames (ORFs) of unknown function that are present

in closely related species but for which homologues cannot be

determined among more distantly related species [3,6–11]. In

bacterial and eukaryotic nuclear genomes, unique proteins that do

not have recognizable homologues in other organisms (or that exist

only in very closely related organisms) are commonly called

‘‘lineage-specific’’, ‘‘taxonomically restricted’’ or ‘‘orphan’’ genes

[12–14]. Interestingly, these lineage-specific genes have been

shown to be involved in key biological functions and important

adaptive processes [13–15]. For example, it has been demonstrat-

ed that species-specific differences in tentacle formation in the

cnidarian genus Hydra correlate with expression of a taxonomically

restricted gene encoding a small secreted protein of ,85–105

amino acids [13]. Thus, the lineage-specific open reading frames

that occur in animal mitochondrial genomes could potentially

have functional significance. Lineage-specific mtDNA-encoded

proteins are already known to play a role in sex determination in

angiosperm plants exhibiting cytoplasmic male sterility [16].

Recently, we demonstrated the expression of two novel, sex-

associated mtDNA-encoded proteins, the F- and M-ORFs, in

freshwater mussels (Bivalvia: Unionoida) [11]. Although bioinfor-

matics tools have not allowed us to characterize these genes, we

have found that the female-transmitted ORF protein is not only

present in mitochondria but, more surprisingly, it is also present on

the nuclear membrane and in the nucleoplasm of eggs [17]. These

results established novel features for animal mitochondrial

genomes: the presence of additional, lineage-specific, mtDNA-

encoded proteins with functional significance and the involvement

of mtDNA-encoded proteins in extramitochondrial functions.

Interestingly, this discovery has been made in the only known

animal group that does not transmit its mtDNA exclusively

maternally [18,19].

Unlike the system of strict maternal inheritance described in

other animal species, bivalves belonging to the orders Mytiloida,

Veneroida and Unionoida instead possess a system of doubly

uniparental inheritance (DUI) of mtDNA [18,19]. Specifically,

DUI is a ‘‘mother-to-daughter’’ and ‘‘father-to-son’’ mtDNA

inheritance system where females transmit their mt genomes (F

mtDNA) to both sons and daughters, and males transmit their mt

genomes (M mtDNA) to their sons [20–23]. Female offspring are

typically homoplasmic ( = containing one mt genome) and male

offspring are heteroplasmic [21,23] but see [24,25]. In marine

mussels Mytilus spp., male somatic tissue contains predominantly

the mtDNA of the mother (F genome) but male gametes contain

exclusively the mtDNA of the father (M genome) [26,27]. In

contrast, the M-type genome is predominant in male somatic

tissues of the marine clam Venerupis philippinarum, and also exclusive

in male gametes [28]. Remarkably, amino acid sequence

divergences between sex-associated mtDNAs can reach 20%

(uncorrected p-distance) in marine mussels Mytilus and up to 50%

in freshwater mussels [29–31]. The latter observation is likely due,

in part, to the relative stability and antiquity of the unionoid

bivalve F and M genomes, i.e., these two mt genomes have been

separately transmitted for .200 my.

The newly identified F- and M-ORFs in freshwater mussels are

not the only mitochondrial novelties with functional significance in

these bivalves. It has been proposed that the C-terminus coding

extension of the COX2 protein (Mcox2e), which is unique to

freshwater mussel M genomes [32–36], could represent an ‘‘M-

specific label’’ for sperm mitochondria that determines their fate in

the fertilized eggs (as observed in Mytilus [37,38]). In the marine

mussel Mytilus spp., it has been proposed that the primary

candidate for sequences that control the mode of inheritance of the

two mitochondrial genomes would reside in the first variable

domain (VD1) of the control region (CR) [39,40]. The Mytilus CR

can be divided in three domains based on indels and nucleotide

variation [39,40] (see also Figure 1): the first variable domain

(VD1), which is the longest region of the CR, followed by a highly

conserved middle domain (CD) and then a second variable

domain (VD2), which is the shortest region of the CR. While the

average DNA divergence between F and M genomes over the

whole molecule may reach ,20%, CD has diverged by only 1.5%,

VD2 by about 15%, whereas VD1 is the most divergent part of the

entire mt genome with DNA divergences averaging 50% [39–41].

Clearly, VD1 is under different, potentially sex-specific selective

constraints, suggesting that it could play different roles in the F and

M genomes [39,40].

An interesting difference between marine mussels and freshwa-

ter mussels is that only in the former group have F mt genomes

periodically experienced ‘‘role-reversal events’’ and invaded the

male route of inheritance, resulting in the formation of new M mt

genomes [42–44]. These new M mt genomes (known as recently

masculinized M types) are essentially recombinants composed of

an F genome’s coding and control regions with an additional CR

from a so-called ‘‘standard M’’ genome inserted into the F-type

CR [30,45–47]. It has therefore been suggested that the

incorporation of sequences from the CR of a standard M genome

into an F genome could be responsible for the paternal

transmission route of the recombinant mtDNA genome

[18,30,39,47,48]. However, attempts to confirm mitochondrial

sequences and/or mt encoded proteins that are responsible for the

different modes of mtDNA transmission under DUI have not been

successful.

To date, much of the work on marine mussels, Mytilus spp., has

focused on F vs. M-specific mtDNA motifs in the CR as potential

features that could determine whether a genome will follow the

maternal or the paternal mode of inheritance [39,40,45,46].

Herein, we re-investigated all complete (or nearly complete) F,

standard M and recently masculinized M mytilid mt genomes and

control regions previously sequenced for the presence of ORFs

that could have functional importance in these bivalves. Our

results confirm the presence of a novel F genome-specific ORF of

significant length (.375 nt), located in VD1, that most likely has

functional significance in marine mussels (Mytilus spp.). The

identification of this ORF in the relatively closely related Mytilus

edulis, M. galloprovincialis and M. trossulus and in the more distantly

related, also DUI-containing, M. californianus [49] and M. coruscus

(evidence from GenBank) suggests that it has been maintained in

the mytilid lineage (subfamily Mytilinae) for ,13 million years

[50]. Furthermore, this ORF likely has a homologue in the F mt

genome of Musculista senhousia, a DUI-containing mytilid species in

the subfamily Crenellinae [51]. Our results offer support for the

hypothesis that ‘‘novel mt genome-specific genes’’ are involved in

key biological functions, such as mtDNA transmission, in bivalve

species with DUI.

