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Abstract
Calcium signaling is used by neurons to control a variety 
of functions, including cellular differentiation, synaptic 
maturation, neurotransmitter release, intracellular signa­
ling and cell death. This review focuses on one of the 
most important Ca2+ regulators in the cell, the plasma 
membrane Ca2+-ATPase (PMCA), which has a high affinity 
for Ca2+ and is widely expressed in brain. The ontogeny 
of PMCA isoforms, linked to specific requirements of Ca2+ 

during development of different brain areas, is addressed, 
as well as their function in the adult tissue. This is based 
on the high diversity of variants in the PMCA family in 
brain, which show particular kinetic differences possibly 
related to specific localizations and functions of the cell. 
Conversely, alterations in the activity of PMCAs could lead 
to changes in Ca2+ homeostasis and, consequently, to 
neural dysfunction. The involvement of PMCA isoforms 
in certain neuropathologies and in brain ageing is also 
discussed.
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INTRODUCTION
Molecular systems in the plasma membrane and intracellular 
organelles contribute to the initiation of  Ca2+ signals but also 
act as buffers for intracellular Ca2+ regulation. Among all sys-
tems involved, cells use Ca2+-ATPases as high af­finity active 
transporters to pump Ca2+ ions through the plasma mem-
brane (PMCA) or organelle membranes of  sarco-endoplas-
mic reticulum (SERCA) and secretory pathway (SPCA). The 
resulting transmembrane Ca2+ gradients are used in a variety 
of  signaling processes mediated by gated ion channels. 
PMCA shows a very high affinity for Ca2+ (kDa around  
100 nmol/L)[1] and is directly involved in pumping Ca2+ out 
of  the cell. PMCA hydrolyzes one mol of  ATP in order to 
get the energy to transport one mol of  Ca2+ from the cy-
toplasm to the extracellular media across the plasma mem-
brane, with a Ca2+/H+ countertransport molar ratio of  1/1 
and 1/0.6 for erythrocytes and brain PMCA, respectively[2,3]. 
This protein is about 130 kDa, contains 10 transmembrane 
domains and a characteristic carboxyl terminal tail respon-
sible of  the high regulation of  PMCA activity, e.g. stimula-
tion by calmodulin, phospholipids and kinases, controlled 
proteolysis (reviewed in[4]) and regulation by ethanol[5]. The 
high affinity of  PMCA for calmodulin has been widely used 
to purify PMCA from brain[6] and cerebellum[7] and from 
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other non-neural tissues[8], and have allowed an extensive 
characterization of  PMCA proteins.

PMCAs belong to the P2B branch of  the P-type ATPase 
superfamily, characterized by the formation of  a phosp
horylated intermediate during the reaction cycle[9]. Four dif-
ferent genes have been described (ATP2B1-4) that encode 
four PMCA isoforms (PMCA1, 2, 3 and 4). In addition, 
the primary gene transcripts can be alternatively spliced in 
two major regions (site A, close to a phospholipid-sensitive 
region in the first intracellular loop, and site C, in the regula-
tory region in the C-terminal tail) to give over 20 variants 
(reviewed in[10,11]). The isoforms are widely distributed in 
most eukaryotic cells, although the physiological role of  
such abundance of  PMCAs is still far from clear.

Brain is the region with the highest quantity and div
ersity of  PMCA isoforms, which must be related to the 
involvement of  Ca2+ in many neuronal functions. Rest Ca2+ 
levels in neuronal cells increase from nmol/L to μmol/L 
range to activate a spectrum of  cellular events, from sy
naptic transmission to neuronal plasticity, intracellular sig
naling, neurosecretion or gene expression[12]. Afterward, 
intracellular Ca2+ must be restored quickly to resting levels 
to avoid cell damage and PMCAs are one of  the major 
transporters involved in Ca2+ clearance. This review will 
focus on the distribution and function of  PMCAs in Ca2+ 
homeostasis and signaling in the central nervous system, 
from neural development to mature brain, as well as their 
involvement in neuropathologies and ageing. 

