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Abstract
The treatment of infections caused by fungi and try-
panosomatids is difficult due to the eukaryotic nature 
of these microbial cells, which are similar in several bio-
chemical and genetic aspects to host cells. Aggravating 
this scenario, very few antifungal and anti-trypanoso-
matidal agents are in clinical use and, therefore, ther-
apy is limited by drug safety considerations and their 
narrow spectrum of activity, efficacy and resistance. 
The search for new bioactive agents against fungi and 
trypanosomatids has been expanded because progress 
in biochemistry and molecular biology has led to a bet-
ter understanding of important and essential pathways 
in these microorganisms including nutrition, growth, 
proliferation, signaling, differentiation and death. In 
this context, proteolytic enzymes produced by these 

eukaryotic microorganisms are appointed and, in some 
cases, proven to be excellent targets for searching novel 
natural and/or synthetic pharmacological compounds, in 
order to cure or prevent invasive fungal/trypanosomatid 
diseases. With this task in mind, our research group and 
others have focused on aspartic-type proteases, since 
the activity of this class of hydrolytic enzymes is directly 
implicated in several facets of basic biological processes 
of both fungal and trypanosomatid cells as well as due 
to the participation in numerous events of interaction 
between these microorganisms and host structures. In 
the present paper, a concise revision of the beneficial 
effects of aspartic protease inhibitors, with emphasis on 
the aspartic protease inhibitors used in the anti-human 
immunodeficiency virus therapy, will be presented and 
discussed using our experience with the following micro-
bial models: the yeast Candida albicans , the filamentous 
fungus Fonsecaea pedrosoi  and the protozoan trypano-
somatid Leishmania amazonensis . 
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Figure 1  André Luis Souza dos Santos, 
Associate Professor, Laboratory of Multi-
disciplinary Studies on Microbial Biochem-
istry, Department of General Microbiology, 
Institute of Microbiology Prof. Paulo de 
Góes, Federal University of Rio de Janeiro, 
Rio de Janeiro, RJ 21941-902, Brazil.
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INTRODUCTION AND EDUCATIONAL 
EXPERIENCE
Since I was young, I (Figure 1) have been interested in 
being a teacher, and that feeling grew and consolidated 
along with my professional journey. The scientific world 
was introduced to me during high school. From 1990 to 
1994, I studied the Biotechnology course in a reputable 
Federal Institution from Rio de Janeiro State, Brazil, 
called Escola Técnica Federal de Química - ETFQ (cur-
rently CEFETEQ), an excellent technical school. Over 
those years, the disciplines related to the Microbiology 
area (Bacteriology, Mycology, Virology, Protozoology 
and Immunology) and the laboratory classes produced a 
great curiosity, motivation and stimulation of  scientific 
thought, which ignited my desire to be a scientist. With 
this proposal in mind, in 1994, I started my bachelor de-
gree in the Microbiology and Immunology course at the 
Federal University of  Rio de Janeiro (UFRJ), being one 
of  the 35 students approved to constitute the first class 
of  that novel graduation course. In parallel, I worked as 
a Biotechnology technician at the Biochemistry Depart-
ment of  the State University of  Rio de Janeiro (UERJ) 
under the supervision of  Dr. Claudia Vitória de Moura 
Gallo, an exemplar professional and an excellent person, 
who contributed notably to turn my dream into reality. 
In early 1999, I finished the undergraduate program and 
started a Master’s degree at the Institute of  Microbiology 
Prof. Paulo de Góes (IMPPG)-UFRJ. During the period 
from mid 2000 until early 2002, I developed my doctoral 
thesis at the IMPPG-UFRJ under the supervision of  Dr. 
Rosangela Maria de Araújo Soares. Since August 2002, I 
have been Professor at the Department of  General Mi-
crobiology of  the IMPPG-UFRJ and, since then, I have 
been teaching lessons to several undergraduate courses 
including Microbiology and Immunology, Nursing, Biol-
ogy and Pharmacy. Still, I effectively participate in two 
postgraduate courses at UFRJ: Microbiology from IMP-
PG and Biochemistry from Chemistry Institute.

