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Abstract
Transglutaminases (TGs) are a large family of related 
and ubiquitous enzymes that catalyze post-translation-
al modifications of proteins. The main activity of these 
enzymes is the cross-linking of a glutaminyl residue 
of a protein/peptide substrate to a lysyl residue of a 
protein/peptide co-substrate. In addition to lysyl resi-
dues, other second nucleophilic co-substrates may 
include monoamines or polyamines (to form mono- or 
bi-substituted /crosslinked adducts) or -OH groups (to 
form ester linkages). In the absence of co-substrates, 
the nucleophile may be water, resulting in the net de-
amidation of the glutaminyl residue. The TG enzymes 
are also capable of catalyzing other reactions impor-
tant for cell viability. The distribution and the physi-
ological roles of TG enzymes have been widely studied 
in numerous cell types and tissues and their roles in 
several diseases have begun to be identified. “Tissue” 
TG (TG2), a member of the TG family of enzymes, has 
definitely been shown to be involved in the molecular 
mechanisms responsible for a very widespread human 
pathology: i.e. celiac disease (CD). TG activity has also 

been hypothesized to be directly involved in the patho-
genetic mechanisms responsible for several other hu-
man diseases, including neurodegenerative diseases, 
which are often associated with CD. Neurodegenera-
tive diseases, such as Alzheimer’s disease, Parkinson’s 
disease, supranuclear palsy, Huntington’s disease and 
other recently identified polyglutamine diseases, are 
characterized, in part, by aberrant cerebral TG activ-
ity and by increased cross-linked proteins in affected 
brains. In this review, we discuss the physio-patholog-
ical role of TG-catalyzed reactions, with particular in-
terest in the molecular mechanisms that could involve 
these enzymes in the physio-pathological processes 
responsible for human neurodegenerative diseases.
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BIOCHEMISTRY OF THE 
TRANSGLUTAMINASES
Transglutaminases (TGs, E.C. 2.3.2.13) catalyze irre-
versible post-translational modifications of  proteins. 
Examples of  TG-catalyzed reactions include: (1) acyl 
transfer between the γ-carboxamide group of  a protein/
polypeptide glutaminyl residue and the ε-amino group of  
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a protein/polypeptide lysyl residue; (2) attachment of  a 
polyamine to the γ-carboxamide of  a glutaminyl residue; 
and (3) deamidation of  the γ-carboxamide group of  a 
protein/polypeptide glutaminyl residue (Figure 1)[1,2]. The 
reactions catalyzed by TGs occur as a two-step mecha-
nism (Figure 2). The transamidating activity of  TGs is 
activated by the binding of  Ca2+, which exposes an active-
site cysteine residue. This cysteine residue reacts with the 
γ-carboxamide group of  an incoming glutaminyl residue 
of  a protein/peptide substrate to yield a thioacyl-enzyme 
intermediate and ammonia (Figure 2, Step 1). The thio-
acyl-enzyme intermediate then reacts with a nucleophilic 
primary amine substrate, resulting in the covalent attach-
ment of  the amine-containing donor to the substrate 
glutaminyl acceptor and regeneration of  the cysteinyl 
residue at the active site, (Figure 2, Step 2). If  the primary 
amine is donated by the ε-amino group of  a lysyl residue 
in a protein/polypeptide, a Nε-(γ-L-glutamyl)-L-lysine 
(GGEL) isopeptide bond is formed, (Figure 1A). On the 
other hand, if  a polyamine or another primary amine (e.g. 
histamine) acts as the amine donor, a γ-glutamylpolyamine 
(or γ-glutamylamine) residue is formed (Figure 1B). It is 
also possible for a polyamine to act as a N,N-bis-(γ-L-
glutamyl) polyamine bridge between two glutaminyl ac-
ceptor residues either on the same protein/polypeptide 
or between two proteins/polypeptides[3]. If  there is no 
primary amine present, water may act as the attacking nu-
cleophile, resulting in the deamidation of  glutaminyl resi-
dues to glutamyl residues (Figure 1C). It is worth noting 
that two of  these reactions, in particular, the deamidation 
of  peptides obtained from the digestion of  the gliadin, a 
protein present in wheat, and the GGEL isopeptide for-
mation between these peptides and “tissue” TG (TG2 or 
tTG), have been recently shown to cause the formation 
of  new antigenic epitopes, which are responsible for im-
munological reactions during celiac disease (CD), one of  
the most common human autoimmune diseases[4,5]. The 
reactions catalyzed by TGs occur with little change in free 
energy and hence should theoretically be reversible. How-
ever, under physiological conditions the cross linking re-
actions catalyzed by TGs are usually irreversible. This ir-
reversibility partly results from the metabolic removal of  
ammonia from the system and from thermodynamic con-
siderations resulting from altered protein conformation. 
Some scientific reports suggest that TGs may be able to 
catalyze the hydrolysis of  GGEL cross-links isopeptide 
bonds in some soluble cross-linked proteins. Further-
more, it is likely that TGs can catalyze the exchange of  
polyamines into proteins[2]. In some TGs, other catalytic 
activities, such as the ability to hydrolyze GTP (or ATP) 
into GDP (or ADP) and inorganic phosphate, a protein 
disulfide isomerase activity, a serine/threonine kinase ac-
tivity and an esterification activity, are often present[6-9]. 

