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Abstract
Brain-derived neurotrophic factor (BDNF), a critical 
neurotrophin, regulates many neuronal aspects includ-
ing cell differentiation, cell survival, neurotransmission, 
and synaptic plasticity in the central nervous system 

(CNS). Though BDNF has two types of receptors, high 
affinity tropomyosin-related kinase (Trk)B and low affin-
ity p75 receptors, BDNF positively exerts its biological 
effects on neurons via  activation of TrkB and of resul-
tant intracellular signaling cascades including mitogen-
activated protein kinase/extracellular signal-regulated 
protein kinase, phospholipase Cγ, and phosphoinositide 
3-kinase pathways. Notably, it is possible that alteration 
in the expression and/or function of BDNF in the CNS 
is involved in the pathophysiology of various brain dis-
eases such as stroke, Parkinson’s disease, Alzheimer’s  
disease, and mental disorders. On the other hand, 
glucocorticoids, stress-induced steroid hormones, also 
putatively contribute to the pathophysiology of depres-
sion. Interestingly, in addition to the reduction in BDNF 
levels due to increased glucocorticoid exposure, cur-
rent reports demonstrate possible interactions between 
glucocorticoids and BDNF-mediated neuronal functions. 
Other steroid hormones, such as estrogen, are involved 
in not only sexual differentiation in the brain, but also 
numerous neuronal events including cell survival and 
synaptic plasticity. Furthermore, it is well known that 
estrogen plays a role in the pathophysiology of Parkin-
son’s disease, Alzheimer’s disease, and mental illness, 
while serving to regulate BDNF expression and/or func-
tion. Here, we present a broad overview of the current 
knowledge concerning the association between BDNF 
expression/function and steroid hormones (glucocorti-
coids and estrogen). 
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INTRODUCTION
Neurotrophins, including nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), neurotrophin 
(NT)-3, and NT-4/5, bind to high-affinity tropomyosin-
related kinase (Trk) receptors. It is known that NGF 
binds to TrkA, BDNF and NT-4/5 bind to TrkB, and 
NT-3 binds to TrkC (additionally to TrkB, weakly), al-
though there is a common low-affinity p75 receptor 
for all neurotrophins. Specifically, BDNF and TrkB are 
broadly and strongly expressed in the mammalian brain 
and exert beneficial effects on central nervous system 
(CNS) neurons. Following activation of  TrkB, due to 
binding with BDNF, activation of  various intracellular 
signaling pathways, including mitogen-activated pro-
tein kinase/extracellular signal-regulated protein kinase 
(MAPK/ERK), phospholipase Cγ (PLCγ), and phos-
phoinositide 3-kinase (PI3K) pathways, are triggered[1]. 
These intracellular signaling cascades have multiple roles 
in cell differentiation, nerve growth, neuronal survival, 
and synaptic plasticity in both the developing and mature 
nervous system[2]. Importantly, dysfunction of  BDNF 
may be involved in the pathophysiology of  various brain 
diseases. A reduction in BDNF levels has also been indi-
cated in various mental disorders[3-5].

Important stress hormones, such as glucocorticoids, 
are also putatively associated in the pathophysiology of  
depression[6]. Glucocorticoids play an essential role in 
coping with stressful conditions, and are well known to 
regulate the expression of  various target genes via the glu-
cocorticoid receptor (GR)[7]. In general, the level of  blood 
glucocorticoids is controlled through the hypothalamic-
pituitary-adrenal (HPA)-axis[8]. In turn, the sustained 
increase in glucocorticoids after prolonged exposure to 
stress may cause extensive damage to the CNS, resulting 
in the onset of  depression[9]. As both BDNF and gluco-
corticoids may be involved in neuronal function and the 
pathophysiology of  depression, possible crosstalk be-
tween BDNF and glucocorticoid function is very interest-
ing. In this review, we provide an overview of  the current 
knowledge, including our studies, concerning the associa-
tion between BDNF and glucocorticoids. 

Estrogen also contributes to numerous neuronal as-
pects in the CNS. For example, 17β-estradiol (17β-E2), 
one of  the estrogens, promotes cell differentiation and 
survival in cultured hypothalamic[10], amygdala[11], and neo-
cortical neurons[12]. In cortical cultures, we also reported 
that 17β-E2 protects neurons from cell death caused by 

oxidative stress via decreasing MAPK/ERK signaling 
activity[13]. Furthermore, we previously showed that pre-
treatment of  cultured hippocampal neurons with 17β-E2 
enhances activity-dependent release of  glutamate, the 
main excitatory neurotransmitter, via activation of  PI3K 
and MAPK/ERK pathways. It is important to mention, 
however, that potentiation by estradiol in the release of  
the main inhibitory neurotransmitter, GABA, was not 
observed[14]. Considering that many studies demonstrate 
that 17β-E2 can stimulate the same signaling pathways 
as BDNF, we describe relations between estrogen and 
BDNF in the latter part of  this paper.