Results and Discussion

Identification of open reading frames (ORFs) in the
control regions of Mytilus mt genomes

To assess whether F and M mitochondrial control regions (CR)

could possess ORFs that could have functional importance in

Mytilus bivalves, we first investigated complete mtDNAs previously

sequenced for the Mytilus edulis species complex (i.e., M. edulis, M.

galloprovincialis and M. trossulus of the subfamily Mytilinae). Our

results indicate that the VD1 of the F-type CR contains one

conserved ORF (F-orf-vd1) of substantial length (.100aa). F-orf-vd1

has complete start and stop codons and is located on the same

Novel Mitochondrial ORF in Marine Mussels
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strand as all other mtDNA-encoded genes (Figure 1 and Tables 1

and 2). The predicted length of the F-ORF-VD1 protein is 163

amino acids (aa) for M. edulis and M. galloprovincialis and 153aa for

M. trossulus. Interestingly, F-ORF-VD1 was also detected in the F-

type CR sequences of the more distantly related species M.

californianus (129aa) and M. coruscus (127aa). These results are

consistent with the hypothesis that the F-ORF-VD1 region

represents a new Mytilus mitochondrial gene with biological

significance. In contrast to the F-type CR, conserved ORFs of

similar sizes were not found in any of the M-type VD1 regions

(Figure 1 and Tables 1 and 2). Assessing homology using a

combination of sequence and position similarity, M-type ORFs of

94aa and 112aa were found in M. edulis VD1, ORFs of 21 and

42aa were found in M. galloprovincialis and ORFs of 73aa and 74aa

were found in M. trossulus VD1 (Tables 1 and 2). Notably, ORFs of

different sizes (24aa to .100aa) were identified within each species

in the other complete M-type VD1 sequences available in

GenBank, including the more distantly related M. californianus

(30 and 32aa) (Figure S1). Moreover, analysis of these M-type

ORF sequences using the testcode algorithm [52], which

recognizes potential protein-coding sequences by evaluating the

distribution of nucleotides at the third codon positions within a

reading frame, suggests that they are non-coding (Table 3;

probability of coding ,30%). The gene-finding program Glim-

mer3 [53], which uses an interpolated Markov model scoring

algorithm that computes the log-likelihood that a given interval on

a DNA sequence was generated by a model of coding versus non-

coding DNA, also failed to identify these M-type ORFs as putative

protein-coding genes (data not shown). Contrary to the testcode

algorithm that does not provide reliable results for sequences

,200 bp [52], Glimmer3 is highly precise and sensitive to find

protein-coding genes as small as 90 bp and usually detects .98%

of genes in prokaryotic genomes with a limited number of false

positive predictions [53]. It is also a very effective gene finder for

Figure 1. A typical Mytilus mitochondrial genome. All genes are encoded on the same strand. Gene identities: nd1-6 and nd4l, NADH
dehydrogenase subunits 1–6 and 4L; cytb, cytochrome b; cox1-3, cytochrome c oxidase subunits I–III; atp6-8, ATP synthase subunit 6 and 8 (protein-
coding genes in white); 12SrRNA and 16SrRNA, small and large subunits of ribosomal RNA (in light gray). Transfer RNA genes are depicted by one-
letter amino acid codes (in gray). The red and blue lines at the inner periphery of the ring represent EST sequences for the F and M mt genomes of M.
edulis/M. galloprovincialis, respectively. Schematics of the structure of a typical F-type (left) and M-type (right) control regions, which are located
between the 16SrRNA and trnY genes, are shown. The F-ORF-VD1 is identified in the F-type control region. CR, control region; CD, conserved domain;
VD1, variable domain 1; VD2, variable domain 2 [39,40]. The mean size of each domain of the CR is shown. *The ‘‘standard’’ F-type CR of M. trossulus,
which is a F/M recombinant CR, is not presented.
doi:10.1371/journal.pone.0019365.g001

Novel Mitochondrial ORF in Marine Mussels

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e19365



eukaryotic genomes [54], and its accuracy to identify unannotated

genes has been convincingly demonstrated by laboratory exper-

iments [53]. For example, Glimmer3 predicted 16 out of 17 new

proteins confirmed by protein-based experiments on the archaeon

Pyrococcus furiosus [53]. Only the 13 typical mitochondrial protein-

coding genes were successfully identified in the Mytilus M genomes

using Glimmer3 (no additional ORF were found on the coding

strand). These results support previous inferences that the M-type

VD1 might function at the DNA or RNA level because of the

presence of potential tRNA-like secondary structures in this

domain [39,40].

The situation for the F-type VD1 is remarkably different.

Specifically, ‘‘full length’’ F-ORF-VD1s were found in all M.

californianus VD1 (n = 3), in all but 3 (12/15) M. trossulus VD1 and

in all but 8 (41/49) of the M. edulis and M. galloprovincialis VD1 that

have been completely sequenced to date (Figure S2)

[39,40,45,46,55–57]. It is worth noting, however, that all three

‘‘truncated’’ vs. ‘‘full-length’’ M. trossulus F-ORF-VD1s (i.e., those

with109aa instead of 153aa) and 7 of the 8 truncated M. edulis/M.

galloprovincialis F-ORF-VD1 (84 to 144aa instead of 163aa) were

found in recombinant CR sequences that consist of both F-type

and M-type CR segments or in duplicated F-type CRs [40,46,56].

In M. trossulus, all three truncated ORF sequences were due to a

guanine base deletion at position 295 (out of 462 nt) in a segment

consisting of a stretch of 5 Gs in ‘‘full length’’ M. trossulus F-orf-vd1

sequences (Figure S2). However, this deletion was absent in all

partially sequenced M. trossulus F-type VD1 available in GenBank

(n = 156), which correspond to the first 407 nt of the F-orf-vd1 and,

when translated, to the first 135aa of the F-ORF-VD1 without any

stop codon. These observations raise the possibility that the 3

truncated M. trossulus F-orf-vd1 sequences might represent sequenc-

ing errors. In the case of M. edulis/M. galloprovincialis, all

‘‘truncated’’ F-orf-vd1 sequences observed in recombinant CR

sequences were also found to occur only in sperm, i.e., these

haplotypes were consistently absent from females [46], suggesting

that they could represent recently-masculinized CR sequences (see

below). A unique ‘‘truncated’’ F-orf-vd1 sequence, due to a

nucleotide insertion in a non-recombinant CR sequence, has

been found in the complete M. edulis F genome (Figure S2), which

was obtained from cloning experiments [58–60]. Multiple rounds

of cloning or a sequencing error could explain this particular

exception.

Support for identifying F-orf-vd1 as a protein-coding
gene

Support at the transcriptional level. The maintenance of

‘‘full length’’ F-orf-vd1 regions in the closely related Mytilus edulis,

M. galloprovincialis and M. trossulus as well as in the more distantly

related M. californianus and M. coruscus, which represents ,13

million years of Mytilus mussel evolution [50], strongly argues in

favor of functionality for this open reading frame. The hypothesis

that the F-type but not the M-type VD1 encodes a protein is

consistent with previous observations that F and M VD1 are under

different selective regimes and likely explains why the

intergenomic DNA divergences between F and M VD1 are the

highest for Mytilus mitochondrial genomes [39,40]. As listed in

Table 2, the mean DNA divergences between aligned portions of

the putative F-orf-vd1 and the M-type VD1 within each species

exceed by far those observed for the recently identified, rapidly

evolving atp8 gene [61]. The maintenance of a functional ORF

only in the F lineage would explain not only the high intergenomic

divergences but also support the hypothesis that VD1 has a sex-

specific function [39,40,45], specifically, that the F-ORF-VD1 is a

novel mitochondrial protein with a F-specific function in Mytilus

mussels. In support for such a role, testcode predictions of protein

coding function for the F-orf-vd1sequences are, with the exception

Table 1. Complete mitochondrial genome sequences of mytilid species with DUI used in this study.