TGS ARE MULTIFUNCTIONAL ENZYMES
Numerous studies have indicated that some TGs are 
multifunctional proteins with distinct and regulated en-
zymatic activities. In fact, under physiological conditions, 

the transamidation activity of  TGs is latent[10], while other 
activities, recently identified, could be present. For exam-
ple, in some pathophysiological states, when the concen-
tration of  Ca2+ increases, the crosslinking activity of  TGs 
may contribute to important biological processes. As pre-
viously described, one of  the most intriguing properties 
of  some TGs, such as TG2, is the ability to bind and hy-
drolyze GTP and, furthermore, to bind to GTP and Ca2+. 
GTP and Ca2+ regulate its enzymatic activities, including 
protein cross-linking, in a reciprocal manner: the binding 
of  Ca2+ inhibits GTP-binding and GTP-binding inhibits 
the TG cross-linking activity of  TG2[6]. Interestingly, TG2 
shows no sequence homology with heterotrimeric or low-
molecular-weight G-proteins, but there is evidence that 
TG2 (TG2/Ghα) is involved in signal transduction and, 
therefore, TG2/Ghα should also be classified as a large 
molecular weight G-protein. Other studies, along with 
this study, showed that TG2/Ghα can mediate the acti-
vation of  phospholipase C (PLC) by the α1b-adrenergic 
receptor[11] and can modulate adenylyl cyclase activity[12]. 
TG2/Ghα can also mediate the activation of  the δ1 iso-
form of  PLC and of  maxi-K channels[13]. Interestingly, 
the signaling function of  TG2/Ghα is preserved even 
with the mutagenic inactivation of  its crosslinking activ-
ity by the mutation of  the active site cysteine residue[14]. 
However, evidence for a pathophysiological role of  the 
TGs in cell signaling, in disulfide isomerase activity and in 
other biological functions is still lacking.

Molecular biology of THE 
TRANGLUTAMINASES
To date, at least eight different TGs, distributed in the 
human body, have been identified (Table 1). Complex 
mechanisms regulating the gene expression of  TGs, 
both at transcriptional and translational levels, determine 
a complex but precise distribution of  these enzymes in 
a cell and/or a tissue[21]. Such complex gene expression 
reflects the physiological roles that these enzymes play 
in both the intracellular and extracellular compartments. 
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Table 1  TG enzymes and their biological functions when 
known

TG Physiological role Gene map 
location

Ref.

