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Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid 
with a variety of biological activities. It is generated from 
the conversion of ceramide to sphingosine by cerami-
dase and the subsequent conversion of sphingosine to 
S1P, which is catalyzed by sphingosine kinases. Through 
increasing its intracellular levels by sphingolipid metabo-
lism and binding to its cell surface receptors, S1P regu-
lates several physiological and pathological processes, 
including cell proliferation, migration, angiogenesis and 
autophagy. These processes are responsible for tumor 
growth, metastasis and invasion and promote tumor sur-
vival. Since ceramide and S1P have distinct functions in 
regulating in cell fate decision, the balance between the  
ceramide/sphingosine/S1P rheostat becomes a potent 
therapeutic target for cancer cells. Herein, we summarize 
our current understanding of S1P signaling on tumorigen-
esis and its potential as a target for cancer therapy.
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Sphingolipid metabolism 
Sphingolipids are present mainly in the cell membranes of  
most eukaryotic species[1]. All sphingolipids are character-
ized by the presence of  a long chain base that can be ac-
rylated at the free amino group to form a ceramide, which 
is the simplest structural form of  sphingolipid (Figure 1). 
Diverse sphingolipids result from different hydrophobic 
sphingolipid bases combined with fatty acids, and are 
further modified by adding phosphate, phosphorylcholine 
and sugar groups (Figure 1). Besides providing struc-
tural integrity in cell membranes, sphingolipids activate 
multiple signal transduction pathways that are associated 
with diseases including cancers[2-4]. The key sphingolipid 
metabolites are ceramide, sphingosine, and sphingosine 
1-phosphate (S1P). Ceramide, a pro-apoptotic lipid that 
accumulates in cells in response to various stresses, can 
be further modified by adding phosphorylcholine to 
form sphingomyelin (SM), a structural component of  
membranes, or by linking sugar residues that results in 
formation of  glycosphingolipids. Ceramide can either be 
generated de novo or by breakdown of  SM through the 
activities of  sphingomyelinase (Figure 1). By the activity 
of  ceramidase, ceramide can be deacrylated to generate 
sphingosine. Subsequently, sphingosine can either be ac-
rylated back to ceramide by ceramide synthase or further 
phosphorylated by sphingosine kinases (Sphks) to form 
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S1P. S1P can be dephosphorylated back to sphingosine 
by S1P phosphatases (S1PPs) or type 2 phosphatidate 
phosphohydrolases[5]. Alternatively, S1P is irreversibly 
degraded in the endoplasmic reticulum (ER) by S1P lyase 
(SPL) to hexadecenol (Hex) and ethanolamine phosphate 
(EP) (Figure 1). Ceramide and sphingosine are associ-
ated with the induction of  apoptosis, whereas S1P pro-
motes cell growth, proliferation, migration, and survival 
in various cell types[6-10]. These sphingolipid metabolites 
with opposite functions are inter-convertible within cells. 
Therefore, the balance between ceramide/sphingosine 
and S1P forms a sphingolipid rheostat model[11] (Figure 
2), which suggests that it leads to cell death when this bal-
ance moves  towards ceramide or sphingosine, but to cell 
survival or proliferation when S1P levels are increased[12,13]. 
Indeed, several reports have suggested that reduction of  
S1P level that leads this rheostat towards ceramide/sphin-
gosine might provide a potential target for cancer thera-
pies[14-18]. This review is focused on discussing the roles of  
S1P in proliferation, migration, angiogenesis, and autoph-
agy, which are all closely associated with tumorigenesis.