Indubitably, my professional work has only been fully 
developed because I have a research group consisting of  
competent professionals, including technicians and un-
dergraduate, masters, doctoral and postdoctoral students, 
who are extremely dedicated and committed to scientific 

thinking. I would like take this opportunity to express and 
reiterate my full admiration and gratitude to all my stu-
dents. I would also like to thank to the several Brazilian 
researchers who have contributed immensely to my work, 
in particular Dr. Marta Helena Branquinha (IMPPG-
UFRJ), Dr. Eliana Barreto-Bergter (IMPPG-UFRJ), Dr. 
Lucy Seldin (IMPPG-UFRJ), Dr. Celuta Sales Alviano 
(IMPPG-UFRJ), Dr. Claudia Masini d’Avila-Levy (Funda-
ção Oswaldo Cruz-FIOCRUZ) and Dr. Lucimar Ferreira 
Kneipp (FIOCRUZ). My research has been supported 
by the Brazilian agencies: Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq), Conselho 
de Ensino para Graduados e Pesquisas (CEPG/UFRJ), 
Fundação de Amparo à Pesquisa do Estado do Rio de 
Janeiro (FAPERJ), Fundação Universitária José Bonifácio 
(FUJB) and Coordenação de Aperfeiçoamento de Pessoal 
de Nível Superior (CAPES). I have also been supported 
by a CNPq fellowship since 2005 and by a FAPERJ fel-
lowship since 2007.

Over the past 10 years: (1) I supervised 16 monographs 
of  graduate students, 10 master theses and 4 doctoral the-
ses; (2) I published 79 papers in the field of  Bacteriology 
(n = 5), Mycology (n = 22) and Protozoology (n = 52) 
(Figure 2); and (3) I was invited to participate as a speaker 
at national and international meetings. I am a peer review-
er for international scientific journals, as well as career and 
research grant committees. In addition, I have accepted 
invitations to write reviews and book chapters on the 
themes: (1) relevance of  proteolytic enzymes produced by 
microorganisms; and (2) antimicrobial properties of  pro-
tease inhibitors[1-11].

ACADEMIC STRATEGIES AND GOALS
Our work group is distinguished by its multidisciplinary 
nature, with direct involvement of  different research in-
stitutions from Brazil (other Departments and Institutes 
from UFRJ, UERJ, FIOCRUZ, Universidade Federal Flu-
minense (UFF), Universidade Federal do Estado do Rio de 
Janeiro (UNIRIO), Universidade do Estado de São Paulo 
(USP), Universidade Federal de São Paulo (UNIFESP), 
Universidade Federal do Espírito Santo (UFES)) and from 
other countries, generating productive and effective collab-
orations. Several publications in high-ranked journals, e.g. 
FEMS Microbiology Reviews, PLoS One, Archives of  Biochemis-
try and Biophysics, Journal of  Antimicrobial Chemotherapy, Journal 
of  Clinical Microbiology, International Journal of  Antimicrobial 
Agents, Microbes and Infection, International Journal for Parasitol-
ogy, Protist, Parasitology and Medical Mycology, were produced 
in collaboration with these partners. 

Over the last years, my group has focused on the 
identification, biochemical characterization and discovery 
of  biological functions of  proteases produced by micro-
organisms, with emphasis in trypanosomatids and fungi 
(Figure 3). More recently, we have started to study prote-
ase inhibitors in an attempt to use these bioactive com-
pounds as a new therapeutic proposal against eukaryotic 
pathogenic microorganisms (Figure 3).
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RESEARCH ACHIEVEMENTS
Proteolytic enzymes and their inhibitors: an overview
Proteolytic enzymes catalyze the cleavage of  peptide 
bonds, which link amino acid residues in proteins and 
peptides. A redundant set of  terms is used by the scien-
tific community to refer to proteolytic enzymes, including: 
peptide hydrolase, peptidase and protease. All proteases 
bind their substrates in a groove or cleft, where peptide 
bond hydrolysis occurs (Figure 4). Amino acid side chains 
of  substrates occupy proteolytic enzyme sub-sites in the 
groove, designated as S3, S2, S1, S1’, S2’, S3’, that bind to cor-
responding substrate/inhibitor residues P3, P2, P1, P1’, P2’, 
P3’ with respect to the cleavable peptide bond (Figure 4).  
After the proteinaceous substrate cleavage, at least two 
smaller peptides can be generated (Figure 4)[12-15]. 

