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Abstract
A number of studies have indicated that plasma mem-
brane calcium ATPases (PMCAs) are expressed in the 
brain and spinal cord and could play important roles not 
only in the maintenance of cellular calcium homeostasis 
but also in the survival and function of central nervous 
system cells under pathological conditions. The different 
regional and cellular distributions of the various PMCA 
isoforms and splice variants in the nervous system and 
the diverse phenotypes of PMCA knockout mice support 
the notion that each isoform might play a distinct role. 
Especially in the spinal cord, the survival of neurons 
and, in particular, motor neurons could be dependent on 
PMCA2. This is indicated by the knockdown of PMCA2 
in pure spinal cord neuronal cultures that leads to cell 
death via  a decrease in collapsing response mediator 
protein 1 levels. Moreover, the progressive decline in 
the number of motor neurons in PMCA2-null mice and 

heterozygous mice further supports this notion. There-
fore, the reported reduction in PMCA2 mRNA and pro-
tein levels in the inflamed spinal cord of mice affected 
by experimental autoimmune encephalomyelitis (EAE), 
an animal model of multiple sclerosis, and after spinal 
cord contusion injury, suggests that changes in PMCA2 
expression could be a cause of neuronal pathology 
and death during inflammation and injury. Glutamate 
excitotoxicity mediated via  kainate receptors has been 
implicated in the neuropathology of both EAE and spinal 
cord injury, and has been identified as a trigger that 
reduces PMCA2 levels in pure spinal cord neuronal cul-
tures through degradation of the pump by calpain with-
out affecting PMCA2 transcript levels. It remains to be 
determined which other stimuli modulate PMCA2 mRNA 
expression in the aforementioned pathological condi-
tions of the spinal cord.
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INTRODUCTION
Increasing evidence supports the notion that plasma 
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membrane calcium ATPases (PMCAs) play critical roles 
in pathological conditions including those affecting the 
central nervous system[1,2]. In particular, investigations 
have shown that PMCA isoform 2 might be essential 
for the function and survival of  spinal cord neurons, 
especially motor neurons[3,4]. The goal of  this article is to 
summarize the major conceptual findings of  studies that 
highlight the importance of  PMCA2 in the spinal cord 
and to discuss the potential involvement of  this calcium 
pump in neuronal degeneration in animal models of  
multiple sclerosis and spinal cord injury. 

DISTRIBUTION OF PMCA ISOFORMS IN 
THE SPINAL CORD 
There are four mammalian genes that encode the dif-
ferent PMCA isoforms (PMCA1-4)[5-7]. PMCA1 and 
PMCA4 are ubiquitously expressed throughout most 
tissues, including the brain and the spinal cord, whereas 
PMCA2 and -3 are especially abundant in the spinal cord 
and the brain[8-12].

The alternative splicing of  the primary PMCA tran-
scripts generates approximately 30 variants, each with a 
unique distribution, cellular localization, signaling cascade 
and functional characteristics[9,13]. Splicing at the C-termi-
nal calmodulin binding domain, generates the a, b, c, d, e 
and g variants[14]. The a and b variants are associated with 
all four genes[14]. PMCA1a and -1c mRNAs are primarily 
localized to excitable tissues such as the brain and spinal 
cord, in addition to the heart and skeletal muscle, while 
the PMCA1b is found in most tissues[8]. The presence of  
PMCA2, PMCA3a and -3b mRNAs in the spinal cord 
has also been described[8]. Importantly, these investigators 
raised the possibility of  additional PMCA2 and PMCA3 
splice variants in the spinal cord as compared to the brain 
or other tissues. Thus, the diversity in PMCA splice vari-
ants might be higher in the spinal cord. Both PMCA4a 
and -4b variants are found in the spinal cord. 

Studies on the cellular localization of  PMCA mRNA 
and protein by use of  in situ hybridization and immuno-
cytochemistry, respectively, confirmed the presence of  all 
isoforms in the spinal cord[12]. PMCA1, -2 and -3 mRNAs 
were expressed in neuronal cell bodies throughout the 
layers of  the spinal cord whereas PMCA4 mRNA was 
localized to a small number of  neurons in laminae Ⅰ-Ⅴ. 
The intensity of  the PMCA2 signal was the strongest. 