PMCAs AND NEURAL DEVELOPMENT 
Neuronal development is characterized by a sequence of  
events such as cell differentiation, migration, neurite outgr
owth and synaptogenesis. Ca2+ signaling plays a central role 
in the organization and regulation of  these events[13,14]. In 
these processes, PMCAs are considered major players for 
Ca2+ homeostasis. Independently of  a prenatal or postnatal 
brain development, an upregulation of  PMCA activity has 
been observed from the first developing stages on[15,16]. 
Moreover, the major increase of  PMCA activity mostly 
occurs during the period of  greatest synaptic developm
ent, when an increase in the content of  several PMCAs 
activators, such as calmodulin, phosphatidylserine and pro
tein kinase C, also occurs[17-19].

Although all PMCA isoforms are present in the adult 
brain, not all isoforms are expressed at the same time. In 
fact, maturation of  brain is accompanied by changes of  the 
expression and distribution of  PMCA isoforms. This has 
been shown at mRNA[20,21], and protein levels[16,22,23]. The 
PMCA1b is early expressed, although it slowly decreases 
as PMCA1a expression increases with the development 
associated with synaptic maturation. The PMCA2 appe
ars much later, and increases particularly in cerebellum. 
PMCA3 differs among species, being almost constitutively 
expressed during chick cerebellar development[22] and 
generally upregulated in rodents[16,20]. By contrast, there is a 
low expression of  PMCA4 throughout development, and 

a high expression in adult nervous tissue[5,24-26]. The analysis 
of  tissue sections confirms that all isoforms are associated 
with developing synaptic-enriched areas[7,15,22,27]. This sug
gests an involvement in synaptogenesis and maturation 
of  neuronal electrophysiological properties, where the 
regulation of  the magnitude and duration of  Ca2+ spikes 
are critically required. In spite of  this isoform coexpression 
in brain synaptic areas, cerebellum is the region with a 
more specific isoform-distribution pattern, different am
ong species. In developing chick, PMCAs 1 and 3 has a 
restricted distribution in the soma and dendritic trunk of  
Purkinje cells, evolving according with cell maturation[22], 
while in mice these isoforms are more concentrated in the 
neuropil of  the molecular layer from the first postnatal 
week[16]. However, PMCA2 is broadly and largely detected 
at the plasma membrane of  the body cell and the whole 
dendritic arborization of  Purkinje cells[16,22] (Figure 1). Ther
efore, these cells contain the highest diversity of  PMCA 
isoforms since their morphogenesis. This fact points out 
at specific compartmental Ca2+ regulation, since Purkinje 
cells are also enriched in other Ca2+-binding proteins 
such as calbindin and parvalbumin[28] and also in other 
Ca2+ pumps, such as the endoplasmic reticulum localized-
SERCA2[7,15,29] and the Golgi localized-SPCA1[30,31]. Other 
neural cell types seem to contain a specific combination of  
isoforms, e.g. chick cerebellar interneurons contain PMCAs  
1 and 3, and granule cells only express PMCA2 at the 
latest developmental stages[22]. On the other hand, both 
in situ hybridization and immunocytochemical studies had 
failed to localize any of  PMCA isoforms in glial cells of  rat 
brain sections[32,33]. However, astrocytes in primary cultures 
showed expression of  PMCA1 and PMCA4 at comparable 
levels to those seen in neurons, while PMCA2 was less 
abundant and PMCA3 was not found[34]. This discrepancy 
between tissue and cultured glia is still not solved. 

The active participation of  PMCAs in neural develop-
ment has been also evidenced in differentiated PC12 cells 
containing a transient suppression of  PMCA2 and 3, which 
in a slowing of  neurite extension and survival reduction[35]. 
In contrast, similar suppression in stable-transfected undif-
ferentiated PC12 induced a neuritogenesis-like process and 
an increase of  PMCA4 when PMCA2 was blocked[36]. This 
suggests that a compensatory function among isoforms is 
possible under certain conditions.