Species Gender
Genome Size
(bp)

Position of the
novel ORF

GenBank Accession
Number Reference

MYTILOIDA

Mytilinae

Mytilus edulis F 16,740 1610..1942c AY484747 [59,60]

Mytilus edulis M 16,622 1303..1641 AY823623 [30]

Mytilus edulis M 16,624 1348..1632 AY823624 [30]

Mytilus galloprovincialis F 16,744 13..504 AY497292 [29]

Mytilus galloprocinvialis M 16,626 41..169 173..238 AY363687 [29]

Mytilus galloprovincialis RM* 19,109 13..432 (F-like) DQ399833 [47]

Mytilus trossulus Fa 16,781 13..540 DQ198231 [96]

Mytilus trossulus Ma 16,634 62..412 DQ198225 [96]

Mytilus trossulus Fb 18,653 443..904 GU936625 [97]

Mytilus trossulus Mb 16,578 16487..133 GU936626 [97]

Mytilus trossulus Mb 17,538 17465..148 GU936627 [97]

Mytilus trossulus RMb,* 18,652 3248..3709 (F-like) AY823625 [30]

Crenellinae

Musculista senhousia F 21,557 779..1144 GU001953 Passamonti et al. submitted

Musculista senhousia M 21,612 - GU001954 Passamonti et al. submitted

NOTE.—F = Female genomes; M = Male genomes; RM* = These genomes are recently-masculinized genomes (see text for details).
aThese complete mtDNAs from Baltic M. trossulus derive throught recent introgression from M. edulis [96].
bThese complete M. trossulus mtDNAs correspond to or have high affinity with the corresponding ancestral M. trossulus genomes from North America [30,97].
doi:10.1371/journal.pone.0019365.t001
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of M. coruscus (probability of coding = 30%), all very high (Table 3).

The gene-finding program Glimmer3 [53] also predicts the

protein coding nature of the F-orf-vd1 sequences. The program

attributes a score to each orf, providing a consistent scale to

compare coding potential scores of different orfs [53]. For

example, the Mytilus edulis F-orf-vd1 presents a higher coding

potential score (8.99) than the typical mitochondrial protein-

coding genes cox1-cox2-cox3, cob, nd3-nd4l, and atp8 (3.93 to 8.26),

and a lower score than nd1-nd2-nd4-nd5-nd6, and atp6 (9.23 to

10.77). The reason why testcode classified the M. coruscus F-orf-vd1

sequence as non-coding and the M. californianus and M. senhousia F-

orfs as having 77% probability of coding could be explained by the

high variability of this putative gene (see below). Indeed, fast-

evolving genes are often rated as non-coding by the testcode

algorithm, presumably because the mechanisms generating

diversity are stronger than the ones encouraging consistent

codon preference [52].

Interestingly, corroborative evidence for the protein-coding

nature of F-orf-vd1 was also obtained from BLASTN searches

against dbEST (Expressed Sequence Tag division, EST_others).

For example, for the more extensively studied M.edulis/M.

galloprovincialis, a total of 366 and 194 ESTs were aligned to the

complete F and M mt genomes with nucleotide identity .96%,

respectively (out of 24,611 ESTs from .20 different polyadenyl-

ated cDNA libraries; [62–66]). The ESTs cover 14,994 bp

(89.6%) of the F mt genome and 9,868 bp (59.3%) of the M mt

genome. Figure 1 reports the M. edulis/M. galloprovincialis F and M

ESTs mapped on the completely sequenced Mytilus mtDNA. The

majority of ESTs (n = 168 for the F genome and n = 156 for the

M genome) are derived from 16S and 12S rRNAs, suggesting a

higher expression level and/or a higher stability compared to

other mt genes. Given that ESTs come from multiple cDNA

libraries constructed using different methods [62–66], and

because it is absent in both F and M mt genomes and thus less

likely to be the result of the trimming of low quality sequences or

the cloning procedure (e.g., [66,67]), the lack of ESTs

corresponding to the F- and M-type nad4L gene suggests that

this transcript might be expressed at low levels and/or might be

rapidly degraded in M. edulis/M. galloprovincialis. Similarly, the

absence of several tRNA-like ESTs for both F and M genomes

could be explained by their removal from mature polyadenylated

transcripts [67,68]. Furthermore, the typical utilization of Mytilus

somatic tissues in cDNA library preparations [62–66] can explain

the lower coverage of the M mt genome by M-type ESTs, given

Table 2. General Characteristics of F and M ORFs in the VD1 domain of the Mytilus spp.

Species orf-vd1 cox1 atp8

Length A+T Content
Initiation and
Termination codon F/M divergence F/M divergence F/M divergence

M. edulis F 163 aa 52.4% ATG – TAA ,55% 18.4% 30.9%

M. edulis M 94 or 112 aa ,65% ATT – TAA

M. galloprovincialis F 163 aa 51.8% ATG – TAA ,50% 18% 33.9%

M. galloprovincialis M 21 or 42 aa ,65% TTG – TAA

M. trossulus Fa 153 aa 53.5% ATG – TAA ,51% 18% 30.5%

M. trossulus Ma 73 or 74 aa ,62% ATA – TAA

M. californianus F 129 aa 57.2% ATG – TAG ,53% 20.5%b -

M. californianus M 30 or 32 aa ,68% ATA – TAA

M. coruscus F 127 aa 56.5% ATG – TAA - - -

M. trossulus RMa,* FVD1 153 aa 53.7% ATG – TAA 51% - -

MVD1 71 aa 58.8% GTG – TAA

M. galloprovincialis RM* FVD1 131 aa 51.2% TTG – TAG 51% - -

MVD1 67 aa 65.2% ATA – TAA

M. senhousia F 121aa 68.0% ATC – TAA - 17.6% 31.0%

M. senhousia M - - -

NOTE.— F = Female genomes; M = Male genomes; RM* = These genomes are recently-masculinized genomes (see text for details).
aThese complete M. trossulus mtDNAs correspond to or have high affinity with the corresponding ancestral M. trossulus genomes from North America [30,97].
bDNA divergences based on partial cox1 sequences [42]. Sequence divergences are given in percentages nucleotide difference for the total number of aligned

nucleotides.
CR and of the F-specific ORF in the unassigned region UR2 of Musculista senhousia.
doi:10.1371/journal.pone.0019365.t002

Table 3. Testcode results for Mytilus spp.

Species/Gene Testcode score Probability of coding

F-orf-vd1 M. edulis 1.138 98%

F-orf-vd1 M. galloprovincialis 1.138 98%

F-orf-vd1 M. trossulus 1.011 92%

F-orf-vd1 M. californianus 0.856 77%

F-orf-vd1 M. coruscus 0.682 30%

F-orf M. senhousia 0.939 77%

‘‘M-orf-vd1’’ M. edulis 0.542–0.636 7%

‘‘M-orf-vd1’’ M. galloprovincialis 0.404–0.738 0%–30%

‘‘M-orf-vd1’’ M. trossulus 0.403–0.516 0%–4%

‘‘M-orf-vd1’’ M. californianus 0.586–0.597 7%

F-orf-vd1 and ‘‘M-orf-vd1’’ and for Musculista senhousia F-orf.
doi:10.1371/journal.pone.0019365.t003
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that somatic tissues predominantly contain and express the F-type

mtDNA [26].