Immunocytochemistry with antibodies specific to 
each isoform localized staining mostly to the neuropil, 
although PMCA4 immunoreactivity was also found in 
the cell bodies of  neurons in laminae Ⅱ-Ⅳ[12]. The dis-
tribution of  the staining was distinct for each isoform. 
PMCA1 and PMCA3 immunoreactivity was found in the 
neuropil of  all layers but was highest in laminae Ⅲ and 
Ⅳ of  the dorsal horn, whereas PMCA2 immunopositive 
processes were found in all layers except the superficial 
laminae of  the dorsal horn. In contrast, PMCA4 stain-
ing was strongest in the superficial laminae of  the dorsal 
horn. Therefore, it was suggested that PMCA2 expres-

sion is associated with myelinated thick fibers whereas 
PMCA4 is found in unmyelinated thin afferents. Taken 
together, these results indicate that PMCA isoforms and 
splice variants might play specific roles in the spinal cord.

A recent study analyzing the distribution of  PMCA2a 
splice variants in the central nervous system has shown 
that PMCA2a staining is detected throughout the spinal 
cord, mostly in processes and the neuropil. These inves-
tigators did not detect PMCA2a staining in neuronal cell 
bodies, including motor neurons. However, unstained 
α-motor neuron-like cell bodies were surrounded by 
numerous PMCA2a-immunoreactive puncta[15]. Thus, 
PMCA2a could be critical for the extrusion of  calcium at 
some of  the presynaptic terminals projecting on α-motor 
neurons. 

CRITICAL ROLE OF PMCA2 IN THE 
SURVIVAL OF SPINAL CORD NEURONS, 
IN VITRO AND IN VIVO
Whereas the discrete localization of  the various PMCA 
isoforms in the spinal cord suggests specialized func-
tions, information about their precise role is limited.

In vitro investigations have shown that PMCAs are 
pivotal for the survival of  spinal cord neurons. Inhibition 
of  all PMCA activity by addition of  5(6)-carboxyeosin to 
pure neuronal cultures leads to cell death. This is preced-
ed by a delay in the clearance of  depolarization-induced 
calcium transients, neuritic damage and induction of  acti-
vated caspase-3[3]. These studies also indicated that most 
spinal cord neurons are dependent on PMCA activity 
for the effective clearance of  depolarization-induced cal-
cium transients, in vitro. However, about half  of  the cells 
showed higher sensitivity to inhibition of  PMCA activity. 
In particular, motor neuron-like cells, identified by mor-
phology, are most sensitive to blockade of  PMCA activ-
ity as elevations in intracellular calcium levels after KCl-
induced depolarization do not return to basal values in 
the presence of  20 μmol/L carboxyeosin. In accordance, 
in terms of  survival, motor neurons are most vulnerable 
to inhibition of  PMCA activity as compared to the total 
population of  spinal cord neurons in the culture dish, 
since their number decreases after exposure to CE for a 
shorter time period.

Initially, it was believed that PMCAs play a minor role 
in calcium extrusion, especially as compared to the Na+/
Ca2+ exchanger, another major calcium removal system. 
However, the activity of  PMCAs can be modulated by a 
number of  factors including calmodulin, phosphorylation 
by kinases, the protease calpain and caspases 1 and 3[16]. 
The studies of  Kurnellas et al[3] indicate that PMCAs are 
essential not only for the maintenance of  basal calcium 
levels but also for the clearance of  elevated intracellular 
calcium after stimulation or depolarization of  spinal cord 
neurons. Other investigators have also reported that PM-
CAs contribute significantly to the removal of  calcium 
from different neuronal subtypes in the retina and the 
dorsal root ganglia[17-21].
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Recent studies defined the specific contribution of  
PMCA2 to the survival of  spinal cord neurons. Knock-
down of  PMCA2 by use of  small interfering RNA (siRNA) 
was sufficient to cause death of  spinal cord neurons, 
in vitro[4]. Thus, spinal cord neurons might be especially 
dependent on PMCA2 expression and activity for their 
normal and healthy function. The particular dependence 
of  motor neurons on PMCA2 is illustrated by investiga-
tions on PMCA2-null mice and heterozygous mice[22]. 
Progressive loss of  motor neurons in PMCA2-null mice 
and delayed loss of  motor neurons in PMCA2-heterozy-
gous mice have been reported[23]. Accordingly, motor unit 
number estimates, an electrophysiological approach that 
can detect early abnormalities in motor units, are lower 
in both PMCA2-null mice and heterozygous mice. In 
agreement with these findings, PMCA2-null mice exhibit 
reduced hindlimb grip strength.