PMCAs IN NEURAL FUNCTION
The high diversity of  PMCAs in the brain and their ove
rlapping localization in some brain areas does not imply 
functional redundancy, since isoforms show specific kinetic 
and regulatory differences. In fact, it has been reported a 
different rate of  activation by Ca2+ of  PMCA isoforms, 
PMCA3f  and PMCA2a being the fastest ones, while PM-
CA4b is the slowest; on the other hand, alternative splicing 
at site C directly affects the calmodulin affinity, PMCA2b 
having the highest affinities (kDa around 2 nmol/L), fol-
lowed by PMCA2a and 4b (5-10 nmol/L), and PMCA4a 
(50 nmol/L)[37]. Thus, diverse functional cell types or even 
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distinct subcellular areas in the cell may use different PM-
CAs. Recent studies suggest that PMCA isoforms can be 
integrated in multiprotein complexes in membrane subdo-
mains e.g. cholesterol-rich lipid rafts[38], which are emerging 
as important domains in cell Ca2+ signaling. In fact, we 
found that PMCA4, but not the other isoforms, is associ-
ated with lipid rafts isolated from synaptosomal plasma 
membranes[39]. On the other hand, lipid rafts prepared 
from the entire plasma membrane of  primary cultured 
neurons contain all four PMCA isoforms and its activator 
calmodulin[40]. The discrepancy between both studies may 
be attributed to differences in the methodology and/or the 
existence of  differences in the composition of  rafts iso-
lated from specific subcellular areas. The presence of  PM-
CAs in rafts supports an active role of  certain isoforms in 
cell signaling by facilitating their interaction with scaffold-
ing proteins, such as some proteins from the membrane-
associated guanylate kinase family (e.g. calcium/calmod-
ulin-dependent serine protein kinase)[41], located at brain 
synapses, that interacts with PMCA4b or the Homer fam-
ily [e.g. Ania-3[42], that couples N-methyl-D-aspartic acid 
(NMDA) and metabotropic glutamate receptors and could 
recruit PMCAs to domains close to Ca2+ influx channels]. 
Recently, it has been also reported an association of  rat 
synaptosomal PMCA with tubulin, the main constituent of  
microtubules. This interaction resulted in the inhibition of  
PMCA, which can be reversed by calmodulin or ethanol[43]. 
Overall, the association of  PMCA with different neural 
proteins may play a key control in neuronal Ca2+ signaling 
and regulation of  synaptic activity. 

Synapses can differ markedly in their efficacy and dy
namics, in part due to differences in Ca2+ regulation. In 
this respect, the isoform PMCA2 has been particularly cha
racterized since there is a restricted localization of  variant 
PMCA2a in inhibitory presynaptic terminals throughout 
the adult rat brain[44], although a postsynaptic expression has 
also been observed in dendritic spines of  cerebellar Purkinje 
cells[45]. Besides, PMCA2a shows a fast Ca2+ activation 
kinetics and high Vmax, being particularly suitable for the 
rapid clearance of  Ca2+. This suggests that the isoform may 

play an important role in the control of  local Ca2+ dynamics: 
this may be achieved by interacting - via its PDZ domain -  
with the post-synaptic PSD95 proteins and the NMDA 
glutamate receptor at the post-synapse, and with the soluble 
N-ethylmoleimide-sensitive fusion protein attachment 
protein receptors member syntaxin-1A at the pre-synapse[46]. 
The PMCA localization at the presynaptic terminal, clustered 
in the active zones[1], and its high Ca2+ affinity would allow 
to keep low Ca2+ levels, thereby controlling vesicular release 
following neural activity.

The function of  PMCAs in brain is not only associa
ted with neural activity. The pumps are also found in the 
choroid plexus, an epithelial tissue involved in the produ
ction and secretion of  cerebrospinal fluid. All isoforms are 
expressed in developing chick[22] and mouse[21], although the 
PMCA3 seems to be most abundant in adult tissue[27,32,33]. 
This isoform could play a role in the transport required for 
tight regulation of  Ca2+ in the cerebrospinal fluid[47].