Proteases are subdivided into two major groups de-
pending on their site of  action: exopeptidases and en-
dopeptidases. Exopeptidases cleave the peptide bond 
proximal to the amino (NH2) or carboxy (COOH) termini 
of  the proteinaceous substrate, whereas endopeptidases 
cleave peptide bonds within a polypeptide chain. Based on 
their site of  action at the NH2 terminal, the exopeptidases 
are classified as aminopeptidases, dipeptidyl peptidases or 
tripeptidyl peptidases that act at a free NH2 terminus of  
the polypeptide chain and liberate a single amino acid resi-
due, a dipeptide or a tripeptide, respectively. Carboxypepti-
dases or peptidyl peptidases act at the COOH terminal of  
the polypeptide chain and liberate a single amino acid or a 
dipeptide (which can be hydrolyzed by the action of  a di-
peptidase). Carboxypeptidases can be further divided into 
three major groups: serine, metallo and cysteine carboxy-
peptidases, based on the functional group present at the 
active site of  the enzymes. Similarly, endopeptidases are 
classified according to essential catalytic residues at their 
active sites in: serine, metallo, glutamic, threonine, cysteine 
and aspartic endopeptidases (Figure 5). Conversely, there 
are a few miscellaneous proteases that do not precisely fit 
into the standard classification[12-15].

The class of  a protease is characteristically determined 
according to the effects of  proteolytic inhibitors on the 

enzymatic activity[16,17]. Protease inhibitors enter or block a 
protease active site to prevent substrate access. In compet-
itive inhibition, the inhibitor binds to the active site, thus 
preventing enzyme-substrate interaction. In non-com-
petitive inhibition, the inhibitor binds to an allosteric site, 
which alters the active site and makes it inaccessible to the 
substrate[16,17]. The proteolytic inhibitors can be divided 
into two functional classes on the basis of  their interaction 
with the target protease: (1) irreversible trapping reactions 
and (2) reversible tight-binding reactions (Figure 6). Inhib-
itors which bind through a trapping mechanism change 
conformation after cleaving an internal peptide bond 
and “trap” the enzyme molecule covalently; neither the 
inhibitor nor protease can participate in further reactions. 
In tight-binding reactions, the inhibitor binds directly to 
the active site of  the protease; these reactions are revers-
ible and the inhibitor can dissociate from the proteolytic 
enzyme in either the virgin state, or after modification 
by the protease. Based on their structural dichotomy, 
proteolytic inhibitors can be generally classified into two 
large groups: low molecular mass peptidomimetic inhibi-
tors and protein protease inhibitors composed of  one or 
more peptide chains. Proteolytic inhibitors can be further 
classified into five groups (metallo, serine, threonine, cys-
teine and aspartic protease inhibitors) according to the 
mechanism employed at the active site of  proteolytic en-
zymes they inhibit. Some proteolytic inhibitors interfere 
with more than one type of  protease[16,17].

Proteases produced by microorganisms: global 
functions
Proteases are essential for all life forms. They are involved 
in a multitude of  physiological reactions from simple di-
gestion of  proteins for nutrition purposes to highly-reg-
ulated metabolic cascades (e.g. proliferation and growth, 
differentiation, signaling and death pathways), being es-
sential factors for homeostatic control in both prokaryote 
and eukaryote cells (Figure 7)[12]. Proteases are also essen-
tial molecules in viruses, bacteria, fungi and protozoa for 
their colonization, invasion, dissemination and evasion of  
host immune responses, mediating and sustaining the in-
fectious disease process (Figure 7). Collectively, proteases 
participate in different steps of  the multifaceted interac-
tion events between microorganism and host structures, 
being considered as virulent attributes. Consequently, 
the biochemical characterization of  these proteolytic en-
zymes is of  interest not only for understanding proteases 
in general but also for understanding their roles in micro-
bial infections and thus their exploitation as targets for 
rational chemotherapy of  microbial diseases[3,6,10,18-24].