Factor XIIIa Blood clotting 6p24-25 [15]

TG1 (Keratinocyte 
TG, kTG)

Skin differentiation 14q11.2 [16]

TG2 (Tissue TG, 
tTG, cTG)

Apoptosis, cell adhesion, 
signal transduction

20q11-12 [17]

TG3 (Epidermal TG, 
eTG)

Hair follicle differentiation 20p11.2 [18]

TG4 (Prostate TG, 
pTG)

Suppression of sperm 
immunogenicity

3q21-2 [19]

TG5 (TG X) Epidermal differentiation 15q15.2 [20]

TG6 (TG Y) Unknown function 20p13 [20]

TG7 (TG Z) Unknown function 15q15.2 [20]

TG: Transglutaminases.
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In the nervous system, for example, several forms of  
TGs are simultaneously expressed[20,22,23]. Moreover, 
several alternative splice variants of  TGs, mostly in the 
3’-end region, have been identified. Interestingly, some 
of  them are differently expressed in human pathologies, 
such as Alzheimer’s disease (AD)[24]. On the basis of  
their ubiquitous expression and their biological roles, we 
may speculate that the absence of  these enzymes would 
be lethal. However, this does not always seem to be the 
case, since, for example, null mutants of  TG2 are usually 

phenotypically normal at birth[25]. This result may be ex-
plained by multiple expressions of  other TG genes that 
could be substituting for the missing isoform. 

Bioinformatic studies have shown that the primary 
structures of  human TGs share some identities in only a 
few regions, such as the active site and the calcium bind-
ing regions. However, high sequence conservation and, 
therefore, a high degree of  preservation of  residue sec-
ondary structure among TG2, TG3 and FXIIIa indicate 
that these TGs all share four-domain tertiary structures, 
which could be similar to those of  other TGs[26].

TGS and Neurodegenerative 
diseases
An ever-growing number of  scientific reports sug-
gest that TG activity is involved in the pathogenesis of  
neurodegenerative diseases. To date, however, mainly 
indirect evidence has been obtained about the involve-
ment of  these enzymes in the pathophysiology of  these 
neurological diseases. Protein aggregates in affected brain 
regions are histopathological hallmarks of  many neuro-
degenerative diseases[27]. More than 20 years ago, Selkoe 
et al[28] suggested that TG activity might contribute to the 
formation of  protein aggregates in AD brains. In sup-
port of  this hypothesis, tau protein has been shown to be 
an excellent in vitro substrate of  TGs[29] and GGEL cross-
links have been found in the neurofibrillary tangles and 
paired helical filaments of  AD brains[30]. Interestingly, a 
recent study showed the presence of  bis γ-glutamyl pu-
trescine in human cerebrospinal fluid (CSF), which was 
increased in Huntington’s disease (HD) CSF[31]. This is 
important evidence that protein/peptides crosslinking by 
polyamines does indeed occur in the brain, and that this 
is increased in HD brains. More recently, TG activity has 
been shown to induce amyloid β-protein oligomerization 
and aggregation at physiologic levels[32]. By these molecu-

183 May 26, 2010|Volume 1|Issue 5|WJBC|www.wjgnet.com

C C C NH2

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

CH2

2H
N

-protein-CO
O

H

CH2CH2CH2NH2 C C C NH

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

CH2

2H
N

-protein-CO
O

H

CH2CH2CH2 NH3+ +

C C C NH2

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

RNH2 C C C NH

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

R NH3+ +

C C C NH2

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

H2O C C C OH

O
H2H2

2H
N

-p
ro

te
in

-C
O

O
H

NH3+ +

C

B

A

Figure 1  Transglutaminase (TG)-catalyzed reactions. R: Monoamines, polyamines. Examples of TG-catalyzed reactions: A: Acyl transfer between the γ-carboxamide 
group of a protein/polypeptide glutaminyl residue and the ε-amino group of a protein/polypeptide lysyl residue; B: Attachment of a polyamine to the carboxamide group 
of a glutaminyl residue; C: Deamidation of the γ-carboxamide group of a protein/polypeptide glutaminyl residue.
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lar mechanisms, TGs could contribute to AD symptoms 
and progression[32]. Moreover, there is evidence that 
TGs also contribute to the formation of  proteinaceous 
deposits in Parkinson’s disease (PD)[33,34], in supranuclear 
palsy[35,36] and in HD, a neurodegenerative disease caused 
by a CAG expansion in the affected gene[37]. For example, 
expanded polyglutamine domains have been reported 
to be substrates of  TG2[38-40] and therefore aberrant TG 