GLUCOCORTICOIDS AND BDNF
BDNF and intracellular signalings 
The BDNF gene has at least nine exons. Specifically, 
exon Ⅸ encodes the open reading frame for the entire 
BDNF protein, while the remaining exons possess their 
own distinct promoters. Transcription of  the BDNF 
gene is initiated from each 5’ exon spliced onto the com-
mon 3’ exon Ⅸ in response to the specific stimulus[15] 
(Figure 1A). The length of  the 3’ untranslated region 
of  BDNF mRNA influences the dendritic transport 
of  the mRNA in hippocampal neurons[16]. Importantly, 
neuronal activity also impacts the transcription and se-
cretion of  BDNF. Ca2+ influx via Ca2+ channels triggers 
activation of  cAMP-responsive element binding protein 
(CREB), which regulates transcription of  many genes 
including BDNF[17]. Such mechanisms underlying the 
production and/or release of  BDNF are suggested to be 
involved in the activity-dependent maturation and mod-
ulation of  synaptic connections in the adult CNS[18,19]. 
Recently, it was reported that binding of  CREB to pro-
moter Ⅳ is necessary for experience-dependent induc-
tion of  BDNF transcription in addition to facilitating 
inhibitory synapse development[20].

BDNF exerts biological effects on the neuronal sys-
tem following the binding to two types of  transmem-
brane receptors. One transmembrane receptor is a high 
affinity TrkB receptor, and the other is a low affinity p75 
neurotrophin receptor[21]. The binding of  BDNF to the 
extracellular domain of  TrkB triggers dimerization of  the 
receptor followed by autophosphorylation (activation) of  
tyrosin residues located in the intracellular kinase domain. 
The TrkB phosphorylation induces activation of  three 
intracellular signaling cascades commonly referred to as 
the MAPK/ERK, PI3K, and PLCγ pathways (Figure 1B). 
Together, phosphorylation of  the tyrosine 515 residue 
located in the juxtamembrane region and the tyrosine 816 
residue in the C-terminus of  TrkB accelerate recruitment 
of  the Src homology domain-containing protein (Shc) 
and PLCγ, respectively[22,23]. Shc phosphorylation leads to 
activation of  the MAPK/ERK pathway, which promotes 
neuronal differentiation and growth, and of  the PI3K/
Akt pathway, which is essential for cell survival. PLCγ ac-
tivation causes production of  inositol 1,4,5 trisphosphate 
(IP3) and diacylglycerol (DAG). Increased IP3 stimulates 
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Ca2+ release from internal Ca2+ stores, resulting in the acti-
vation of  Ca2+/calmodulin-dependent protein kinases (e.g. 
CaMKII, CaMKK and CaMKIV). DAG activates protein 
kinase C[23,24]. Overall, BDNF affects CNS neurons throu-
gh various intracellular signaling pathways triggered by 
activation of  TrkB[2].

Roles of glucocorticoid and BDNF in stress/depression
Increased glucocorticoid levels coupled with reduced 
BDNF levels have been implicated in the pathophysiol-
ogy of  depression. In general, many stressors activate 