DUAL MESSENGER SIGNALINGS OF S1P
Extracellular action mode of S1P
Like other sphingolipids, S1P is thought to be mainly 
a degradative metabolite of  sphingolipids formed dur-
ing turnover of  eukaryotic cell membranes. S1P plays 
important roles in diverse physiological and pathological 
processes in cancer cells. It regulates cell growth, pro-
liferation, differentiation, cell survival, migration, and 
angiogenesis[8,10,19-23]. S1P exerts most of  its function as a 
specific ligand for a family of  G-protein-coupled recep-
tors (GPCRs), termed S1P1-S1P5

[24-27]. In addition to bind-
ing to its cell surface receptors, S1P also mediates several 
biological functions, including calcium homeostasis, cell 
growth, and protection of  apoptosis through a receptor-
independent intracellular mechanism[28]. Thus, S1P can 
function both as an extracellular first messenger and also 
as an intracellular second messenger. The dual functional 
mode, as well as five specific receptors could explain the 
diverse biological functions regulated by S1P.

S1P can potentially stimulate diverse signal transduc-
tion pathways in different cell types, as well as within the 
same cell, depending on the patterns of  S1P receptor 
expressed. S1P1 is coupled exclusively via Gi protein to 
activate Ras, mitogen activated protein kinase (MAPK), 
phosphoinositide 3-kinase (PI3K), Akt, and phospholi-
pase C (PLC) pathways. Both S1P2 and S1P3 coupled to 
Gi, Gq and G12/13 and activating Ras, MAPK, PI3K, Akt, 
PLC, and Rho-dependent pathways (Figure 3). G protein 
coupling properties of  S1P4 and S1P5 remain largely un-
clear at present. Through coupling with Gi and G12/13, but 
not Gq, S1P4 mediates cell shape change and motility via a   
Rho-dependent pathway in CHO-K1 and Jurkat T cells[29]. 
S1P5 appears to activate G12/13 protein and subsequent 
Rho/ROCK signaling pathway to attenuate cell migra-
tion in oligodendrocyte precursor cells[30]. These studies 
strongly suggested that bioactive lipid S1P mediates di-
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Figure 1  Sphingolipid structure and metabolism. All sphingolipids con-
tain a long chain base. Sphingomyelin (SM) is metabolized to ceramide by 
sphingomyelinase. Ceramide is further metabolized to sphingosine and sphin-
gosine 1-phosphate (S1P) by ceramidase and sphingosine kinases (SphKs), 
respectively. Subsequently, S1P is irreversibly degraded to hexadecenal and 
ethanolamine phosphate by S1P ligase (SPL). S1P can be recycled to sphingo-
sine and then ceramide by S1P phosphatase (S1PP) and ceramide synthase, 
respectively.
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Figure 2  Ceramide-sphingosine-sphingosine 1-phosphate rheostat mod-
el. Ceramide, sphingosine, and sphingosine 1-phosphate (S1P) with opposing 
functions are interconvertible within cells. The balance between ceramide/
sphingosine and S1P forms a sphingolipid rheostat model, that is primed for cell 
death when the balance shifts towards ceramide or sphingosine, or to cell sur-
vival or proliferation when S1P levels are increased. This rheostat model also 
regulates autophagic cell death or survival through targeting to Beclin 1 which 
interacts with Bcl-2 protein. 



verse cytoprotective functions through activation of  its 
extracellular receptors.

S1P acts as a second messenger
Besides binding to its cell surface receptors, S1P also acts 
as a second messenger to mediate several cellular func-
tions, such as proliferation, cell survival, autophagy, and 
suppression of  apoptosis[31-33]. As mentioned above, S1P 
is generated by the phosphorylation of  sphingosine via 
the activity of  SphKs. Several growth factors and cyto-
kines, including platelet-derived growth factor (PDGF), 
epidermal growth factor (EGF), tumor necrosis factor-α 
(TNF-α), and nerve growth factor (NGF), which are 
well known inducers of  cell survival and proliferation, 
also activate SphKs and thereby increase intracellular S1P 
levels[34,35]. The levels of  S1P in cells are tightly regulated 
by the balance between SphK-dependent synthesis and 
S1PP- or SPL-dependent degradation. Early studies have 
proposed that S1P may directly activate intracellular cal-
cium channels via an inositol triphosphate-independent 
action[36], which suggests that S1P acts as a second mes-
senger. However, this event has not been molecularly 
characterized. Several studies have supported this view 
by demonstrating that increasing intracellular S1P levels 
also upregulate intracellular calcium concentrations[37]. In 
addition, N, N-dimethy sphingosine (DMS), an inhibitor 
of  SphK, inhibits calcium release elicited by activating m2 
and m3 muscarinic acetylcholine receptors (mAChRs) that 
are expressed in human embryonic kidney (HEK)-293 