Remarkably, the EST analysis yielded 11 significant hits for

M. edulis and M. galloprovincialis F-orf-vd1 sequences whereas

neither the second variable domain (VD2) of the F-type control

region nor the M-type VD2 was present in ESTs (Figure 1; the

11 hits are AJ626121, AJ626242, AJ626130, AJ626120, AJ

626205, AJ626443, AJ626444, AJ626129, AJ626131, AJ623360,

AJ624518). Because only the last 270 bp of F-orf-vd1 are covered

by EST sequences (Figure 1), one could argue that these

transcripts represent by-products from an unprocessed polycis-

tronic transcript precursor. However, the observation that 6

other mitochondrial genes (i.e., cox1, cob, nad1, nad2, nad4, and

nad5) were not represented by ‘‘full-length ESTs’’ containing the

entire gene, i.e. only partial transcripts were found in dbEST

(data not shown), suggests a reduced enrichment in full-length

cDNAs in Mytilus libraries. Moreover, since the VD1-like ESTs

have been obtained by oligo-dT priming of mussel mRNA

[64,65], they are expected to originate from polyadenylated

mature transcripts. Taking together, these findings suggest that

the F-type VD1 is expressed in the Mytilus mitochondrial

proteome. On the other hand, since we also found significant

hits for F-type CD (3 hits) and part of M-type VD1 and CD

sequences (2 hits) (see Figure 1), the possibility remains that all

of these polyadelynated transcripts function at the RNA level.

Polyadenylated transcripts derived from a putative non-coding

region have previously been reported in the oyster Crassostrea

gigas [67]. The authors hypothesized that this intergenic segment

located between the atp6 and nd2 genes could represent the

mitochondrial control region, which is polyadenylated at a high

level in several mammal species [67–70]. However, it appears

that this intergenic segment in C. gigas actually contains the

‘‘formerly reported as missing’’ atp8 gene in these bivalves [61].

Interestingly, the polyadenylated mitochondrial CR sequences

observed in mammals have been proposed to be multi-

functional molecules serving as primers for mtDNA replication,

regulators for replication and translation processes through

rRNA binding as well as protein-coding mRNAs [68–73]. For

example, Nakamichi et al. [73] reported a CR transcript in

humans that could code for a peptide of 76 amino acids. The

possibility thus remains that CR transcripts in Mytilus function

in different ways, i.e., that F-orf-vd1 functions at both RNA and

protein levels (or at the protein level only) and that other CR

transcripts function at the RNA level. Another hypothesis would

be that the M-type VD1 also functions at the protein level but

that its function is supported by smaller ORFs such as those

found in the M-type VD1 domain of M. californianus. Further

data collection and investigation will be essential to clarify the

functional role of these CR transcripts and ORFs.

Support at the amino acid level. The analysis of the

taxonomic distribution of the F-ORF-VD1 in mytilid mussels is one

other important step in the assessment of its potential functional

role as a protein. To establish whether the F-ORF-VD1 is

taxonomically restricted to the genus Mytilus or if it is an

evolutionary feature of mytilid mussels, we screened for the

presence of F-specific ORFs in the newly sequenced mitochondrial

genome of the DUI-containing mytilid Musculista senhousia from the

subfamily Crenellinae (Passamonti et al. submitted). Within the

Bivalvia, mytilid mussels form a monophyletic group where

Musculista and Mytilus are invariably clustered together, while

freshwater mussels (Unionoida), including the species Venustaconcha

ellipsiformis, are confirmed basal and fully separated from all other

autolamellibranchiate lineages, including the Mytilidae ([31,74];

Plazzi & Passamonti unpublished). Interestingly, we found one

relatively large unassigned region specific to the F genome of M.

senhousia (UR2 = 543 bp) preceding the control region and

containing an ORF of considerable length (121aa). The M.

senhousia F-ORF possesses complete start and stop codons, is

located on the same strand as all other mtDNA-encoded genes,

and has a probability of coding of 77% (Tables 2 and 3).

At the amino acid level, comparisons among predicted

sequences for Mytilus spp. F-ORF-VD1 and the M. senhousia F-

ORF revealed this putative gene as the least conserved in the

Mytilus F lineage, with aa sequence identities ,1.5–2.5 times lower

than those obtained for the highly variable ATP8 protein, and

among the least conserved in mytilid mussels (Table 4). For

example, 24% amino acid identities are observed for the F-specific

ORFs between the distantly related Mytilus edulis and Musculista

senhousia species, whereas 18% amino acid identities are observed

for ATP8 (and 74% for COX1). Figure 2 shows the alignment of all

mytilid F-specific ORFs. The greatest similarity among all species

is principally found within a stretch of 60 residues in the middle of

the protein sequence. As expected for a rapidly evolving protein,

sequence differences between the F-ORF from M. senhousia and the

F-ORF-VD1 from Mytilus spp. are more pronounced (Figure 2).

These results suggest that, if they are functionally equivalent

proteins, constraints on M. senhousia F-ORF and Mytilus F-ORF-

VD1 are imposed at higher levels of protein structure rather than

the amino acid sequence level. In support of this hypothesis, the

amino acid compositions of the M. senhousia F-ORF and Mytilus F-

ORF-VD1 are slightly different (Figure 3A), but their compositions

of chemically equivalent amino acids (i.e., with similar properties)

are similar (Figure 3B) and comparable to what is observed for the

fast-evolving mtDNA-encoded protein ATP8 (Figure 3C & D). In

contrast, the translated M-ORF found in the VD1 domain of M

genomes shows high variability with regards to amino acid

composition (Figure 3E & F). These results, which can be

explained by the presence of frameshifts, premature stop codons

and important differences in length in M-ORF sequences, are in

agreement with the hypothesis that only the mytilid F-ORF codes

for a functional protein. If the F-ORF would not be functional at

the protein level, one would expect the presence of within- and

between-species ‘‘coding disablements’’, such as the numerous

frameshift mutations and premature stop-codons seen in M-ORF

sequences. Furthermore, amino acid compositional similarities

among mytilid species (or even between F-ORF sequences and

protein-coding genes within a same genome) would not be

expected from non protein-coding sequences since they are not

subject to selective pressure to preserve protein structure and

function [75]. In this latter case, however, similar mtDNA

nucleotide bias and common evolutionary history could at least

partly explain the observed results [75–77]. For example, it has

been demonstrated that amino acid frequencies in proteins or in

translations of randomly selected non-coding sequences are

changing in response to the genomic change in G+C (or A+T)

content, that is GC-rich codons and corresponding amino acids

will increase in frequency in proteins and translated non-coding

sequences in genomes with increasing G+C content, whereas AT-

rich codons and corresponding amino acids will increase in

frequency in proteins and translated non-coding sequences in

genomes with increasing A+T content [75,76]. A+T contents are

relatively similar for both F-ORF-VD1 and ATP8 in Mytilus spp.