the HPA axis through increasing the production and 
consequent release of  corticotropin-releasing hormone 
(CRH) and arginine vasopressin (AVP) from the para-
ventricular nucleus (PVN) of  the hypothalamus. Follow-
ing this, secreted CRH, in concert with AVP, stimulate 
the pituitary to produce adrenocorticotropic hormone 
(ACTH), which enters the bloodstream to stimulate the 
adrenal glands. Finally, the adrenal glands respond by 
producing and releasing glucocorticoids (cortisol in pri-
mates including humans, and corticosterone in rodents). 
Importantly, glucocorticoids participate in an inhibi-
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Figure 1  Brain-derived neurotrophic factor (BDNF) gene and stimulated intracellular signaling cascades after activation of tropomyosin-related kinase (Trk)B. 
A: Mouse and rat BDNF genes (we referred to the description by Aid et al[15]). Each BDNF transcript is comprised of one of eight 5’ untranslated exons (exon Ⅰ-Ⅷ) and 
the common 3’ protein coding exon Ⅸ; B: Intracellular signaling after TrkB activation. Following BDNF binding, TrkB dimerization and its phosphorylation at intracellular 
tyrosine residues occur. Then, the activated TrkB stimulates three main signaling pathways: (1) mitogen-activated protein kinase/extracellular signal-regulated kinase 
(MAPK/ERK); (2) phosphatidylinositol 3-kinase (PI3K); and (3) phospholipase Cγ (PLCγ) pathways. MAPK pathway, in which MAPK/ERK kinase (MEK) is involved, plays 
a role in the neuronal differentiation and outgrowth. PI3K signaling promotes neuronal survival via Ras or GRB-associated binder 1 (Gab1). Following PLCγ activation, 
inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) are both produced. DAG activates protein kinase C (PKC), which is important for regulation of synaptic plasticity. 
Meanwhile, IP3 increases intracellular Ca2+ concentration via IP3 receptors on the endoplasmic reticulum (ER), resulting in activation of Ca2+/calmodulin (CaM)-dependent 
protein kinase including CaMKII, CaMKK, and CaMKI. These MAPK/ERK, PI3K, and PLCγ pathways can regulate gene transcription.
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tory feedback loop with the hypothalamus and pituitary 
glands in order to prevent excess synthesis and/or secre-
tion of  CRH and ACTH, respectively. In addition, the 
hippocampus exerts an inhibitory action on the HPA-
axis. Glucocorticoids function as a master regulator for 
stress responses by targeting many genes via the GR[8].

There is evidence demonstrating that abnormalities 
in the HPA axis are involved in the pathophysiology 
of  a variety of  mental disorders, in particular mood 
disorders[25]. Specifically, a possible association between 
depression and HPA axis hyperactivity has been demon-
strated. For example, elevated concentrations of  CRH in 
cerebrospinal fluid[26], increased volume of  adrenal[27] and 
pituitary glands[28], and impaired negative feedback as in-
dicated by a higher rate of  non-suppression to pharma-
cological challenge paradigms[9,29,30] were reported. Such 
HPA-axis hyperactivity in depressed patients can be 
improved after successful treatment[9,31]. The HPA-axis 
abnormalities are also observed in animals exposed to 
chronic stress[32]. Moreover, a large number of  preclinical 
and clinical studies have provided evidence supporting 
the association between stress/depression and hippo-
campal abnormalities, such as a decrease of  hippocam-
pal neurogenesis as a result of  stress conditions[33], the 
increase of  hippocampal neurogenesis after antidepres-
sant treatment[34], and the reduced hippocampal volume 
in depressed patients[35]. Furthermore, the suppression 
of  hippocampal neurogenesis due to HPA-axis hyper-
activity is assumed to be one of  the major pathways for 
mood disorders including depression[36]. 

On the other hand, several studies demonstrate that 
BDNF plays a role in the pathophysiology of  stress/
depression. Indeed, stress modifies the expression of  
BDNF; immobilization stress reduces BDNF expression 
throughout the hippocampus[37] and increases BDNF 
levels in the hypothalamic PVN[38]. In a rat model of  
depression, BDNF exerts antidepressant-like effects[39,40]. 
As expected, antidepressant treatment increases BDNF 
levels in limbic structures, most prominently in the hip-
pocampus[41,42]. In patients with depression, decreased 
serum BDNF levels[43,44] and improvement in attenu-
ated BDNF levels through antidepressant treatment[45] 
were observed. Furthermore, increased hippocampal 
BDNF levels were documented in postmortem brains 
of  subjects treated with antidepressants[46]. Interestingly, 
evidence concerning the possible involvement of  BDNF 
in HPA axis function was shown. In animals, central ad-
ministration of  exogenous BDNF was shown to modify 
HPA axis function[47,48]. Both BDNF and glucocorticoids 
may be involved in the pathophysiology of  depression 
and overall neuronal function in the CNS, though the 
possible interaction between glucocorticoids and BDNF 
is poorly understood.