cells[38]. Furthermore, elevation of  intracellular S1P either 
by depleting S1PP or overexpressing SphK1 causes au-
tophagy in human breast cancer MCF-7 cells[31,32]. These 
results support the intracellular second messenger role 
of  S1P. However, the intracellular targets for S1P remain 
largely elusive.

Inside-out signaling by S1P
As mentioned above, S1P is mainly generated within cells 
and it functions as an extracellular mediator. The polar 
nature of  the head group on S1P, which contains both 
phosphate and ammonium ion pairs, as well as a hydroxyl 
group, suggests that S1P cannot cross the plasma mem-
brane easily. Thus, an export or secretion system for S1P 
may be necessary. Indeed, it has been suggested that in-
tracellular S1P, generated by SphKs, is released through 
a family member of  ABC transporter proteins, which 
are originally defined as multidrug transporter proteins, 
into the extracellular milieu close to S1P receptors[39-42]. 
PDGF-directed cell motility requires cross-talk to S1P1 via 
activation of  SphKs and formation of  S1P[43]. Thus, in-
tracellular S1P can either be secreted or diffuse across the 
plasma membrane through transporter proteins and then 
activate S1P receptors in an autocrine or paracrine  man-
ner. In addition, SphKs translocate to the leading edge of  
migrating cells following PDGF stimulation, which results 
in the formation of  an extracellular S1P gradient at the 
leading edge, thereby directing cell movement[44]. Further-
more, phorbol ester induces the translocation of  SphK1 
to  the plasma membrane, which is accompanied by the 
extracellular appearance of  S1P in HEK 293 cells[45]. An-
cellin et al[46] have proposed a novel mechanism of  S1P 
generation in the extracellular milieu by export of  SphK1. 
They have  revealed that depletion of  SphK1 by siRNA 
significantly prevents SphK1 export in human umbili-
cal vein endothelial cells (HUVECs), whereas SphK1 is 
released into the extracellular milieu by transfection with 
SphK1 in HEK293 cells. In addition, overexpression of  
SphK1 results in the release of  SphK, which may induce 
angiogenesis and vascular maturation in AE1-2a cells. 
These observations suggest that S1P is generated in the 
extracellular milieu, and that extracellular export of  SphK 
may be responsible for the action of  S1P in the vascular 
system. These studies strongly suggest that S1P possess 
two action modes, including both inside-out and outside-
in signaling. 