(52–57% for the F-ORF-VD1 and 58–59% for ATP8), whereas

Musculista values are higher with 68% A+T for the F-ORF and

68.9% for ATP8. Proportions of AT-rich codons and correspond-

ing FYMINK amino acids [75] are slightly higher in Musculista for

the F-ORF (25.6% vs. 13–21.7% for Mytilus) but comparable for

ATP8 (26% vs. 26–28.5% for Mytilus). Although preliminary, these
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results indicate a potential correlation between DNA composition

and amino acid compositional similarities of F-ORF sequences but

they do not rule out the hypothesized protein-coding function of

the F-ORF in mytilid mussels. In addition and of significant

relevance here is our observation that a single, conserved predicted

transmembrane helix (TMH) is present in the N terminal portion

of all mytilid F-ORF proteins (Figure 4), suggesting that this

putative gene would assume the underlying DNA composition of

the mtDNA to the extent that this does not interfere with the

secondary structure and biochemical function of the protein. Like

typical animal mitochondrial genes, which all encode TMH

proteins of the oxidative phosphorylation system in the inner

mitochondrial membrane [4,5], the F-ORF protein could be an

element of the electron transport chain or ATP synthase complex

in mytilid mussels. However, the recent finding that F-ORF

proteins likely play a role in sex determination in unionoid

bivalves indicates that the mytilid F-ORF proteins could also have

a non-oxidative phosphorylation function [17]. Although our

results suggest stabilizing selection on the F-ORF region’s amino

acid composition and secondary structure and support the

Figure 2. T-COFFEE alignment of the translated F-specific ORF sequences of mytilid mussels. Three of more identical amino acids within
a column are highlighted in blue. Conservation (Cons.) score values and quality (Qual.) of the alignment are indicated. Dashes (–) denote a missing
residue at this position in comparison with other sequence(s). Mca, M. californianus; Mco, M. coruscus; Med, M. edulis; Mga, M. galloprovincialis; Mse, M.
senhousia; Mtr, M. trossulus.
doi:10.1371/journal.pone.0019365.g002

Table 4. Interspecies comparisons in the mytilid F lineage (Mytilus spp. and Musculista senhousia) for the fast evolving F-ORF-VD1
& F-ORF and ATP8 genes: % amino acid identities.

Amino Acid Identities for F-ORF-VD1 Amino Acid Identities for ATP8

M. edulis/M. galloprovincialis 97.55% 95.35%

M. edulis/M. trossulus 45.40% 69.77%

M. edulis/M. californianus 27.69% 63.95%

M. edulis/M. coruscus 23.44% -

M. edulis/M. senhousia 24.00% 18.18%

M. galloprovincialis/M. trossulus 45.40% 71.26%

M. galloprovincialis/M. califonianus 26.92% 65.52%

M. galloprovincialis/M. coruscus 20.47% -

M. galloprovincialis/M. senhousia 24.00% 18.18%

M. trossulus/M. californianus 33.33% 62.22%

M. trossulus/M. coruscus 26.77% 18.18%

M. trossulus/M. senhousia 14.29% -

M. californianus/M. coruscus 51.24% -

M. californianus/M. senhousia 13.33% 22.73%

M. coruscus/M. senhousia 25.00% -

NOTE.—No ATP8 sequence is available for M. coruscus. Amino acid identities % are given for the total number of aligned amino acids.
doi:10.1371/journal.pone.0019365.t004
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protein-coding hypothesis, further protein-based analyses will be

necessary to characterize the biological significance of the mytilid

ORFs, and to verify if they are functionally equivalent. Additional

complete mt genomes, from mytilid and non-mytilid bivalves, are

needed to elucidate the number, taxonomic distribution, and

evolution of uncharacterized ORFs in this group of molluscs.

Support at the nucleotide level. Due to alignment issues,

nucleotide-level analyses were performed using the more similar

Myilus spp. F-orf-vd1 sequences (i.e., we excluded Musculista

senhousia). Comparisons of synonymous substitutions per syno-

nymous site (Ks), nonsynonymous substitutions per nonsyno-

nymous site (Ka) and Ka/Ks ratios within and between Mytilus

species also provide evidence that F-orf-vd1 encodes a functional

protein: within species Ka/Ks ratios are higher than between

species Ka/Ks ratios, which are usually well below 1 and thus

indicate purifying selection (Table 5). A lower between-species

Ka/Ks is a common finding for mtDNA-encoded protein genes in

animals and is explained by the elimination of mildly deleterious

polymorphisms from populations before fixation [78–80]. Such

results would not be expected for non-protein coding sequences. A

more exhaustive analysis was undertaken to test the null hypothesis

of neutrality and search for the signature of purifying and/or

positive selection by calculating the Ka/Ks ratio at each codon site

with the SELECTON program using a Bayesian approach [81].

In essence, neutrality is indicated by Ka/Ks = 1, purifying

selection by Ka/Ks,1, and positive selection is usually invoked

as a possible explanation for rare cases where the pattern Ka/

Ks.1 is observed. The idea is that substitutions at synonymous

sites are largely selectively neutral relative to the intensity of

selection at nonsynonymous sites and very low proportion of

amino acid replacement can be interpreted as a reflection of

purifying selection maintaining a functional protein. By contrast,

under positive selection, rapid replacement of an amino acid is

advantageous to the organism; hence, nonsynonymous mutations

are fixed at a rate higher than that of neutral synonymous ones

[81,82]. According to our results, the MEC selection model was

Figure 3. Amino acid composition of mytilid F-specific ORFs, protein-coding gene ATP8 and putative M-ORF-VD1. (A) Overall amino
acid composition of Mytilus spp. F-ORF-VD1 and M. senhousia F-ORF protein sequences. (B) Composition of chemically equivalent amino acids of
Mytilus spp. F-ORF-VD1 and M. senhousia F-ORF protein sequences. (C) Overall amino acid composition of Mytilus spp. F-ATP8 and M. senhousia F-ATP8
protein sequences. (D) Composition of chemically equivalent amino acids of Mytilus spp. F-ATP8 and M. senhousia F-ATP8 protein sequences (M.
coruscus atp8 sequence is not available in GenBank). (E) Overall amino acid composition of the putative Mytilus spp. M-ORF-VD1 (*mean values for
several M-ORF-VD1 GenBank sequences for each species). (F) Composition of chemically equivalent amino acids of the putative Mytilus spp. M-ORF-
VD1 (such ORF has not been found in M. senhousia). Amino acid composition is reported as percentage. Mca, M. californianus; Mco, M. coruscus; Med,
M. edulis; Mga, M. galloprovincialis; Mse, M. senhousia; Mtr, M. trossulus.
doi:10.1371/journal.pone.0019365.g003
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significantly preferred than the null model M8a (AICc score for

MEC is 8195.54 while AICc score for M8a is 13981.56) and

suggested 35 putative positively selected residues. For the full

alignment and Bayesian Ka/Ks ratios obtained from the models,

see Figure S3. Specifically, Mytilus spp. COX1 residues were all

found to be under strong purifying selection whereas of the 165

amino acid positions in the F-ORF-VD1 alignment portion, 125

residues (76%) were found under purifying selection, 5 (3%) were

under neutral selection and 35 (21%) were found to possess a Ka/

Ks.1, indicating positive selection. However, the inference of

positive selection was not considered statistically significant for any

particular residue. Most of the unconserved 35 positions were

located in the C-terminal portion of the protein (54%), whereas

23% of them were found within the more conserved stretch of 60

residues in the middle of the protein sequence (see Figure 2) and

17% were found in the TMH portion of the Mytilus spp. F-

ORF-VD1 (data not shown). Overall, our results suggest that even if

most of the sites are subjected to purifying selection, which is

suggestive of a functional constraint, the presence of several sites

with Ka/Ks.1 indicate that the F-orf-vd1 is a fast evolving gene in

the Mytilus F genome. As recently proposed for the highly variable

atp8 gene in these species [83], relaxed purifying selection coupled

with the compensation-draft feedback process [80] could cause the

faster evolution of F-orf-vd1. Specifically, the compensation-draft

feedback process postulates that fixation of a mildly deleterious

mutation favors compensatory mutations within the same or

interacting polypeptides, which in turn can result in fixation of

new mildly deleterious mutations by genetic draft due to the

linked, non-recombining genes in mitochondrial DNA [80]. The

compensation-draft feedback process could have been initiated by

selection for an F-specific function for the F-ORF-VD1.