Functional interaction between glucocorticoids and 
BDNF
Many studies indicate that BDNF is important in the regu-
lation of  synaptic proteins. In the release of  neurotransmit-

ters, synaptic proteins including synaptic vesicle-associated 
synaptic proteins (e.g. synapsin Ⅰ, synaptotagmin and 
synaptophysin) and plasma membrane-associated synaptic 
proteins (syntaxin and synaptosomal-associated protein of  
25 kDa) are critical[49]. Many studies revealed that BDNF 
upregulates levels of  these presynaptic proteins[50-52]. In ad-
dition to regulation of  presynaptic proteins, expression of  
postsynaptic ionotropic glutamate receptors (GluRs) are 
also affected by BDNF. In hippocampal cultures, BDNF 
increases GluR1, GluR2, and GluR3 subunits of  α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid-type iono-
tropic glutamate receptors[53]. Levels of  N-methyl-D-aspar-
tic acid (NMDA) receptor subunits, including NR1, NR2A 
and NR2B, are also increased by BDNF application[54]. We 
recently reported an inhibitory effect of  DEX (dexametha-
sone, a synthetic glucocorticoid, and selective ligand for 
GR) on synaptic maturation[55]. In cultured cortical neurons, 
we previously found that BDNF increased levels of  synap-
tic proteins via activation of  the MAPK/ERK pathway[56]. 
In developing hippocampal neurons, BDNF upregulated 
levels of  NR2A, NR2B, GluR1, and synapsin Ⅰ through 
MAPK/ERK signaling. However, in the presence of  
DEX, the BDNF-dependent increase in expression of  
these synaptic proteins was inhibited via suppression of  
MAPK/ERK signaling[55]. The inhibitory action of  DEX 
was reversed by RU486, a GR antagonist, suggesting that 
the GR is involved in the inhibition by DEX.

BDNF is recognized as a crucial regulator for basal 
neurotransmission and synaptic plasticity including long-
term potentiation, which has been intensively studied to 
understand mechanisms of  learning and memory[2,57-64]. 
We also reported that BDNF elicits glutamate release 
through activation of  the PLCγ pathway[65-67]. Recently, we 
showed a functional interaction of  glucocorticoids with 
BDNF in the release of  glutamate in cultured cortical 
neurons. After pretreatment with DEX or corticosterone, 
GR expression and the BDNF-evoked glutamate release 
were both diminished[68] (Figure 2A and B). On the other 
hand, the TrkB levels were intact after exposure to gluco-
corticoids (Figure 2B). Interestingly, we found that the GR 
interacts with TrkB, and the TrkB-GR interaction may be 
important for the regulation of  BDNF-evoked glutamate 
release. Following DEX treatment, the TrkB-GR interac-
tion was reduced due to the decline in GR levels. Similarly, 
the BDNF-stimulated binding of  PLCγ to TrkB was also 
declined. In contrast, GR overexpression enhanced the 
TrkB-GR interaction, PLCγ activation, and glutamate 
release. Therefore, it is possible that the TrkB-GR interac-
tion is critical for glutamate release stimulated by BDNF 
via regulation of  PLCγ signaling, and that the decrease in 
TrkB-GR interaction after chronic glucocorticoid expo-
sure resulted in the dysfunction of  the BDNF-dependent 
neurotransmission[68].

In general, glucocorticoids are believed to display their 
effects via transcriptional regulation of  various genes tar-
geted by GR. Remarkably, glucocorticoids acutely activate 
Trks signaling through the genomic function (via tran-
scriptional activity) of  the GR. After in vivo administration 
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in the brain and in cultures of  hippocampal and corti-
cal neurons, the glucocorticoid-stimulated activation of  
Trks was induced[69]. In that system, other tyrosine kinase 
receptors, such as EGF and FGF receptors, were not ac-
tivated by glucocorticoids. The glucocorticoid-dependent 
activation of  Trks has a neuroprotective role. Accumulat-
ing evidence, including our study on BDNF-stimulated 
glutamate release, demonstrates a nongenomic (not via 
transcriptional activity) function of  GR. Löwenberg et al[70] 
reported the functional interaction between the GR and 
the T-cell receptor (TCR) complex. In T cells, the GR 
plays an important role in TCR signaling. After the glu-
cocorticoid is bound to the GR, the GR dissociates from 
the complex, resulting in inhibition of  TCR signaling[70]. 
Rapid action of  glucocorticoids may be mediated by 
the activation of  membrane-associated receptors. Some 
evidence suggests that rapid glucocorticoid actions are 
stimulated via membrane-associated G protein-coupled 
receptors and activation of  downstream intracellular sig-
naling pathways[71]. In rat liver and hepatoma cells, feline 
McDonough sarcoma-like tyrosine kinase 3 was identi-
fied as a GR-interacting protein[72]. It was revealed that 