The sphingolipid rheostat model
It has been suggested that S1P regulates apoptosis through 
activating extracellular signal-regulated kinase (ERK) and 
inhibiting c-Jun N-terminal kinase (JNK)[11,47,48]. Moreover, 
ceramide induces apoptosis by these pathways[11]. Due to 
the opposing effects of  S1P and ceramide, which can be 
inter-convertible within cells, on the induction of  apop-
tosis, the dynamic balance between S1P and ceramide/
sphingosine may therefore determine the cell fate[11] 
(Figure 2). Thus, agents that regulate the inter-conversion 
of  ceramide-sphingosine-S1P may direct the cell towards 
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Figure 3  Sphingosine 1-phosphate receptor subtype-specific signaling. 
Sphingosine 1-phosphate (S1P)1, S1P2, S1P3, and S1P5 activate partially 
overlapping downstream signaling via coupling different G proteins and then 
regulate several biological functions, such as cell proliferation, migration, 
angiogenesis, and autophagy. Through coupling to Gi protein, S1P1 activates 
extracellular signal-regulated kinase (ERK)1/2, Rac, and phosphoinositide 3-ki-
nase (PI3K) signaling to regulate cell proliferation, migration, and angiogenesis, 
respectively. S1P2 mediates inhibition of cell migration via G12/13-Rho signaling, 
whereas S1P3 enhances cell migration and angiogenesis through Gi-Rac and 
Gq-phospholipase C (PLC) signaling, respectively. Our unpublished results have 
revealed that Gi coupled-S1P5 induces autophagy which is mediated through 
PI3K and PLC signaling.
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either an apoptotic or a survival program depending on 
the levels of  ceramide/sphingosine and S1P, respectively 
(Figure 2). Despite the fact that thespecific intracellular 
targets of  S1P remain elusive, several intracellular targets 
of  ceramide have been identified that mediate apoptotic 
action of  ceramide, including protein phosphatases PP1 
and PP2A[49], protein kinase C[50], and cathepsin D[51]. 
Moreover, S1P may protect cells from apoptosis through  
inside-out signaling to activate its cell surface receptors. 
Indeed, exogenous S1P has been shown to upregulate 
anti-apoptotic Bcl-2 and Mcl-1 proteins, as well as down-
regulate pro-apoptotic Bad and Bax[52-54]. Furthermore, 
overexpression of  SphK1, which upregulates S1P level, 
also enhances the expression of  Bcl-2 and suppresses 
the expression of  Bim in endothelial cells[55]. In addition, 
overexpression of  Bcl-2 also upregulates, and knockdown 
of  Bcl-2 downregulates the expression of  SphK[56], which  
strongly suggests that S1P is an important regulator for 
apoptosis.

Several in vivo and in vitro studies have supported the 
sphingolipid rheostat model in cancer, especially studies 
of  SphK-1. Overexpression of  SphK1 induces the trans-
formation of  NIH3T3 cells, based on the observation 
of  colony formation on soft agar and the ability to form 
tumors in nude mice[57]. Furthermore, overexpression 
of  SphK1 inhibits apoptosis and induces chemoresis-
tance[12,58]. By comparing two different human prostate 
cancer cell lines, PC-3 and LNCaP, which are camptoth-
ecin (CPT)-resistance and -sensitive, respectively, Akao et 
al[59] have shown that PC-3 cells exhibit higher expression 
levels of  SphK1, and also elevate S1P receptor expres-
sion, as compared with those in LNCaP cells. Knockdown 
of  SphK1 significantly inhibits PC-3 cell growth, which 
suggests that SphK1 signaling is involved in the prolifera-
tion of  PC3 cells[59]. Indeed, orthotopic implantation of  
SphK1-overexpressing PC-3 cells into nude mice develops 
remarkably larger tumors that are resistant to docetaxel 
treatment[60]. Similar results have also been observed in 
other cancer cells, such as pancreatic cancers and chronic 
myeloid leukemia cells are resistant to gemcitabine[61] and 
imatinib[12], respectively, following the overexpression of  
SphK1. Alternatively, administration of  a specific mono-
clonal antibody against S1P reduces tumor progression 
and eliminates measurable tumors in murine xenograft 
and allograft models[14]. These results have suggested 
that SphK1 acts as a sensor of  chemotherapy, thereby 
inhibition of  SphK1 could be a target for chemotherapy-
induced apoptosis in cancer. In addition, S1P signaling 
may play important roles in regulating tumorigenesis and 
tumor progression.

S1P AND TUMORIGENESIS
S1P as a regulator for cell proliferation
As mentioned above, S1P acts as a ligand for a family of  
GPCRs to activate various signaling cascades, that are 
implicated in promoting cell growth, survival, migration, 
and invasion, as well as inhibiting apoptosis[34,62-65]. Several 
reports have indicated that S1P serves as a mitogen to 