Interestingly, the newly discovered F and M lineage-specific

proteins in freshwater mussel species are also among the fastest

evolving proteins coded by freshwater mussel mitochondrial

genomes [11,17]. These findings suggest that mt lineage-specific

genes or DNA regions are potential targets for positive selection

and thus they might play an important role in bivalve speciation

(i.e, mitochondrial populations of the same species could quickly

diverge, and possibly become reproductively isolated because of

mitochondrial-nuclear incompatibilities; [84]).

Figure 4. Comparisons of Mytilus spp. F-ORF-VD1 and M. senhousia F-ORF hydropathy profiles. (A) Profiles for each species were calculated
by the method of Kyte and Doolittle [104]. Numbers below profiles designate amino acid positions in each protein. Predicted transmembrane
domains according to TMpred [102] (all with significant scores .500) are shown in light gray (It has to be noted that a single TMH in the N terminal
portion of each F-ORF proteins has also been identified using HMMTOP [101]). (B) T-COFFEE alignment of the translated N terminal portions of mytilid
F-specific ORF sequences. Predicted transmembrane domains according to TMpred [102] are shown in light gray. (C) Kyte and Doolittle profiles for
the F-ORF protein alignment with the homologous amino acid sites in the same position on the x axis. The predicted transmembrane domain
according to TMpred [102] is shown in light gray. Mca, M. californianus; Mco, M. coruscus; Med, M. edulis; Mga, M. galloprovincialis; Mse, M. senhousia;
Mtr, M. trossulus.
doi:10.1371/journal.pone.0019365.g004
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Novel mtDNA-encoded genes in bivalve species with DUI
Assuming a single origin of DUI [31,85,86], the F lineage

specific ORFs in both marine and freshwater mussels could

represent homologous genes. However, as is the case for the novel,

F- and M-specific, mtDNA-encoded proteins in freshwater mussels

[11,17], the precise function of the F-ORF-VD1 protein in marine

mussels remains unclear. In freshwater mussels, no significant

amino acid sequence similarity with known proteins was found for

the F-ORF using BLAST Tools, but the estimated tertiary

structure of the F-ORF from the species Venustaconcha ellipsiformis

is consistent with involvement of this novel mitochondrial protein

in DNA replication and/or DNA binding [17]. In the present

study, sequence similarity searches for Mytilus F-ORF-VD1 using

PSI-BLAST [87] against non-redundant protein sequences and

SWISSPROT databases also failed to detect significant sequence

similarity with known proteins. However, searching against the

Protein Data Bank (PDB; [88]) revealed that the M. edulis and M.

galloprovincialis F-ORF-VD1 exhibit relatively weak sequence

similarity (E-value of 0.004) to an archaebacterial DNA helicase,

suggesting that it could be a DNA-binding protein involved in

regulation of mitochondrial DNA replication and/or transcription

as might be the case for the F-ORF in freshwater mussels. To our

knowledge, helicase genes have never been reported in animal

mitochondrial DNA [3,89]. However, a putative helicase has been

reported in the mitochondrial genome of the plant Marchantia

polymorpha [90]. Moreover, the possibility of open reading frames

in the mitochondrial control region playing a role in the

replication and/or transcription process has been previously

reported in some mammals [6] and Paramecium [91]. It is also

worth noting that many of the ‘‘unusual’’ protein-coding genes

discovered in invertebrate mitochondrial genomes contain amino

acid patterns characteristic of interaction with DNA [3,8,92,93].

However, at this moment, it is not possible to confirm the

hypothesis that the F-specific ORFs in marine and freshwater

mussels are homologous due to their highly divergent nature and

incomplete knowledge regarding their phylogenetic distribution.

Irrespective of a common vs. independent origins for the F-

specific ORFs in marine and freshwater mussels, there are at least

three possibilities for their source: (i) a gene homologous to

ancestral bacterial protein-coding genes, (ii) a duplicated and

diverged mitochondrial gene or (iii) a transfer from the nucleus to

the mitochondrion [93,94]. Again, because of their relatively fast

evolutionary rate, the F-specific ORF sequences have probably

changed to such an extent that their historical antecedents are no

longer recognizable at the aa sequence level. Based on currently

available data, the F-ORF in freshwater mussels has persisted for

.200 my [11,17]. As is the case for F-ORF-VD1 in Mytilus spp.

and F-ORF in M. senhousia, the sequence similarity is low among

distantly related freshwater mussels species, but selection has

maintained at least one aspect of the secondary structure of the

protein: one predicted TMH in the N-terminal portion of the

protein [11,17]. However, the amino acid divergences and

differences in amino acid composition between the mytilid ORFs

and the F-ORF protein of the freshwater mussel species

Venustaconcha ellipsiformis are much more pronounced than between

the Mytilus spp. F-ORF-VD1 and the M. senhousia F-ORF (Figure

S4). Again, further protein-based analyses will be necessary to

characterize the biological significance and critically evaluate the

hypothesized functional equivalence of the F-specific ORFs in

bivalves.

The study of masculinized genomes to identify
sequences responsible for mitochondrial transmission
mode

As mentioned earlier, a phenomenon that characterizes marine

mussels is that female-transmitted mt genomes have periodically

experienced ‘‘role-reversal events’’ and invaded the male route

of inheritance, resulting in the formation of new M mt genomes

[42–44]. Previous sequencing studies have demonstrated that all

‘‘recently-masculinized’’ or RM-mitotypes examined to date in

mytilid mussels are recombinants composed of an F genome’s

genes and CR plus an additional M-type CR [30,45–47].

Consequently, it has been hypothesized that recombination with

the introduction of a ‘‘Standard Male’’ or SM-type CR into an

otherwise female type mt genome could be the first step in the

masculinization process [48]. However, to establish that a genome

is masculinized, one needs to demonstrate that the genome is the

exclusive mtDNA molecule in the sperm of the male from which it

was extracted [40,47]. Indeed, RM-type sequences obtained from

male gonad DNA extractions could be artifacts due to somatic

tissue contamination. This logic makes the fully sequenced ‘‘C

genome’’ of M. galloprovincialis, which was extracted from

spermatozoa that were forced to swim through a PercollTM

solution to remove of any debris from somatic cells, the only

verified masculinized genome sequenced to date [47]. We will thus

mainly refer to this sequence in the section below.

Because the first variable domain VD1 has been identified as

the most likely site for sequences that could control the mode of

inheritance of the mitochondrial genome [39,40], examination of

RM-type VD1 sequences is essential to address the hypothesis that

these sequences could determine maternal vs. paternal inheritance.

The control region of the recently masculinized, male-transmitted

‘‘C genome’’ of M. galloprovincialis is composed of an F-type VD1

followed by an M-type CD, an M-type VD2 and a truncated M-

type VD1 (i.e., VD1F/CDM/VD2M/DVD1M) [40,47]. After

Table 5. DNA comparisons in the Mytilus F lineage for the
fast evolving F-orf-vd1 gene: selective pressures at
synonymous and nonsynonymous sites.