Flt3 interacts with both non-liganded and liganded GR, 
and the DNA-binding domain of  GR is sufficient for the 
interaction. In our cortical cultures, it is possible that the 
N-terminal region (including DNA binding site) of  the 
GR interacts with TrkB, however, the C-terminal region 
is also required to reinforce the BDNF-stimulated PLCγ 
signaling[68]. In the cytoplasm of  rat liver cells, GR interac-
tion with 14-3-3 and Raf-1 was identified, implying that 
the GR directly influences cytosolic signaling[73]. To reveal 
detailed mechanisms underlying acute functions of  GR in 
the CNS, it may be valuable to study possible interactions 
between GR and cytosolic signaling mediators. 

Using in vivo experiments, Gourley et al[74] reported a 
significant decrease in NR2B, GluR2/3, as well as BDNF 
levels in cortical regions, but not in the dorsal hippocam-
pus, after corticosterone exposure. Moreover, the effect 
of  prenatal DEX treatment in male and female adult rat 
offspring has been investigated[75]. In this system, DEX 
male offspring had reduced adrenal gland weight in adult 
life and demonstrated anxious behavior. By assessing the 
acoustic startle response as well as the effects of  acoustic 
challenge in the PVN, it was revealed that BDNF and 
TrkB mRNA were increased after acoustic challenge in the 
control males and females, but not in the DEX males or 
females. On the other hand, an enriched environment (EE) 
can induce changes in stress hormone release and BDNF 
levels[76]. In general, EE has beneficial neurobiologi-
cal, physiological and behavioral effects[77]. Bakos et al[76] 
showed that the EE-induced rise in hippocampal BDNF 
in females was more pronounced than in males. Similar 
sex-specific changes were confirmed in the hypothalamus. 
Moreover, a negative association between corticosterone 
and BDNF levels was observed in both sexes. 

Antidepressant drugs and BDNF
As mentioned above, it is possible that upregulation in 
expression and/or function of  BDNF is involved in 
antidepressant treatment[78]. Antidepressants, including 
inhibitors of  monoamine transporters and metabolism, 
activate TrkB rapidly in the rodent anterior cingulate 
cortex and hippocampus in vivo[79]. Importantly, acute 
antidepressant treatments induce activation of  PLCγ via 
TrkB, though no alteration in phosphorylation of  MAPK 
or Akt was observed[79]. Using cultured cortical neurons, 
we also reported that pretreatment with antidepressant 
drugs, including imipramine and fluvoxamine, enhanced 
BDNF-induced glutamate release via increasing PLCγ 
activation[80]. In our system, other pathways activated by 
TrkB (i.e. PI3K/Akt and MAPK/ERK pathways) were 
not changed after imipramine pretreatment. Importantly, 
the potentiation of  glutamate release by imipramine was 
inhibited by BD1047, a sigma-1 receptor antagonist, sug-
gesting the possible involvement of  sigma-1 receptor 
function. Recently, we have also shown that SA4503, a 
sigma-1 receptor agonist, has a neuroprotective effect un-
der oxidative-stress[81]. It is possible that a sigma-1 recep-
tor has multiple functions in the CNS.