Antimicrobial properties of proteolytic inhibitors
Current therapy for both fungal and trypanosomatid in-
fections is suboptimal due to toxicity of  the available ther-
apeutic agents and the emergence of  drug resistance[25-28]. 
Compounding these problems is the fact that many en-
demic countries and regions are economically poor. For 
that reason, the development of  novel antifungal and/or 
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Figure 2  Publication of scientific papers by the research group led by 
André Santos. The graphic summarizes the numbers and specific areas of 
Microbiology in relation to papers published during the past ten years.
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anti-trypanosomatidal drugs is an imperative requirement. 
A number of  new strategies to obstruct fungal/trypano-
somatid biological processes have emerged; one of  them 
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Figure 3  Rationale of the research works developed in the André Santos’ laboratory. The main purpose of our study focuses on the identification and biochemi-
cal characterization of cellular and/or extracellular proteases produced by eukaryotic microorganisms, especially trypanosomatids and fungi. Subsequently, we have 
focused on the discovery of possible biological functions for these hydrolytic enzymes in both the social context of the microbial cell and the participation in interaction 
events with biotic and abiotic substrates. Finally, we have used the protease inhibitors in an attempt to block vital processes in microbial cells, thus preventing a suc-
cessful infection. 
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zyme. Yellow arrows point to the site of cleavage. The blue arrows indicate the 
classification of carboxypeptidases and the red arrow shows the box containing 
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Figure 4  Schematic representation of binding region and catalytic site 
of a protease. This hypothetical protease possesses six subsites (S1-S3 and 
S1’-S3’) in its catalytic site and, consequently, is able to recognize and bind to a 
sequence of six amino acids (P1-P3 and P1’-P3’) in the proteinaceous substrate. 
After proteolysis, at least two smaller peptides are generated as the reaction 
products.
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is focused on protease inhibition. Currently, the main ap-
proach has been to obtain good inhibitors of  the target 
protease, in the belief  that inhibition of  the activity will be 
therapeutic. In this context, our research group has pub-
lished some works that corroborate this premise[1-6,10,29-39].

Aspartic protease inhibitors used in anti-human 
immunodeficiency virus therapy present anti-microbial 
properties
Lessons from the yeast Candida albicans (C. albicans), the fila-
mentous fungus Fonsecaea pedrosoi (F. pedrosoi) and the pro-
tozoan Leishmania amazonensis (L. amazonensis) are illustrated 
as follows.

C. albicans : C. albicans is both a successful commensal 
and pathogen of  humans that can infect a broad range 
of  body sites[40]. The transition from commensalism to 
parasitism requires a susceptible host, which includes 
individuals with humoral and/or cellular deficiencies as 
well as persons submitted to different immunosuppres-
sive procedures. Candidiasis is the most common fungal 
infection diagnosed in humans[41-43]. Due to the emergence 
of  pathogens resistant to conventional antifungals and 
the toxicity of  some antimycotics, intense efforts have 