increase DNA synthesis and cell division in diverse quies-
cent cell types, including Swiss 3T3 cells, rat-1 fibroblasts, 
vascular smooth muscle cells, and endothelial cells[66-68]. 
This S1P-induced cell proliferation is suppressed by in-
hibitors of  different G proteins, which indicates that the 
effects of  S1P on proliferation induction are through 
extracellular receptors[69]. In addition to extracellular ac-
tion mode, intracellular S1P signaling also plays important 
roles in facilitating cell proliferation. Two distinct SphK 
isoforms have been identified, SphK1 and SphK2, both 
of  which are responsible for conversion of  sphingosine to 
S1P[70]. Recent, evidence has suggested that SphK1 possess 
many characteristics of  oncogenes[12,55,57,58,71]. Furthermore, 
elevated expression of  SphK1 is observed in multiple 
types of  cancer, such as gastric, lung, brain, colon, kidney, 
and breast cancers, and associated with tumor grading as 
well as reduced patient survival[72-80].

In contrast to SphK1 activity as a potential oncogene, 
the effect of  SphK2 on cell proliferation remains con-
troversial. Overexpression of  SphK2 causes cell cycle 
arrest, caspase-3 activation, cytochrome c release, and 
inhibits cell growth; these effects require its membrane 
localization[81,82]. Moreover, SphK2 contains a nine-amino 
acid motif  similar to that present in BH3-only protein, 
a pro-apoptotic Bcl-2 family member. Like other BH3-
only Bcl-2 proteins, SphK2 binds and inhibits Bcl-xL and 
induces apoptosis[82]. We and others have revealed that 
S1P attenuates cell growth in human prostate cancer PC-3 
cells[83,84] and human keratinocytes[85]. Further experiments 
are needed to determine whether this S1P-mediated anti-
proliferative effect results from SphK2 activity. On the 
other hand, knockdown of  SphK2 in some cancer cells 
unexpectedly attenuates cell growth. In breast cancer 
MCF-7 cells and colon cancer HCT116 cells, down-
regulation of  SphK2 with siRNA decreases G2/M phase 
arrest and markedly enhances apoptosis induced by 
doxorubicin[86]. Likewise, knockdown of  SphK2 inhibits 
cell proliferation in U14242 and U87 MG glioblastoma 
cells[76]. Moreover, the growth of  SphK2-deficient MCF-7 
breast tumor xenografts is markedly delayed and displays 
a prominent anti-tumor phenotype, based on the observa-
tion of  increasing expression of  pro-inflammatory media-
tors such as NO, TNF-alpha, IL-12 and MHCII, and low-
er expression of  anti-inflammatory IL-10 and CD206[87]. 
These observations suggest that either exogenous S1P 
mediated through its cell surface receptors or intracellular 
S1P produced by SphKs is important for cell prolifera-
tion.

As mentioned above, although both SphK1 and 
SphK2 increase S1P level, their biological effects are di-
verse in some cells. A possible explanation for the oppos-
ing effects of  SphK1 and SphK2 is that the two proteins 
are located in, or translocated to, different compartments 
within cells. Indeed, SphK1 and SphK2 are predominantly 
localized in cytosol and nucleus, respectively, thereby, cre-
ating a potential for distinct functional pools of  S1P[88]. 
It is critical for S1P to mediate diverse biological func-
tions, not only by activation of  SphKs, but also by their 
subcellular localization[89]. Additionally, SphK1 activation 
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involves its translocation to the plasma membrane, where 
it, subsequently activates cell surface S1P receptor[43]. 
Nevertheless, S1P generated by SphK2 does not trans-
activate S1P receptor[82]. This translocation of  SphK1 
is regulated by ERK1/2-mediated phosphorylation of  
SphK1 on Ser225, which is also required for SphK1 cata-
lytic activity[89]. Despite exhibiting SphK1 activity that is 
required for transformation of  NIH3T3 fibroblasts[57], 
S225A SphK1 mutant prevents Ras-dependent transfor-
mation. Targeting of  either wild-type or S225A SphK1 to 
the plasma membrane, which is necessary for S1P gen-
eration, promotes transformation of  NIH3T3 fibroblasts 
and increases S1P levels[90]. Furthermore, artificial target-
ing of  SphK1 to ER converts the normally anti-apoptotic 
kinase into one with a pro-apoptotic function[91]. 