Fluoxetine, which is a widely prescribed medication 
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Figure 2  Glucocorticoids depressed BDNF-induced release of glutamate 
and expression of GR in cultured cortical neurons. A: Dose-dependent 
inhibitory effect of corticosterone pretreatment on BDNF-induced glutamate 
release. Corticosterone (0.001-10 mmol/L) was applied at DIV4. Forty-eight 
hours later, BDNF (100 ng/mL, 1 min) was added and released glutamate 
was measured by HPLC. Prior to performing the BDNF application, samples 
were collected without stimulation as the basal release (1 min). Con means no 
application of corticosterone. Data represent mean ± SD (n = 4). bP < 0.001 
vs basal, dP < 0.01, fP < 0.001 vs BDNF-induced release in Con (t-test); B: 
Endogenous expression of glucocorticoid receptor (GR) was decreased after 
corticosterone (0.01-10 mmol/L) was applied at DIV4. Forty-eight hours later, 
cell lysates were collected for western blotting. Endogenous expression of TrkB 
was unchanged after exposure to corticosterone. Levels of TUJ1 (class Ⅲ 
β-tubulin), a neuronal marker, are shown as control.
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for depression, improves neuronal function in the visual 
system of  rats. In the adult rat visual cortex following 
chronic administration of  fluoxetine, BDNF levels were 
increased. In addition, a similar increase in BDNF levels 
in the hippocampus was also indicated[82]. Antidepressants, 
including monoamine oxidase inhibitors, selective sero-
tonin reuptake inhibitors, noradrenaline reuptake inhibi-
tors, and tricyclic, noradrenergic, serotonergic antidepres-
sants, all cause upregulation of  BDNF[83]. Russo-Neustadt  
et al[84] reported that reboxetine (for 2 d) caused an increase 
in BDNF transcription in several hippocampal regions. 
The same increase was also induced after reboxetine ap-
plication was combined with voluntary physical activity 
for 2 wk. On the other hand, citalopram (for 2 d) induced 
upregulation of  BDNF in only the CA2 region of  the 
hippocampus, and when combined with voluntary physi-
cal activity, the CA4 and dentate gyrus exhibited increased 
BDNF levels after 2 wk[84]. Recently, O'Leary et al[85] dem-
onstrated that fluoxetine increases Phospho-Synapsin, 
postsynaptic density 95 (PSD-95), and synaptic GluR1 in 
the hippocampus of  ovariectomized rats. Furthermore, 
they clarified that fluoxetine caused an increase in PSD-95 
levels in ovariectomized wildtype mice but not in ovariec-
tomized TrkB T1 (a truncated form of  the TrkB recep-
tor) transgenic mice, suggesting an involvement of  TrkB 
signaling in fluoxetine action[85]. The influence of  chronic 
antidepressant treatment on BDNF expression under 
stressful conditions has been investigated. After male rats 
were treated for 21 d with vehicle or with duloxetine and 
exposed to an acute swim stress (for 5 min) 24 h after the 
last injection, the chronic duloxetine modulated the rapid 
transcriptional changes of  BDNF isoforms induced by 
swim stress[86]. In their system, a significant increase of  
exon Ⅵ and exon Ⅸ of  BDNF was only found in rats 
that were pretreated with duloxetine, though exon Ⅳ was 
upregulated by stress in both vehicle- and duloxetine-treat-
ed rats. As shown, the effect of  antidepressants on BDNF 
expression and function is gradually becoming more clear, 
though further studies are needed to understand the mo-
lecular mechanisms associated with each BDNF exon and 
their effect on clinical depression. 

ESTROGEN AND BDNF
Estrogen, one of  the sex steroids, is known to have strong 
effects on various brain functions including sex differenti-
ation, learning and memory, synaptic plasticity, and neuro-
protection[87-90]. In general, estrogen is mainly produced in 
the ovaries and the corpus luteum, and reaches the brain 
through blood vessels. Furthermore, it has been recently 
reported that estrogen is produced de novo from choles-
terol in the brain[91-93]. Therefore, it is very interesting to 
know how estrogen production is regulated and how es-
trogen affects brain function. In this section, we briefly in-
troduce several functions of  estrogen in the brain. Specifi-
cally, as many studies suggest a link between estrogen and 
BDNF, we review one hypothesis concerning estrogenic 
action and potential interactions with BDNF.

Modulation of synaptic plasticity, learning and memory, 
and neuroprotection by estrogen
Sexual dimorphism in the brain is determined during 
critical perinatal periods[87,94]. It is well known that the 
determination is influenced by genetic background and 
sex steroid exposure. In the male brain during the peri-
natal stage, testosterone is converted to estrogen by cyto-
chrome P450, and, in turn, the converted estrogen plays 
a role in brain differentiation. On the other hand, in the 
female brain, maternal estrogen does not affect sexual 
dimorphism because the estrogen in the serum binds to 
an estrogen-specific binding protein called α-fetoprotein. 
Therefore, the estrogen complex is not able to access the 
brain. In summary, estrogen converted from testosterone 
causes differentiation to a male brain, while brains that 
are not exposed to such steroids become female brains.

In addition to contributing to sex differentiation in 
the brain, estrogen is associated with brain functions in-
cluding learning and memory[95-98]. Ovariectomy impairs 
spatial memory formation, synaptogenesis and LTP in 
rodents[99,100]. Estrogen administration inversely enhances 
spatial memory formation, spinogenesis, and LTP in 
rats[101-103]. Within the in vitro system, positive regulation of  
estrogen on synaptic function is also observed. 17β-E2 
treatment enhances spine formation in cultured hippo-
campal neurons[104], suggesting that postsynaptic modula-
tion by estrogen is occurring. Additionally, we previously 
reported that 17β-E2 potentiated the depolarization-
dependent release of  glutamate, the main excitatory neu-
rotransmitter, in cultured hippocampal neurons[14]. In our 
system, activation of  MAPK/ERK and PI3K signaling 
is required for potentiation by 17β-E2. Importantly, the 
memory deficit in patients suffering from Alzheimer’s 
disease is recovered by postmenopausal estrogen replace-
ment therapy[105].