been made to develop more effective antifungal agents for 
clinical use[44-48]. The pathogenesis of  C. albicans is multi-
factorial and different virulence attributes are important 
during the various stages of  infection[20,21,49-55]. Secreted 
aspartic proteases (Saps) play a role in several infection 
stages of  C. albicans, being the most important virulence 
factors expressed by this opportunistic fungus. Actu-
ally, C. albicans possesses ten different SAP genes (SAP1 
to SAP10), which are expressed according to distinct 
environments and host conditions[56-60]. Therefore, Saps 
are potential targets for the development of  novel anti- 
C. albicans drugs[1,2,34,35]. In this context, several groups have 
demonstrated that aspartic protease inhibitors, including 
pepstatin A and the first generation of  protease inhibitors 
used in anti-human immunodeficiency virus (HIV) thera-
py (nelfinavir, saquinavir, ritonavir and indinavir), are able 
to restrain Sap activity (especially Sap1, Sap2 and Sap3) as 
well as arrest crucial events of  C. albicans yeast cells such 
as proliferation and adhesion to both abiotic (e.g. plastic 
and acrylic substrates) and biotic structures (e.g. surface of  
different epithelial cell lineages)[61-72]. Our results showed 
that amprenavir[72] (unpublished data) and lopinavir (un-
published data), two HIV aspartic protease inhibitors of  
the second generation, significantly inhibited the hydrolyt-
ic activity of  Sap2 and also blocked the yeasts into mycelia 
transformation, an essential step during the candidiasis 
pathogenesis. In addition, scanning electron microscopy 
revealed prominent ultrastructural alterations of  yeast 
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Figure 7  Possible functions played by microbial proteases. Surface and/or 
secreted proteases are able to cleave different host components such as serum 
proteins, antimicrobial peptides, surface molecules and structural proteinaceous 
compounds. The degradation of host proteins can help the microorganisms in 
several steps of their life cycle and pathogenesis including dissemination, adhe-
sion, escape, nutrition and immunomodulation of the host immune response. 
These proteases can also contribute to maintaining basic metabolic processes 
in a microbial cell, which govern crucial events like proliferation, differentiation, 
signaling and death pathways. Proteolytic inhibitors are able to block one or 
several of these fundamental events.
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Figure 6  Mechanisms of protease inhibition. The protease inhibitor com-
petes with the substrate to bind to the active site of a protease and two distinct 
possibilities arise: (1) substrate binds to the catalytic site and then is cleaved by 
the protease, which releases the products or (2) inhibitor binds to the active site 
and by steric hindrance blocks the substrate attachment. In this last case, the 
inhibitor can promote an irreversible (the conformational structure of the prote-
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cells, which corroborated the inhibition of  cellular division 
by these protease inhibitors. Several surface and/or secret-
ed molecules have had their expression/production signif-
icantly diminished including (1) mannose- and sialic acid-
rich surface glycoconjugates, which are directly involved 
in adhesive properties and biofilm formation; (2) sterol 
content, which controls the membrane fluidity; (3) secre-
tion of  lipases (e.g. esterases and phospholipases), which 
are related to the host membrane disruption; and (4) cata-
lase activity, which reduces the ability of  yeasts to escape 
from oxidative stress generated by hydrogen peroxide, 
for example, released by host phagocytes[72] (unpublished 
data). However, it is also important to note that the inhibi-
tory effects of  HIV protease inhibitors both in in vitro and  
in vivo experimental models were observed at concentra-
tions (μmol/L range) much higher than those needed for 
HIV protease inhibition (nmol/L range). This probably 
reflects a much lower affinity of  these drugs for Sap than 
that for HIV protease[31,34]. Another explanation is that, 
in contrast to the very small and structurally simplified 
HIV protease, Saps are larger and more complex[60,73]. 
They possess a relatively large active site which might be 
responsible for the broader substrate specificity and also 
their susceptibilities to distinct aspartic protease inhibi-
tors[60]. Nevertheless, the above concentrations may be 
achieved under current highly active antiretroviral therapy 
(HAART) regimens both in the blood[31], in human saliva 
(at least for indinavir)[74] and in lungs (at least for lopina-
vir)[75]. In this sense, our group has showed that lopinavir 
at 10 mg/kg promoted a therapeutic effect in an experi-
mental murine model of  disseminated candidiasis, with an 
efficacy comparable to that of  fluconazole, a recognized 
anti-candidal drug (unpublished results).