activity could contribute to CAG-expansion diseases. 
However, although all these studies suggest the pos-
sible involvement of  TGs in the formation of  deposits 
of  protein aggregates in neurodegenerative diseases, 
they do not indicate whether aberrant TG activity per 
se directly determines disease progression. For example, 
several experimental findings reported that TG2 activity 
in vitro leads to the formation of  soluble aggregates of  
α-synuclein[41] or polyQ proteins[42,43]. To date, as previ-
ously reported, at least ten human CAG-expansion dis-
eases have been described (Table 2) and, in at least eight 
of  them, their neuropathology is caused by the expansion 
in the number of  residues in the polyglutamine domain 
to a value beyond 35-40. Remarkably, the mutated pro-
teins have no obvious similarities except for the expanded 
polyglutamine domain. Most of  the mutated proteins are 
widely expressed both within the brain and elsewhere in 
the body. A major challenge then is to understand why 
the brain is primarily affected and why different regions 
within the brain are affected in the different CAG-expan-
sion diseases; i.e. what accounts for the neurotoxic gain 
of  function for each protein and for a selective vulner-
ability of  each cell type. Possibly, the selective vulnerabil-
ity[54] may be explained in part by the susceptibility of  the 
expanded polyglutamine domains in the various CAG-
expansion diseases to act as co-substrates for a brain TG, 
as shown in Figure 3. To strengthen the possible central 
role of  the TGs in neurodegenerative diseases, a study 
by Hadjivassiliou et al[55] showed that anti-TG2 IgA anti-
bodies are present in the gut and brain of  patients with 
gluten ataxia, a non-genetic sporadic cerebellar ataxia, but 
not in ataxia control patients. Recently, anti-TG2, -TG3 
and -TG6 antibodies have been found in sera from CD 
patients, suggesting a possible involvement also of  other 
TGs in the pathogenesis of  dermatitis herpetiformis and 
gluten ataxia, two frequent extraintestinal manifestations 
of  gluten sensitivity[56,57]. Therefore, these studies sug-
gest that the involvement of  brain TGs could represent 
a common denominator in several neurodegenerative 
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Table 2  List of polyglutamine (CAG-expansion) diseases

Disease Sites of neuropathology CAG triplet number Gene product (Intracellular 

localization of protein deposits)

Ref.

 Normal Disease

Corea major or HD Striatum (medium spiny neurons) and cortex in late stage   6-35   36-121 Huntingtin (n, c) [44]

SCA1 Cerebellar cortex (Purkinje cells), dentate nucleus and brain stem   6-39 40-81 Ataxin-1 (n, c) [45]

SCA2 Cerebellum, pontine nuclei, substantia nigra 15-29 35-64 Ataxin-2 (c) [46]

SCA3 or MJD Substantia nigra, globus pallidus, pontine nucleus, cerebellar cortex 13-42 61-84 Ataxin-3 (c) [47]

SCA6 Cerebellar and mild brainstem atrophy   4-18 21-30 Calcium channel [48]

Subunit (a1A) (m)
SCA7 Photoreceptor and bipolar cells, cerebellar cortex, brainstem   7-17   37-130 Ataxin-7 (n) [49]

SCA12 Cortical, cerebellar atrophy   7-32 41-78 Brain specific regulatory subunit 
of protein phosphatase PP2A (?)