MECHANISMS DOWNSTREAM TO 
PMCA2 THAT MEDIATE SPINAL CORD 
NEURONAL DEATH
What are the specific mechanisms that mediate cell death 
when PMCA2 expression is reduced in spinal cord neu-
rons? This issue has been addressed by defining the pro-
teome profile after knockdown of  PMCA2 by siRNA in 
spinal cord neurons, in vitro. Collapsin response mediator 
protein 1 (CRMP1) has been identified as a candidate. 
Although the relationship between PMCA2 and CRMP1 
is not yet defined, these studies have shown that CRMP1 
levels are decreased after silencing of  PMCA2 expres-
sion. This is followed by death of  cultured spinal cord 
neurons[4]. In agreement with these findings, silencing 
of  CRMP1 also leads to neuronal death. Further studies 
are necessary in order to determine why a reduction in 
PMCA2 levels is associated with a decrease in CRMP1 
and how a fall in CRMP1 levels causes cell death. One 
possibility is perturbation of  the cytoskeleton as some 
CRMPs have been implicated in microtubule assem-
bly[24,25]. Dendritic anomalies in hippocampal neurons 
of  CRMP1 knockout mice[26] and an involvement of  
CRMP1 in dendritic growth[27] have also been reported 
suggesting that reductions in CRMP1 could affect neu-
rons in additional ways that are not yet fully defined but 
warrant further investigations.

REDUCTIONS IN SPINAL CORD PMCA2 
LEVELS IN ANIMAL MODELS OF 
MULTIPLE SCLEROSIS AND SPINAL 
CORD INJURY
The importance of  PMCA2 in pathological conditions 
of  the spinal cord is illustrated by studies on two differ-
ent animal models of  human disease. 

One of  these animal models, experimental autoim-
mune encephalomyelitis (EAE), mimics features of  mul-

tiple sclerosis[28-30]. EAE is induced by immunization of  
rats or mice with myelin components. Rodents affected 
by EAE develop progressive ascending paralysis starting 
from tail weakness and reaching quadriplegia. In most 
EAE models, the central nervous system region most af-
fected is the spinal cord and especially the lumbar region. 
Histopathological landmarks include infiltration of  inflam-
matory cells into the spinal cord, activation of  resident gli-
al cells, axonal damage, neuronal loss and in some models, 
demyelination of  axons projecting from the brain into the 
spinal cord. A drop in spinal cord PMCA2 levels at onset 
of  the first EAE symptom; i.e. tail weakness has been 
reported in both the rat and the mouse[10,31]. Most impor-
tantly, changes in PMCA2 expression were consistent with 
manifestation of  clinical deficits. In the rat model, PMCA2 
levels were restored to control values, just prior to remis-
sion from clinical deficits whereas in the mouse model, in 
which there is no functional remission, they remained low 
throughout the course of  the disease[31]. In agreement with 
these results, recovery of  function after administration of  
an α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 
(AMPA)/kainate receptor antagonist, 2,3-dihydroxy-6-
nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), 
to mice with EAE, restored both PMCA2 and CRMP1 
levels. This treatment has been shown to be effective in 
preventing the progression or reversing the symptoms and 
pathology of  EAE[4,32,33]. Therefore, it has been hypothe-
sized that before very late disease stages are reached, there 
could be a phase during which the decrease in PMCA2 
can be reversed[4]. 

PMCA2 levels are also decreased after spinal cord 
injury. Gene profiling by microarray analysis showed a 
reduction in PMCA2 transcript levels in a segment con-
taining the epicenter after spinal cord contusion injury in 
the rat[34]. PMCA2 mRNA expression was decreased as 
early as 6 h post injury and was further reduced at 48 h,  
the latest time examined. Tachibana et al[11] confirmed the 
reduction in PMCA2 mRNA levels in segments containing 
the epicenter at 24 h post-contusion injury by using cDNA 
microarray analysis and reverse transcription-polymerase 
chain reaction (RT-PCR). Other investigations demon-
strated a decrease in PMCA2 in spinal cord segments at a 
distance from the epicenter, 48 h post-contusion injury us-
ing quantitative RT-PCR[35]. Thus, a reduction in PMCA2 
could contribute to the aggravation of  neuronal pathology 
and death after spinal cord injury. 