F. pedrosoi : Fonsecaea is a genus containing pigmented 
filamentous fungus isolated from soil, rotten wood and 
decomposing plant material. F. pedrosoi is one of  the 
major causative agents of  chromoblastomycosis, a post-
traumatic and chronic infection of  subcutaneous tissues 
in humid tropical areas specially South America and 
Japan[8,76-79]. F. pedrosoi is a valuable model in cell biology, 
since its life cycle comprises different morphological 
states that include reproduction structures (conidia) and 
fungal forms usually found in the saprophytic (mycelia) 
and parasitic stage (sclerotic bodies)[8]. The first report on 
protease production by F. pedrosoi was described by our 
group[80], which demonstrated that the pattern of  prote-
ase production and secretion by F. pedrosoi conidial cells 
was closely dependent on the culture medium composi-
tion: metalloproteases were induced after cultivation in 
complex culture medium, while aspartic proteases were 
detected under chemically defined growth conditions. 
Mycelia[81] and sclerotic cells (unpublished results) of   
F. pedrosoi were also able to secrete aspartic-type prote-
ases. The aspartic proteases produced by conidia and 
mycelia were capable of  degrading relevant host serum 
proteins (e.g. IgG and albumin) as well as extracellular 
matrix components (e.g. laminin, fibronectin and col-
lagen)[80,81]. For that reason, the extracellular hydrolytic 

enzymes produced by F. pedrosoi cells, such as proteases 
and lipases[82], could support the initial development of  
this fungus inside the host, and the existence of  two 
biochemically distinct secreted proteases makes it pos-
sible to cover a wide range of  host conditions. The effect 
of  saquinavir, ritonavir, indinavir and nelfinavir on the 
secreted proteases of  F. pedrosoi was evaluated[81,83]. These 
compounds inhibited the extracellular aspartic proteolytic 
activity produced by both conidial and mycelial forms in 
a dose-dependent manner. Nelfinavir was the best inhibi-
tor of  the aspartic protease activity secreted by conidia 
and mycelia, restraining the hydrolytic activities around 
80% at 50 μmol/L. Interestingly, recent isolated strains 
of  F. pedrosoi produced higher levels of  extracellular pro-
tease activity when compared with a laboratory-adapted 
strain[81,83], suggesting that the production of  secreted 
aspartic-type proteases may be stimulated by interac-
tion with the host. HIV aspartic protease inhibitors and 
pepstatin A also arrested the growth of  conidial forms 
as well as transformation into mycelia[83], an essential step 
during the F. pedrosoi life cycle and virulence[8]. Pepstatin A 
showed a significant inhibition of  conidial viability even 
at low concentration (0.1 μmol/L); however, the HIV 
protease inhibitors were toxic only at high concentrations 
(ranging from 50 to 200 μmol/L). The synergistic action 
on proliferation behavior between nelfinavir (25 μmol/L) 
and amphotericin B (3 μg/mL), when both were used 
at sub-inhibitory concentrations, was also observed[83]. 
Interestingly, HIV protease inhibitors-treated conidial 
cells presented irreversible ultrastructural alterations, as 
shown by transmission electron microscopy images such 
as invaginations in the cytoplasmic membrane and with-
drawal of  the cytoplasmic membrane from within the cell 
wall, disorder and detachment of  the cell wall, rupture 
of  internal organelles, detection of  large and irregular 
cytoplasmic vacuoles, some of  them containing small 
vesicles, abnormal cellular division and breakage of  cell 
wall. Furthermore, the aspartic protease inhibitors drasti-
cally reduced the adhesion and endocytic indexes during 
the interaction between F. pedrosoi conidia and epithelial 
cells of  the Chinese hamster ovary lineage, fibroblasts or 
macrophages. Aspartic protease inhibitors also promoted 
a significant increase in the susceptibility killing by mac-
rophage cells, promoting a significant reduction in the 
number of  viable intracellular conidia after the treatment 
of  infected macrophage monolayers with indinavir, nel-
finavir and ritonavir at 6.25 μmol/L for 24 h[83].