KA KS KA/KS

Within species comparisons

M. edulis 0.007 0.010 0.7

M. galloprovincialis 0.006 0.008 0.75

M. trossulus 0.004 0.005 0.8

M. californianus 0.007 0.000 -

Between species comparisons

M. edulis/M. galloprovincialis 0.011 0.012 0.916

M. edulis/M. trossulus 0.379 0.785 0.482

M. edulis/M. californianus 0.863 1.048 0.443

M. edulis/M. coruscus 0.840 2.112 0.397

M. galloprovincialis/M. trossulus 0.388 0.807 0.480

M. galloprovincialis/M. californianus 0.863 2.132 0.404

M. galloprovincialis/M. coruscus 0.840 2.125 0.395

M. trossulus/M. californianus 0.934 1.506 0.620

M. trossulus/M. coruscus 0.906 1.615 0.560

M. californianus/M. coruscus 0.330 0.788 0.418

NOTE.— The divergence in synonymous sites (KS) and the divergence in
nonsynonymous sites (KA) have been calculated by the modified Nei-Gojobori
method with Jukes-Cantor correction. Within species comparisons have been
calculated using D-loop sequences from the following studies: [39,40,45,46,
55–57]; Barna and Showman unpublished.
doi:10.1371/journal.pone.0019365.t005
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VD1F, the segment ‘‘CDM/VD2M/DVD1M’’ is repeated tan-

demly three times. The third repeat unit is followed by one

complete CDM and one F/M recombinant VD2 (Figure 5).

From an ‘‘ORF point of view’’, the M. galloprovincialis ‘‘C

genome’’ is different from the standard F-type mtDNA of the same

species in having a truncated (at the C-terminus) F-ORF-VD1

protein (139aa instead of 163aa; Figure 5). It has to be noted that

the deleted protein region does not involve the conserved 60aa

stretch observed among mytilid species. We have shown that

standard F genomes consistently possess a ‘‘full length’’ F-ORF-

VD1 (with one exception that could represent a sequencing error),

suggesting the hypothesis that a ‘‘full length’’ F-ORF-VD1 is (i)

necessary for maternal transmission and/or (ii) its presence could

interfere with male transmission. Further evidence in support of

this hypothesis is that, except for the singular sequence mentioned

above, all truncated F-ORF-VD1 sequences have been found in

recombinant CR sequences and are consistently absent from

females (i.e., these haplotypes occur only in sperm and could

represent recently masculinized CR sequences). The presence of a

truncated F-ORF-VD1 in recently masculinized genomes thus

suggests that, to enable paternal transmission, a standard F

genome must gain a new M functionality (i.e., gain M-type CR

sequences) as well as lose an F functionality (i.e., the disruption of

F-ORF-VD1). One hypothesis is that the disruption of F-ORF-VD1

occurs first and subsequently this disruption would facilitate F/M

recombination, which has been proposed as the first step in the

masculinization process [48]. An alternative hypothesis would be

that the deletions in the F-ORF-VD1 regions of RM genomes are a

consequence of masculinization. If the F-ORF-VD1 is required

only for F mt function, its presence in a paternally-transmitted M

genome would allow its degeneration. However, we still do not

know enough about the recombination process and developmental

genetics of DUI to speculate on where and when recombination is

likely occurring, though it might happen during spermatogenesis

when the five so-called ‘‘mega-mitochondria’’ form in the mid-

piece of a spermatozoon by fusion of several smaller mitochondria

[37,95]. Because of the apparently dynamic nature of DUI in

marine mussels, the ‘‘Standard Male’’ genomes in all Mytilus

examined to date are likely the product of previous role reversal

events. To reject the hypothesized primacy of F-ORF-VD1

disruption in the masculinization process, one would need to look

for paternally transmitted mt genomes containing a complete F-

ORF-VD1. The data available to date, however, show that F-ORF-

VD1 is eventually lost in ‘‘Standard Male’’ genomes, reinforcing

the hypothesis that this gene has an F genome-specific function.

Although speculative, we propose that F-ORF-VD1 has been

maintained in mytilid mitochondrial CRs to participate in the

regulation of mt transmission and/or the regulation of F genome

replication and transcription. This hypothesis is consistent with the

recent suggestions that the RM-type genome sequenced for Mytilus

trossulus, which was inferred to be a recently masculinized genome

because of its extraction from a male gonad [30], would be in fact

the F genome of M. trossulus [40,83]. This particular genome

indeed contains a complete F-ORF-VD1, which is consistent with

the hypothesis of maternal transmission. However, further data

collection and analyses will be essential to clarify the functional

role of this putative F-specific protein and to elucidate the

mechanisms of mt genome-specific mtDNA transmission in

bivalve species with DUI.

Conclusion
A fundamental question regarding doubly uniparental inheri-

tance of mtDNA in bivalves is whether there are F- and/or M-

specific mtDNA sequences that control the mode of inheritance of

Figure 5. Schematics of the structure of a typical F-type (above), recently-masculinized (center, according to Venetis et al. [47]) and
typical M-type (below) control regions. The F-ORF-VD1 is identified in the F-type control region. The amino acids that constitute the putative
transmembrane helix are indicated in boldface type and bigger characters. The stretch of ,60 residues showing the greatest similarity among the
species is underlined. Dashes (–) denote the missing amino acid residues in the truncated F-ORF-VD1. CD, conserved domain; VD1, variable domain 1;
VD2, variable domain 2 [39,40]. *The ‘‘standard’’ F-type CR of M. trossulus, which is a F/M recombinant CR, is not presented.
doi:10.1371/journal.pone.0019365.g005
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the mitochondrial genomes. Our results demonstrate that there is

a systematic difference between maternally and paternally

transmitted mytilid genomes: a fourteenth mtDNA-encoded

protein, i.e., F-ORF-VD1, is likely present in the former but

absent in the latter. Interestingly, this putative additional protein

has been found in the first variable domain VD1 of the

mitochondrial control region, which is the portion of the CR

that was previously suspected to contain the elements responsible

for the differing modes of mt transmission in DUI-containing

bivalves [39,40]. We present multiple lines of evidence suggesting

that a functional protein is coded for by F-ORF-VD1: (i) the gene

region has been maintained in the Mytilus lineage (subfamily

Mytilinae) for at least 13 million years and our results suggest that

a mytiline F-ORF homologue is present in Musculista senhousia

(subfamily Crenellinae), (ii) the gene region has been classified as

coding by testcode and Glimmer analyses, (iii) the gene region is

actively transcribed in Mytilus, (iv) the putative protein’s

secondary structure has been conserved, (v) the putative protein’s

amino acid composition are relatively similar and (vi) the gene

region’s Ka/Ks ratios indicate relaxed purifying selection, which

would not be expected for a non-protein coding sequence.

Although it is admittedly speculative, we propose that F-ORF-

VD1 is essential for the maternal transmission of the F

mitochondrial genome in mytilid mussels. Despite the fact that

the function(s) of the F-ORF-VD1 protein remains to be

determined, our findings suggest that the functional repertoire

of animal mitochondrial genomes is greater than previously

thought and that novel mitochondrial ORFs, with key biological

functions, await discovery in other animal groups.