In sum, these investigations raise the possibility that 
neuronal damage and loss in animal models of  multiple 
sclerosis and spinal cord injury might share commonalties 
and could be partly mediated by a decrease in PMCA2 
expression. 

TRIGGERS AND MECHANISMS 
MEDIATING A DECREASE IN PMCA2 
LEVELS, IN VITRO
A number of  candidates could induce the decrease in 
neuronal PMCA2 levels in inflammatory conditions of  
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the spinal cord. Both in the case of  EAE and spinal cord 
injury, glutamate excitotoxicity has been implicated in the 
damage of  neuronal and non-neuronal cells[36,37]. Other 
studies showed a decrease in hippocampal PMCA2 af-
ter injection of  kainic acid[38]. These findings prompted 
further investigations on the modulation of  PMCA2 
levels after exposure of  spinal cord neuronal cultures to 
kainic acid. The concentrations employed were below 
the conventional amounts used to induce excitotoxicity. 
However, the cells were exposed to kainate continuously. 
Kainic acid decreased PMCA2 protein but not mRNA 
levels. The reduction was most likely the consequence of  
calpain-mediated degradation of  PMCA2, as calpastatin, 
a calpain inhibitor, prevented the decrease[4]. Glutamate-
induced, calpain-mediated loss of  PMCA2 activity in hip-
pocampal neurons has been reported[39]. However, this 
was ascribed to the internalization of  the calcium pump. 

Restoration of  PMCA2 levels after administration of  
NBQX to mice with EAE further supports the notion 
that glutamate, acting via the AMPA/kainate receptors, 
could be a stimulus decreasing PMCA2 levels either by 
direct actions on neurons and/or indirectly, by stimulat-
ing other cells including glia which, in turn, could release 
substances that modulate PMCA2 levels. It is not yet 
known whether degradation by calpain is one of  the 
mechanisms that accounts for the decrease in PMCA2 
during EAE since the involvement of  calpain has been 
shown only in spinal cord neurons in vitro, as described 
above. However, increases in calpain activity in EAE[40,41] 
and attenuation of  axonal injury and EAE symptoms 
after inhibition of  calpain have been reported[42]. There-
fore, calpain could be a plausible candidate mediating 
the reduction in PMCA2 levels, at least partially, in the 
spinal cord during this disease. Glutamate excitotoxicity 
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and calpain activation have also been implicated in spinal 
cord injury and could be factors contributing to the de-
crease in PMCA2[36,43].

It is worth noting that both PMCA2 protein and mRNA 
levels are decreased in EAE[10,31]. Moreover, in spinal cord 
slice cultures, kainic acid causes a reduction in PMCA2 
transcript levels[10]. This indicates that additional triggers 
and mechanisms might be responsible for the reduction 
in PMCA2 mRNA levels. In addition to glutamate, other 
substances released by inflammatory cells that infiltrate 
the spinal cord during EAE or after injury or factors pro-
duced by glia might be additional stimuli that modulate 
PMCA2 levels. A scheme that summarizes a proposed 
mechanism for PMCA2-mediated neurodegeneration is 
presented in Figure 1.

CONCLUSION
The aforementioned investigations highlight the critical 
role of  PMCA2 in motor neuron survival. In vitro studies 
indicate that additional spinal cord neuronal populations 
are also susceptible to reductions in PMCA2 activ-
ity. Further studies are necessary to identify precisely 
the various neuronal subtypes that are dependent on 
PMCA2. Comprehensive analysis of  PMCA2-null and 
heterozygous mouse spinal cord and in vivo knockdown 
experiments could provide insights into these issues. 

It is also important to demonstrate directly whether 
reductions in PMCA2 are causes of  neuronal damage  
in vivo and if  restoration of  PMCA2 levels reverts neuro-
nal pathology and prevents neuronal loss during EAE and 
after spinal cord injury. Finally, it is critical to determine 
the role of  other PMCA isoforms and splice variants in 
the function of  the spinal cord in health and disease. 
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