L. amazonensis : Leishmania are digenetic protozoan 
parasites that live as promastigotes in the digestive tract 
of  sand flies and as amastigotes in the phagolysosomes 
of  mammalian macrophages. They cause a wide spectrum 
of  clinical manifestations (generically known as leishmani-
asis), and its clinical manifestations are dependent on both 
parasite species and immune response of  the host[84-89]. 
The increase in the incidence of  the disease, associated 
with higher morbidity rates, the spread of  some forms of  
leishmaniasis to new geographical areas and Leishmania-
HIV co-infection, has become an important public health 
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problem in the world[90-93]. However, the incidence of  
HIV-Leishmania co-infections has been decreasing since 
the introduction of  HAART, in which aspartic-type 
protease inhibitors were included[94,95]. These findings in-
stigated the research to confirm the possible connection 
between aspartic protease expression and basic molecular 
processes in Leishmania[96-103]. Our group showed that HIV 
protease inhibitors were able to impair in vitro proliferation 
of  L. amazonensis promastigotes in a dose-dependent man-
ner and in different extensions, in which nelfinavir (IC50 = 
15.1 ± 1.1 μmol/L), lopinavir (IC50 = 16.5 ± 0.8 μmol/L)  
and amprenavir (IC50 = 62.0 ± 2.1 μmol/L) were the 
most potent compounds[103]. These three protease inhibi-
tors (at the IC50 value) caused profound changes in the 
leishmania ultrastructure, including cytoplasm shrinking, 
increase in the number of  lipid inclusions and some cells 
with the nucleus closely wrapped by endoplasmic reticu-
lum, resembling an autophagic process, as well as chro-
matin condensation that is suggestive of  apoptotic death. 
The treatment with HIV protease inhibitors of  either 
the promastigote forms preceding the interaction with 
macrophage cells or the amastigote forms inside macro-
phages drastically reduced the association indexes (when 
inhibitors were used at 50 μmol/L) and the number of  
intracellular amastigotes (when inhibitors were used at  
3.12 μmol/L)[103]. The hydrolysis of  HIV protease sub-
strate by L. amazonensis extract was fully inhibited by pep-
statin A and HIV protease inhibitors at 10 μmol/L, sug-
gesting that an aspartic protease may be the parasite target 
of  the inhibitors. Despite all these beneficial effects, the 
HIV protease inhibitors induced an increase in the expres-
sion of  cysteine protease b (cpb)[19] and the metalloprote-
ase gp63[24], two well-known virulence factors expressed 
by Leishmania spp., probably in an attempt to compensate 
the parasite aspartic protease inhibition[103].

Proposals of the molecular mechanisms of the aspartic 
protease inhibitors on the aspartic protease produced 
by microorganisms
Direct actions - inhibition of  aspartic proteases: The 
binding of  the aspartic protease inhibitor to the active site 
of  an aspartic protease blocks the binding of  substrate 
to the enzyme. Therefore, the substrate remains intact 
and no peptides and/or amino acids are generated. Ob-
viously aspartic protease inhibition will be more or less 
drastic depending on several parameters like the inhibitor 
affinity constant for the active site, its ability to revers-
ibly or irreversibly bind to the enzyme, and the ratio of  
inhibitor in relation to the available substrate and enzyme. 
(1) The inhibition of  secreted and/or surface aspartic 
proteases can result in an inability of  the microorgan-
ism to obtain peptides and amino acids to its nutrition, 
leading to a reduction or a complete interruption in the 
proliferation rate. This phenomenon is clearly observed 
in C. albicans yeast cells when cultured under chemically 
defined medium containing large proteins (e.g. albumin 
and hemoglobin) as a unique nitrogenous source, but not 
when Candida cells are cultured in a medium containing an 