Estrogen has a protective effect on neurons, prevent-
ing cell death caused by oxidative-stress or excessive gluta-
mate treatment[106-112]. We also found 17β-E2 treatment to 
be protective[13]. Exposure of  cortical neurons to oxidative 
stress induced overactivation of  MAPK/ERK and intra-
cellular Ca2+ accumulation, resulting in apoptotic-like cell 
death. However, pretreatment with 17β-E2 demonstrated 
an inhibitory effect on MAPK/ERK overactivation, Ca2+ 
accumulation, and cell death. Furthermore, estrogen is a 
potent neuroprotective agent in animal models of  neuro-
nal death[89]. Chen et al[113] demonstrated a protective ef-
fect of  17β-E2 on CA1 hippocampal cells after ischemia 
in gerbils. 17β-E2 treatment has been shown to improve 
neurological outcomes following traumatic injury in male 
rats, although no effect was seen in intact females. Neuro-
nal loss due to administration of  dopaminergic toxins and 
kainic acid can be attenuated with 17β-E2 treatment[111].

Interaction between estrogen and BDNF-in vitro studies
As described above, estrogen has multiple functions in 
the brain. Some reports suggest involvement of  BDNF in 
modulating estrogen actions[114]. Sohrabji et al[115] showed 
that estrogen can regulate the expression of  BDNF via 
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the estrogen response element on the BDNF gene. They 
searched motifs resembling the canonical ERE (GGT-
CANNNTGACC) in the BDNF gene by using a com-
puterized gene homology program. One ERE-like motif  
was confirmed in the currently known sequence for the 
BDNF gene, which consisted of  a set of  pentameric 
sequences with near perfect nucleotide homology (1-bp 
mismatch). The motif  lies at the 5’ end of  exon Ⅸ (was 
exon Ⅴ) that codes for the BDNF protein. They also 
showed that estrogen receptor-ligand complexes bind 
to and protect the BDNF ERE-like motif  from DNase 
cleavage. Therefore, it is possible that BDNF levels are 
regulated by estrogen. In dissociated hippocampal cul-
tures, 17β-E2 downregulates the expression of  BDNF in 
GABAergic neurons to 40% of  control within 24 h of  
exposure, and the downregulation returns to basal lev-
els within 48 h[116]. This GABAergic dysfunction results 
in an increase in excitatory tone in pyramidal neurons, 
and leads to a 2-fold increase in dendritic spine density. 
Interestingly, exogenous BDNF blocks the effects of  
17β-E2 on spine formation, and BDNF depletion with a 
selective antisense oligonucleotide mimics the effects of  
17β-E2. This group demonstrated that 17β-E2 increases 
spine density via changing the degree of  excitation/in-
hibition balance to favor excitation. Recently, it was 
reported that 17β-E2 increases protein levels of  BDNF 
in hippocampal slice cultures[117]. In contrast, another 
group reported that 17β-E2 does not change the expres-
sion of  BDNF in cultured hippocampal neurons[118]. 
In hypothalamic slice cultures, levels of  BDNF mRNA 
were not changed by either acute or chronic treatment 
of  17β-E2[119]. In midbrain cultures, 17β-E2 increased 
BDNF protein levels[120]. Remarkably, 17β-E2 induces 
the release of  BDNF in dentate gyrus granule cells in 
hippocampal slice cultures, and 17β-E2-dependent syn-
aptogenesis was induced via the secreted BDNF[118]. 

Estrogen has been found to produce acute effects 
in which specific membrane receptor actions may be 
involved[121-125]. As mentioned above briefly, estrogen ac-
tivates MAPK/ERK, PI3K, and CREB pathways[14,126]. 
Interestingly, BDNF also stimulates the same intracellular 
signaling pathways. These signaling cascades induced by 
estrogen are recognized as an acute cellular response, infer-
ring that upregulation of  BDNF may not be involved[114]. 