PMCAs, NEURAL DYSFUNCTIONS AND 

BRAIN AGEING
The experimental use of  animal models has already allowed 
a great progress correlating certain pathologies to the three 
types of  Ca2+ pumps. Besides, several mutations of  SERCA 
and SPCA result directly in human disorders such as Darier 
and Brody diseases for SERCA[48,49] and Hailey-Hailey 
diseases for SPCA[50,51]. However, only one human disease 
with genetic origin has been linked to PMCA defects,  
i.e. the PMCA2-attibuted hereditary deafness[52,53]. This 
has been found after observation of  this dysfunction in a 
PMCA2 knockout mouse[54] and a defective mutant mouse 
named deafwaddler[55]. These mice presented for first time 
hearing problems and balance defects related to both abno
rmalities in Purkinje neurons[56] and the absence of  calcium 
carbonate crystals in the otoconia of  inner ear[54], another 
region largely enriched in PMCA2[57]. Interestingly, PMCA2 
deficiency could not be rescued by the other isoforms. 

Age-dependent alterations in intracellular Ca2+ are the  
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Figure 1  Localization of plasma membrane Ca2+-ATPase 2 in Purkinje cells from different species. Immunohistochemistry staining using an anti-plasma membrane 
Ca2+-ATPase 2 (PMCA2) antibody in para-sagittal sections of mature cerebella from chick, mouse, pig and human. PMCA2 is located at the plasma membrane of the 
soma (arrows) and in the dendritic arborization (arrowheads) of Purkinje cells. ml: Molecular layer; Pcl: Purkinje cell layer; gl: Granule layer. Scale bar: 40 μm.



chlorpromazine, and fluphenazine, which have been used in 
the treatment of  schizophrenia and psychosis. These drugs 
interfere with the functioning of  the synaptosomal PMCA, 
resulting a potent inhibitor of  the ATPase activity while, 
under some conditions (i.e. in the presence of  phosphate), 
it increases the rate of  Ca2+ accumulation into synaptic 
plasma membrane vesicles[69]. This effect has been explained 
by the presence of  an additional step in the catalytic cycle 
known as slippage pathway, which involves the release of  
bound Ca2+ from the phosphorylated intermediate to the 
cytoplasmic side of  the membrane before its transport 
out of  the cell. This pathway had been already observed 
in SERCA using chlorpromazine[70] or curcumine[71]. The 
slippage results in ATP hydrolysis uncoupled from Ca2+ 
transport, which favors heat production in mammals in phy
siological conditions, but appears to be a significant mech
anism of  organ dysfunction in disease conditions, such as 
ageing or ischemia[72]. 

The ethanol is another drug that significantly affects the 
central nervous system and produces stimulation or inhib
ition of  synaptosomal PMCA activity in a dose-dependent  
manner. The stimulatory effect seems to involve its direct 
binding to a second autoinhibitory domain next to the cal
modulin binding domain[5]. The sensitivity of  synaptosomal 
PMCA (which is enriched in PMCA4) to ethanol is similar 
to that found for the erythrocyte PMCA4[73]. Accordingly, 
ethanol ingestion may overstimulate the PMCA activity, 
severely affecting the synaptic transmission.

Interaction networks emerging from these observations 
point out the role of  PMCAs as potential targets of  an in
creasing number of  drugs acting upon the central nervous 
system.

CONCLUSION
There are many pieces of  evidence suggesting that PMCAs 
play a key role in the nervous system. We begin to under
stand their role in neural Ca2+ homeostasis from neural 
development to mature brain, and also their involvement 
in neurological disorders. A more comprehensive understa
nding of  the physiological function of  the large diversity 
of  PMCA isoforms in different areas of  the cell, and in 
particular cell types, will be crucial for the future design of  
effective therapies for neurological diseases.
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