unlimited nitrogenous source[104-108]; (2) Some intracellular 
aspartic proteases produced by microorganisms also con-
trol the cleavage of  important own proteins in order to 
promote protein activation and/or perfect functioning of  
a biosynthetic route; their inhibition can arrest signaling 
events and/or metabolic pathways, as a result inhibiting 
some crucial biological processes for microbial cells such 
as morphogenesis or expression of  surface molecules re-
sponsible for adhesion or fungal protection. For example, 
some of  these aspartic protease inhibitors alter the lipid 
biosynthesis, including ergosterol, resulting in altered 
membrane permeability[68,72,83]. These inhibitory actions 
will depend on the ability of  the aspartic protease inhibi-
tors to (a) enter in the microbial cells and (b) accumulate 
inside them; and (3) Some surface aspartic proteases par-
ticipate in the assembly and organization of  the microbial 
surface. For instance, in contrast to all other members of  
the Sap family, the proteases Sap9 and Sap10 are bound to 
the C. albicans cell surface by a glycosylphosphatidylinosi-
tol anchor motif. Sap9 seems to be predominantly located 
in the cell membrane, and Sap10 is located in the cell wall 
and membrane[109]. Recently, Schild et al[110] demonstrated 
that Sap9 and Sap10 cleave covalently linked cell wall pro-
teins, including chitinase Cht2 and the glucan-cross-link-
ing protein Pir1. Deletion of  the SAP9 and SAP10 genes 
resulted in a reduction of  cell-associated chitinase activity 
similar to that upon deletion of  CHT2, suggesting a direct 
influence of  Sap9 and Sap10 on Cht2 function. The treat-
ment with amprenavir[72] and lopinavir (data not shown) 
promoted the removal of  the amorphous layer that covers 
the entire surface of  C. albicans, turning the rough surface 
into a smooth one. Moreover, surface aspartic proteases 
can promote microorganism adhesion (by functioning as 
an adhesive molecule or by destroying some receptors at 
the host surface, exposing and/or facilitating the adhesion 
event); therefore, their inhibition can diminish the ability 
of  a microorganism to interact with host structures.

Indirect actions - binding to unrelated molecules: The 
possibility of  aspartic protease inhibitors binding to or 
interfere with other molecules than aspartic proteases can 
not be excluded[35]. In this context, these compounds can 
generate irreversible toxic effects by perturbing the ho-
meostasis of  the microbial cells, culminating in death of  
microorganisms.

Conclusion
Microbial pathogenesis is a multifactorial process and dif-
ferent virulence factors are important during the various 
phases of  infection. Some virulence attributes, such as 
the aspartic proteases, play a role in several infection stag-
es and the inhibition of  one of  the many stages probably 
will contribute to the containment of  the pathogen and 
thus should help in the treatment of  disease. Therefore, 
aspartic proteases synthesized by pathogenic fungi and 
trypanosomatids are prospective targets for the develop-
ment of  new chemotherapeutic compounds. Both in vitro 
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and in vivo studies demonstrated that the use of  HIV pro-
tease inhibitors promoted a drastic reduction in the pres-
ence of  both fungal and trypanosomatid opportunistic 
diseases as well as clearly revealing that these inhibitors 
are able to arrest vital events in microbial cells presenting 
eukaryotic architecture, including proliferation, differen-
tiation and nutrition. These inhibitors also impair the de-
velopment of  infection in culture or animal models due 
to their capability of  blocking adhesion, internalization, 
evasion and escape of  host responses. Together, all these 
beneficial effects culminate in death of  the microorgan-
ism and/or its inadequate ability to develop an efficient 
and successful infection. Future studies must investigate 
combination drug therapy, which may reduce the inci-
dence of  toxicity due to individual drugs and may also 
delay the emergence of  drug resistance. In addition, the 
purification of  aspartic proteases produced by fungi and 
trypanosomatids, the knowledge of  its biochemical prop-
erties and the crystallization of  the tertiary structure will 
contribute to better understanding of  the functioning of  
these proteolytic enzymes as well as allowing the design 
of  more specific inhibitors. At least for C. albicans, the 
crystal structure of  Sap2 complexed with pepstatin A has 
been known since 1993[111], whereas the crystal structure 
of  Sap3 and its complex with pepstatin A was first pre-
sented in 2007[112]. The secondary structures of  Sap2 and 
Sap3 as well as Sap1 and Sap5 were recently described[113]. 
These data could help in the development of  novel and 
more effective anti-C. albicans compounds.

I really hope that all these findings together arouse 
the curiosity and the enthusiasm of  other researchers in 
order to look for novel compounds with the ability to in-
hibit aspartic proteases produced by fungi and trypanoso-
matids. These novel compounds must be more specific, 
powerful and with reduced side effects, in an attempt to 
increase our armamentarium to treat fungal and trypano-
somatid diseases. 
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