S1P as a regulator for cell motility
Pharmacological inhibitors, such as DMS and D, L-threo-
dihydrosphingosine (DHS), that inhibit both SphK1 and 
SphK2, suppress chemotaxis following growth factor 
stimulation in diverse cell types[28]. Likewise, knockdown 
of  SphK1, but not SphK2, with specific siRNA prevents 
EGF-, prolactin-, and estrogen-induced migration in 
MCF-7 cells[92,93]. Furthermore, down-regulation of  both 
SphK1 and SphK2 suppresses EGF-induced migration, 
while overexpression of  either SphK1 or SphK2 en-
hances migration towards EGF in MDA-MB-453 breast 
cancer cells[94]. These results suggest that SphK2 has a 
distinct or an overlapping function on migration regula-
tion from that of  SphK1.

Matrix metalloproteinases (MMPs) are zinc-depen-
dent proteolytic enzymes, which are involved in degrada-
tion of  the extracellular matrix and play critical roles in 
cell migration. Through activation of  S1P1, S1P upregu-
lates the expression of  urokinase plasminogen activator 
(uPA), a potent stimulator involved in cancer cells inva-
sion, in human glioblastoma multiforme U118 cells[95]. 
Our previous studies have revealed that S1P enhances 
MMP-2 expression via the MAPK kinase/ERK-, nuclear 
factor-κB-, and calcium influx-dependent pathways in 
HUVECs and EAby925 endothelial cells[96]. Further-
more, we also have shown that endothelial cell invasion 
is enhanced by S1P stimulation, and the induction can 
be prevented by an MMP inhibitor, GM6001, which sug-
gests that S1P plays important roles in endothelial cell 
invasion through regulating the expression of  MMP-2[96]. 
Recently, we have shown that overexpression of  mutant 
(F19, 22F) S1P1, which lacks tyrosine sulfation sites, sup-
presses native S1P1 effects on migration, actin rearrange-
ment and lamellipodia formation, which indicates that 
tyrosine sulfation of  S1P1 is necessary for S1P-induced 
Src phosphorylation and migration in HUVECs[10]. In 
contrast, S1P also prevents migration in other cell types. 
This unexpected anti-migration effect results from bind-
ing to S1P2 and involves the inhibition of  Rac, as well 
as activation of  Rho, and the subsequent phosphoryla-
tion of  focal adhesion kinases, and paxillin in melanoma 
cells[97,98].

S1P as a regulator for angiogenesis
S1P stimulates cell proliferation and migration, both of  
which are required for inducing angiogenesis. Angiogen-
esis is a critical component for growth and metastasis of  
tumors. Accumulating evidence has suggested that S1P is 
a potent pro-angiogenic factor. S1P enhances endothelial 
cell migration as effectively as vascular endothelial growth 
factor (VEGF), thereby promoting blood vessel forma-
tion[99]. Moreover, administration of  a monoclonal antibody 
against S1P suppresses human xenograft tumor growth, 
endothelial migration, and capillary formation, similar to 
treatment with anti-VEGF antibody[14]. Recent studies have 
demonstrated that S1P induces VEGF[21,100] and MMP-2 
production via ZNF580[21]; a transcriptional factor impli-
cating in angiogenesis, in endothelial cells. We also have 
demonstrated that S1P induces VEGF-C expression in hu-
man prostate cancer PC-3 cells (unpublished results). Fur-
thermore, the monoclonal antibody against S1P prevents 
the release of  pro-angiogenic cytokines, such as VEGF, 
IL-6, and IL-8, from tumor cells[14]. Monoclonal antibody 
against S1P also suppresses VEGF- and FGF-induced an-
giogenesis in Matrigel plugs in mice[18], which suggests that 
endogenous S1P plays important roles in angiogenesis and 
may acted as a down-stream regulator of  VEGF and FGF. 