[50]

SCA17 Gliosis and neuronal loss in the Purkinje cell layer 29-42 46-63 TATA-binding protein (TBP) (n) [51]

SBMA or Kennedy 
disease

Motor neurons (anterior horn cells, bulbar neurons) and dorsal 
root ganglia

11-34 40-62 Androgen receptor (n, c) [52]

DRPLA Globus pallidus, dentato-rubral and subthalamic nucleus   7-35 49-88 Atrophin (n, c) [53]

HD: Huntington’s disease; SCA: Spinocerebellar ataxia; MJD: Machado-Joseph disease; SBMA: Spinobulbar muscular atrophy; DRPLA: Dentatorubral-
pallidoluysian atrophy; c: Cytosolic; m: Transmembrane; n: Nuclear.
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diseases, which can lead to the determination of  patho-
physiological consequences through different molecular 
mechanisms (e.g. biochemical or immunological). 

TGS as potential therapeutic 
targets of neurodegenerative 
diseases
Since there have been no long-term effective treatments 
for these human neurodegenerative diseases until now, 
the possibility that selective TG inhibitors may be of  clin-
ical benefit has been seriously considered. In this respect, 
some encouraging results have been obtained with TG 
inhibitors in preliminary studies with different biological 
models of  CAG-expansion diseases. For example, cysta-
mine (Figure 4) is a potent in vitro inhibitor of  enzymes 
that require an unmodified cysteine at the active site[58]. 
In as much as TGs contain a crucial active-site cysteine, 
cystamine has the potential to inhibit these enzymes by 
disulfide interchange reactions. A disulfide interchange 
reaction results in the formation of  cysteamine and a 
cysteamine-cysteine mixed disulfide residue at the active 
site. Recent studies have shown that cystamine decreases 
the number of  protein inclusions in transfected cells ex-
pressing the atrophin protein containing a pathological-
length polyglutamine domain[59]. In other studies, cys-
tamine administration to HD-transgenic mice resulted 
in an increase in life expectancy and amelioration of  
neurological symptoms[60,61]. Neuronal inclusions were 
decreased in one of  these studies[60]. Although all these 
scientific reports seem to support the hypothesis of  a di-
rect role of  TG activity in the pathogenesis of  polygluta-
mine diseases, cystamine is also found to act in the HD-
transgenic mice by mechanisms other than the inhibition 
of  TGs, such as the inhibition of  caspases[62], suggesting 
that this compound can have an additive effect in the 
therapy of  HD. The pharmacodynamics and the phar-
macokinetics of  cystamine, therefore, should be carefully 
investigated in order to confirm the same effectiveness 
in patients with HD and possibly in patients with other 
neurodegenerative diseases. Another critical problem in 
the use of  TG inhibitors in treating neurological diseases 
relates to the fact that, as previously reported, the human 
brain contains at least four TGs, including TG1, TG2, 
TG3[17] and possibly TG6[63], and a strong non-selective 
inhibitor of  TGs might also inhibit plasma Factor XIIIa, 
causing a bleeding disorder. Therefore, from a number 
of  standpoints it would seem that a selective inhibitor 
that discriminates among TGs would be preferable to 
an indiscriminate TG inhibitor. Finally, most of  the TG 
activity in mouse brain, at least as assessed by an assay 
that measures the incorporation of  radioactive putrescine 
(amine donor) into N,N-dimethyl casein (amine acceptor) 

seems to be due to TG2[64]. However, no conclusive data 
has been obtained about the involvement of  this TG in 
the development of  symptoms in HD-transgenic mice in 
TG2 gene knock-out experiments[65].

CONCLUSION
In conclusion, although many scientific reports have im-
plicated aberrant TG activity in neurodegenerative diseas-
es, today we are still looking for data that could definitely 
confirm the direct involvement of  TGs in the pathoge-
netic mechanisms responsible for these diseases. The use 
of  inhibitors of  TGs could then be useful in experimental 
approaches. To minimize the possible side effects, how-
ever, selective inhibitors of  the TGs should be considered. 
Progress in this area of  research may be achieved in the 
near future through pharmaco-genetic techniques.
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