Materials and Methods

Complete mitochondrial genome sequences used in this study

are listed in Table 1. Complete F- and M-type CR sequences of M.

californianus (AF090831 [55]; AY515226-27 and EU826123-24

[40]) and the F-type CR sequence of M. coruscus (AF315574; Barna

and Showman unpublished) have also been used. Because the

complete M. trossulus F and M mt genomes sequenced by

Zbawicka et al. [96] are introgressed mtDNAs from M. edulis,

we used the genomes more recently sequenced by Zbawicka et al.

[97] as the ‘‘ancestral M. trossulus’’ F and M mtDNAs.

Examination of ORFs was performed with ORF Finder

(http://www.ncbi.nlm.nih.gov/projects/gorf/) using the inverte-

brate mitochondrial genetic code. Sequence similarity searches

were performed in GenBank using BLASTX and PSI-BLAST

[87] against the following databases on September 2010

(GenBank release 179.0): (i) non-redundant protein sequences,

(ii) SWISSPROT (SWISSPROT release 2010_09), (iii) protein

data bank and (iv) environmental samples. We also performed

sequence similarity searches using BLASTN against expressed

sequence tags (EST others) [98]. T-COFFEE version 8.93 [99]

was used to align amino acid sequences and aa alignments were

used as a template to align the corresponding codons. Graphical

presentation of conserved positions in the alignment was done

using Jalview [100].

The coding potential of ORFs was examined using Fickett’s

testcode algorithm [52] and Glimmer 3 [53]. Transmembrane

helices as well as other ORF features of were characterized using

HMMTOP [101], TMpred [102] and PredictProtein [103].

Hydropathy profiles were calculated using the method of Kyte

and Doolittle [104]. Protein structure and function predictions

were made using I-TASSER, a state-of the-art hierarchical protein

structure modeling approach that is based on the secondary-

structure enhanced profile-profile threading alignment [105,106].

Amino acid composition for chemically equivalent amino acids

was obtained following Taylor [107]: acidic amino acids (D and

E); aromatic (H, F, W and Y); basic (R, H, and K); charged (R, D,

E, H and K); hydrophilic (D, E, K, N, Q and R); hydrophobic (A,

C, F, I, L, M, V, W and Y); neutral (G, Q, H, S and T); non-polar

(A, C, G, I, L, M, F, P, V, W and Y); and polar (R, N, D, E, Q, H,

K, S and T).

MEGA 4.0 [108] was used to estimate nucleotide and amino

acid divergences among putative ORFs. The number of

synonymous substitutions per synonymous site (Ks) and the

number of nonsynonymous substitutions per nonsynonymous site

(Ka) for the entire F-orf-vd1 sequences within and between Mytilus

spp. were also calculated using MEGA 4.0. Site-specific selection,

i.e. the estimation of Ka/Ks ratios at each codon site, was studied

with the SELECTON server 2.4 (http://selecton.tau.ac.il/index.

html) using a Bayesian inference approach [81]. Specifically, the

analysis was performed by means of a comparison between a null

model assuming no positive selection (M8a; [109]) and a model

that allows positive selection (MEC, which treats amino-acid

replacements differently by allowing a position with radical

replacements to obtain higher Ka value than a position with

more moderate replacement; [110]). As data sources we used the

codon-aligned partial cox1 and complete F-orf-vd1 Mytilus spp.

sequences (M. senhousia was excluded due to alignment issues) and

the inferred ML phylogenetic tree. For our models (MEC vs.

M8a), likelihood was tested by Akaike Information Criterion

(AICc) score comparison [111]. The MEC model is considered the

more justified if its AICc score is lower than the score of the

alternative model. For each position, a confidence interval defined

by the 5th and 95th percentiles of the posterior distributions

inferred for the position was estimated. For positions with an

inferred Ka/Ks.1, the inference of positive selection is considered

reliable when the lower bound of the confidence interval is larger

than 1.

Supporting Information

Figure S1 Examples of M-ORF-VD1 sequences in Gen-
Bank.

(DOC)

Figure S2 Full length and Truncated F-ORF-VD1 in
GenBank.

(DOC)

Figure S3 Full alignment and Bayesian Ka/Ks ratios
obtain from the MEC model – ‘‘SELECTON analysis’’.

(DOC)

Figure S4 (A) Comparisons of Mytilus edulis F-ORF-VD1
and Venustaconcha ellipsiformis F-ORF hydropathy
profiles. Profiles were calculated by the method of Kyte and

Doolittle [104]. Numbers below profiles designate amino acid

positions in each protein. Predicted transmembrane domains

according to TMpred [102] are shown in light gray. (B) Alignment

of the translated F-orf-vd1 M. edulis and F-orf V. ellipsiformis

sequences. Identical amino acids are highlighted in black.

Chemically equivalent amino acids are in gray. Dashes (–) denote

a missing residue at this position in comparison with other

sequence(s). (C) Overall amino acid composition (left) and

composition of chemically equivalent amino acids (right) of Mytilus

spp. F-ORF-VD1, M. senhousia F-ORF and V. ellipsiformis F-ORF

protein sequences. Amino acid composition is reported as

percentage.

(TIF)
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46. Burzyński A, Zbawizka M, Skibinski DO, Wenne R (2006) Doubly uniparental

inheritance is associated with high polymorphism for rearranged and

recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics

174: 1081–1094.

47. Venetis C, Theologidis I, Zouros E, Rodakis GC (2007) A mitochondrial

genome with a reversed transmission route in the Mediterranean mussel Mytilus

galloprovincialis. Gene 406: 79–90.

48. Theologidis I, Saavedra C, Zouros E (2007) No evidence for absence of

paternal mtDNA in male progeny from pair matings of the mussel Mytilus

galloprovincialis. Genetics 176: 1367–1369.

Novel Mitochondrial ORF in Marine Mussels

PLoS ONE | www.plosone.org 13 April 2011 | Volume 6 | Issue 4 | e19365



49. Ort BS, Pogson GH (2007) Molecular population genetics of the male and
female mtDNA molecules of the California sea mussel, Mytilus californianus.

Genetics 177: 1087–1099.

50. Chichvarkhin A, Kartavtsev I, Kafanov AI (2000) Genetic connections between
some species of Mytilidae (Mollusca : Bivalvia) from the northern part of the

Pacific ocean. Genetika 36: 1206–1220.

51. Passamonti M (2007) An unusual case of gender-associated mitochondrial
DNA heteroplasmy: the mytilid Musculista senhousia (Mollusca Bivalvia). BMC

Evol Biol 7: S7.

52. Fickett JW (1982) Recognition of protein coding regions in DNA sequences.
Nucl Acids Res 10: 5303–5318.

53. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial

genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673–679.

54. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved

microbial gene identification with Glimmer. Nucl Acids Res 27: 4636–4641.

55. Beagley CT, Okimoto R, Wolstenholme DR (1999) Mytilus mitochondrial
DNA contains a functional gene for a tRNASer (UCN) with a dihydrouridine

arm-replacement loop and a pseudo- tRNASer (UCN) gene. Genetics 152:

641–652.

56. Rawson PD (2005) Nonhomologous recombination between the large

unassigned region of the male and female mitochondrial genomes in the
mussel, Mytilis trossulus. J Mol Evol 61: 717–732.
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