S1P1 is required for stabilization of  nascent blood ves-
sels during embryonic development[62]. Knockdown of  S1P1 
in endothelial cells markedly attenuates angiogenic response 
and abolishes the expressions of  platelet-endothelial cell 
adhesion molecule-1 and VE-cadherin[101]. In addition, 
VEGF treatment of  vascular endothelial cells markedly 
upregulates S1P1 expression and enhances S1P-mediated 
signaling pathways leading to endothelial nitric oxide syn-
thase activation[102]. Furthermore, expression of  S1P1 is 
enhanced in tumor vasculature during angiogenesis, and 
knockdown of  S1P1 inhibits the growth of  neovessels 
into subcutaneous implants of  Matrigel in vivo[103]. These 
studies strongly suggest that S1P1 is a crucial receptor in 
mediating angiogenesis and metastasis in tumors.

S1P as a regulator for cell autophagy
Autophagy plays a vital housekeeping role for maintaining 
cellular homeostasis, including the turnover of  damaged 
organelles and mis-folded proteins[104]. Increased autoph-
agy is often observed in response to diverse stresses dur-
ing the progression of  cancer formation, such as nutrient 
starvation, unfolded protein response, hypoxia, and cyto-
toxic chemotherapeutic agent treatments[105]. Therefore, 
autophagy has been proposed to promote tumorigenesis. 
However, genetic evidence suggests otherwise. For ex-
ample, the expression of  Beclin 1, a tumor suppressor 
protein implicating in the formation of  autophagosome, 
is decreased in human breast carcinomas compared to 
normal breast tissue. Additionally, ectopic Beclin 1 ex-
pression suppresses human breast cancer MCF-7 cell 
proliferation in vitro and attenuates tumorigenic potential 
in vivo[106]. Hence, the role of  autophagy during tumorigen-
esis remains controversial, since autophagic vacuoles are 
observed in several types of  tumor. Further investigations 
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are required to determine whether these autophagic vacu-
oles are associated with cell survival or cell death. How-
ever, targeting autophagy has been served as an adjuvant 
therapy for several cancers.

It has been demonstrated that tamoxifen increases 
intracellular levels of  ceramide, which is responsible for 
enhancing Beclin1 expression and inhibiting Akt/PKB 
phosphorylation, thereby inducing autophagic cell death 
in human breast cancer MCF-7 cells[107]. In addition, inhi-
bition of  ceramide synthesis by its pharmacological inhibi-
tor fumonisin B1 markedly prevents tamoxifen-induced 
autophagy. Furthermore, ceramide-induced autophagic 
cell death is mediated through decreasing mitochondrial 
membrane potential and activating the expression of  
BNIP3, a death-inducing mitochondrial protein in ma-
lignant glioma cells[108]. Overexpression of  SphK1[31] or 
knockdown of  S1PP[32], both of  which increase intracellu-
lar S1P levels, induces autophagy in human breast cancer 
MCF-7 cells. We have also revealed that exogenous S1P 
induces autophagy through S1P5 activation and mTOR in-
hibition in human prostate cancer PC-3 cells[83]. This S1P-
induced autophagy is responsible for cell survival. Our 
current study further demonstrated that the cytoprotective 
effect of  S1P-induced autophagy resulted from triggering 
ER stress in PC-3 cells (unpublished results). Thus, S1P 
may mediate the nutrient deprivation-induced autophagic 
cell survival during the early phase of  cancer development 
and tumorigenesis. 