Interaction between estrogen and BDNF-in vivo studies
Most studies demonstrate that estrogen upregulates 
mRNA and/or protein expression of  BDNF throughout 
the brain, though some groups have shown that estrogen 
downregulates or has no influence on BDNF levels in 
some brain regions[127,128]. Importantly, it was reported that 
17β-E2 administration in ovariectomized female rats in-
creased BDNF expression in the hippocampus by reverse 
transcriptase-polymerase chain reaction (RT-PCR)[129], in 
the cerebral cortex by RT-PCR[115], in the olfactory bulb 
by RT-PCR[115] and by Western blotting[130] and in the sep-
tum by RT-PCR[129]. Meanwhile, in some reports, estrogen 
has no effect on BDNF expression in the hippocampus 

by in situ hybridization[128,131] and by ELISA[129], in the ce-
rebral cortex by in situ hibridization[128,131], RT-PCR[132] and 
ELISA[129] and in the olfactory bulb by RT-PCR[129] and 
ELISA[129]. Some groups report that exogenous estrogen 
application decreases BDNF levels in the cerebral cortex 
by ELISA[133]. In addition, BDNF mRNA levels in the 
hippocampus and cerebral cortex have been shown to 
fluctuate by estrous cycles in female rats[128,131]. Although 
there are many studies addressing the relationship between 
estrogen and BDNF expression levels, future studies 
should clarify the detailed interactions between estrogen 
and BDNF-mediated neuronal function in addition to elu-
cidating the molecular mechanisms underlying estrogen- 
controlled BDNF expression. 

Interaction between other sex steroids and BDNF
Progesterone and testosterone also regulate BDNF ex-
pression. Recently, Aguirre et al[117] reported that, in hip-
pocampal slice cultures, progesterone upregulates BDNF 
proteins. 17β-E2 was also shown to protect hippocampal 
neurons from NMDA induced cell death. In their report, 
long-term progesterone treatment following 17β-E2 ap-
plication attenuates 17β-E2-induced neuroprotection 
in hippocampal slice cultures. Moreover, Kaur et al[134] 
demonstrated that progesterone upregulates both BDNF 
mRNA and protein levels in cerebral cortical explants. 
In their system, K252a, an inhibitor for TrkB, inhibits 
progesterone-induced protection against glutamate toxic-
ity, suggesting that BDNF upregulation is required for 
the progesterone action in neuroprotection. Interestingly, 
this progesterone-dependent protection is mediated via 
MAPK/ERK and PI3K pathways. In contrast, two in-
dependent groups provided evidence that progesterone-
dependent neuroprotection is not through BDNF in 
rodents[135-137]. Collectively, the evidence concerning the 
interaction between progesterone and BDNF remains 
mixed, warranting further study. On the other hand, tes-
tosterone administration was shown to increase BDNF 
protein levels in castrated male rats[138]. Another group 
also indicated that BDNF mediates the effects of  tes-
tosterone on neuronal survival[139]. It is also possible that 
BDNF contributes to testosterone function in the brain.

CONCLUSION
In addition to BDNF, steroid hormones such as gluco-
corticoids and estrogen regulate cell survival and neuronal 
function in the CNS. Several studies demonstrate that 
glucocorticoids and estrogen regulate the expression 
levels of  BDNF in many brain regions. As upregulation 
of  BDNF is putatively involved in the beneficial effects 
of  several antidepressants, further investigation concern-
ing the detailed mechanisms underlying such hormone-
dependent production of  BDNF is critical. Furthermore, 
it is well known that production and secretion of  BDNF 
is affected by neuronal activity, though the detailed mecha-
nisms concerning hormone-stimulated intracellular signal-
ing and how this regulates BDNF dynamics remains to 
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be elucidated. Considering that neuronal activity and/or 
Ca2+ signaling regulate BDNF expression, it is possible 
that decreases in BDNF-stimulated intracellular signaling 
and neuronal function occur before reduction in BDNF 
levels in patients with depression is confirmed. Further 
studies concerning how these factors (steroid hormones 
and BDNF) influence each other and consequent intracel-
lular signaling is required. Recently, the neuronal roles of  
microRNAs (miRs), that regulate diverse gene expression 
via targeting mRNAs to cleavage or to inhibit translation, 
have been proposed in BDNF function. For example, 
miR-132 is increased by BDNF and has a role in neuronal 
outgrowth[140]. We currently found that glucocorticoid 
reduced BDNF-dependent upregulation of  glutamate 
receptors via decreasing of  levels of  the miR-132[141]. As a 
possible crosstalk point of  steroid hormones and BDNF, 
the regulation of  brain-specific miRs may be interesting. 
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