Both ceramide and S1P induce autophagy. However, 
their effect on cell fate regulation is very different. The 
rheostat system between ceramide and S1P in controlling 
cell fate may be partially mediated through the mechanism 
of  autophagy induction. Ceramide, but not S1P, inhibits 
Akt phosphorylation, a pro-survival pathway that is also 
associated with autophagy inhibition[109]. In addition, el-
evated intracellular S1P-induced autophagy is associated 
with moderately increasing Beclin 1 expression during 
nutrient deprivation[31]. In contrast, ceramide significantly 
upregulates Beclin 1 expression during autophagy induc-
tion[107]. Furthermore, the interaction between the anti-
apoptotic protein, Bcl-2, and Beclin 1, represents a po-
tentially important point of  convergence of  the apoptotic 
and autophagic machinery[110] (Figure 2). Increased SphK1 
expression and activity are required for Bcl-2-inhibited 
apoptosis triggered by ceramide[56]. Therefore, the rheostat 
system between ceramide and S1P in controlling cell fate 
may be resulted from regulating the ratio of  Bcl-2/Beclin 
1[111]. 

S1P SIGNALING: A CANCER 
CHEMOTHERAPEUTIC TARGET?
Based on the above observations, S1P signaling is impli-
cated in cell proliferation, migration, angiogenesis, and 
autophagy; all processes that facilitate cancer progres-
sion. Therefore, blocking of  S1P signaling may be a po-
tential target for cancer therapy. Indeed, LT1009, a S1P 
specific monoclonal antibody, has been formulated for 

phase Ⅰ clinical trials in cancer as ASONEP (LPath, Inc.). 
Besides, L-threo-dihydrosphingosine (Safingol), a potent 
PKC inhibitor with SphK-inhibiting activities, has also 
been assessed in Phase Ⅰ trials. Moreover, FTY720, an an-
alog of  sphingosine that can be phosphorylated by SphK2 
in vivo, is currently being assessed as an immunomodulator 
in phase Ⅲ trials for patients with multiple sclerosis.

The sphingosine analog DMS and sphinganine (D, 

L-threo-dimethylsphingosine), which are widely used as 
a pharmacological inhibitors for SphK, inhibit gastric 
and lung tumor growth and reduce metastasis in vivo[112]. 
However, these compounds, without SphK isoform 
specificity, also inhibit PKC and ceramide kinase, as well 
cause hemolysis and hepatoxicity[113-115]. Since SphK1 and 
SphK2 may have different functions in cancer progres-
sion, the specific targets for these isoforms are needed. 
SphK1-I (BML-258), a specific SphK1 inhibitor, prevents 
tumor growth and vascularization, and induces apoptosis 
in glioblastoma xenografts. In addition, SphK1-I enhances 
survival in orthotopic glioblastoma[116]. Recently, a SphK2-
selective inhibitor, (3-(4-chlorophenyl)-adamantane-1-
carboxylic acid (pyridine-4-yl-methy)amide (ABC294640) 
has been identified. It inhibits tumor growth, induces 
apoptosis and autophagic cell death in kidney tumor xeno-
grafts[117]. As stated above, S1P regulates several biological 
functions that are implicated in tumorigenesis, through its 
cell surface receptors. Thus, targeting of  the receptors of  
S1P may also be a therapeutic strategy. FTY720, a potent 
immunosuppressive drug that induces lymphopenia, is 
phosphorylated by SphK2 and then binds to four out of  
five S1P receptor subtypes, except S1P2. This compound 
leads to an ubiquitin-dependent degradation of  S1P1 in T 
lymphocytes, thereby preventing these cells leaving lym-
phoid organs[118]. FTY720 has become a good target for 
cancers in different ways, including suppression of  tumor 
growth, tumor vascularization, angiogenesis, and metasta-
sis, as well as induction of  apoptosis[119-122].

CONCLUSION
There is considerable information concerning the roles of  
S1P implicated in cell proliferation, migration, angiogene-
sis, and autophagy; all of  which are associated with tumor 
growth, invasion, and metastasis. Due to the important 
roles of  S1P in tumorigenesis, targeting of  S1P signalings 
may potentially serve as an adjuvant for cancer therapy. 
Since S1P is generated from sphingosine by SphKs, the 
factors that regulate the balance of  the ceramide-sphingo-
sine-S1P rheostat towards ceramide and decreasing SphK 
activity may be candidates for anti-cancer drug develop-
ment. 
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