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A central and classic question in ecology is what causes popula-
tions to fluctuate in abundance. Understanding the interaction
between natural drivers of fluctuating populations and human
exploitation is an issue of paramount importance for conservation
and natural resource management. Three main hypotheses have
been proposed to explain fluctuations: (i) species interactions,
such as predator–prey interactions, cause fluctuations, (ii) strongly
nonlinear single-species dynamics cause fluctuations, and (iii) en-
vironmental variation cause fluctuations. We combine a general
fisheries model with data from a global sample of fish species to
assess how two of these hypothesis, nonlinear single-species dy-
namics and environmental variation, interact with human exploi-
tation to affect the variability of fish populations. In contrast with
recent analyses that suggest fishing drives increased fluctuations
by changing intrinsic nonlinear dynamics, we show that single-
species nonlinear dynamics alone, both in the presence and ab-
sence of fisheries, are unlikely to drive deterministic fluctuations
in fish; nearly all fish populations fall into regions of stable dy-
namics. However, adding environmental variation dramatically
alters the consequences of exploitation on the temporal variability
of populations. In a variable environment, (i) the addition of mor-
tality from fishing leads to increased temporal variability for all
species examined, (ii) variability in recruitment rates of juveniles
contributes substantially more to fluctuations than variation in
adult mortality, and (iii) the correlation structure of juvenile and
adult vital rates plays an important and underappreciated role in
determining population fluctuations. Our results are robust to al-
ternative model formulations and to a range of environmental
autocorrelation.
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Perhaps no question in population biology has generated more
attention and debate over the past century than why pop-

ulations fluctuate (1–4). The question remains relevant today
because the causes of fluctuations have important implications
for the management and conservation of natural resources (5).
Answers to this question can be grouped into three general hy-
potheses: (i) species interactions (e.g., predator–prey inter-
actions or disease) generate fluctuating and cyclic population
dynamics (4, 6, 7); (ii) nonlinearity in single-species dynamics
generates deterministic fluctuations (2, 8, 9); and (iii) variation
in the environment determines variation in vital rates (e.g.,
survival or growth), which in turn drive variation in abundance
(1, 10). If there is a strong message from ecology for the 21st
century, it is that we should not expect a single mechanism to be
solely responsible for generating fluctuating populations but
recognize the potential contribution of each and work toward
understanding how these factors interact to affect the variability
of natural populations (11–14). For exploited species, we may
also ask how human harvesting interacts with the other drivers to
affect the variability of exploited populations (3, 15, 16). Here we
focus on hypotheses ii and iii, with the goal of understanding the
potential for each hypothesis to generate empirical patterns of
population fluctuations and how human exploitation will interact
with each hypothesis to affect population fluctuations.

An extensive literature analyzes the stability properties of
many biological models, particularly single or two species (3, 6).
However, fewer analyses marry available empirical data and
mathematical models to infer the causes of population fluctua-
tions (8, 9, 17). To do so requires that mathematical models are
formulated in ways that make them biologically interpretable;
models need to make testable biological predictions that can be
directly compared, challenged, and improved by data from nat-
ural populations (18, 19).
Here we present results from a unique integrative study of the

variability of fish populations. We investigate the recent, high-
profile assertion that human exploitation increases fish pop-
ulation fluctuations (16) by increasing population growth rates
and “. . .driv[ing] populations towards the critical transition from
a stable to a cyclic or chaotic regime” (20; also see refs. 21 and 22).
We analyze the well-studied Ricker population model that Hsieh
et al. (16) and Anderson et al. (21) used to propose cyclic and
chaotic dynamics in fish populations but modified to represent
iteroparous fish species. Initially, we compare theoretical model
results with data from a global sample of commercially exploited
fish species. Then we assess the role of nonlinear dynamics alone
in driving population fluctuations in the presence and absence of
fishing and contrast these results with the dynamics arising from
environmental variation alone. Finally, we assess the joint con-
sequences of environmental variation, nonlinear dynamics, and
harvest on the temporal variability of fish populations.

Results
In the absence of environmental variability, our model can
generate a range of dynamic behavior from stable equilibria to
limit cycles to deterministic chaos (8) (Fig. 1). Longer lags be-
tween reproduction and maturation (τ) increase the parameter
space occupied by deterministically fluctuating populations (Fig.
1). However, empirical data show that only three of 45 species
reviewed have estimated parameters that generate cyclic or
chaotic dynamics. Because we selected the discrete Ricker model
for its potential to generate strong nonlinear dynamics including
deterministic cycles and chaos, and our data collection procedures
bias the analyses toward classifying species as having unstable
dynamics (SI Text, Sources of Data), we conclude that intrinsic
dynamics alone are very unlikely to drive temporal fluctuations in
unexploited fish species.
The addition of fishing mortality to the deterministic model

does not affect our conclusions about the role of nonlinear dy-
namics in driving variability of populations (Fig. 1). When mor-
tality from fishing is considered, no additional species joined the
previous three species in regions of cyclic or chaotic dynamics,
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although one species moved very close to the critical transition.
Thus, additional mortality from fishing, by itself, does not drive
species from a steady state to fluctuating dynamics. Further-
more, when the three species that fall into cyclic or chaotic
parameter space (Atlantic menhaden, gold-spotted grenadier
anchovy, and swordfish; Table S1) and the one species near the
critical transition (scup) are examined closely, we note that the
data used to estimate the reproductive rate (α) are derived from
a single population, whereas estimates for the most other spe-
cies are derived from multiple populations (23) (Table S1).
Thus, these four estimates of α may simply represent anomalies
arising from using a relatively small amount of data to estimate
the stock–recruitment relationship. Although we cannot ex-
clude the possibility that these species fluctuate owing to in-
trinsic nonlinearity in their dynamics, if only fish species with
robust estimates of α are included, the presence of fishing

mortality has no consequences for dynamical behavior; no
species fall into parameter regions that produce cyclic or chaotic
dynamics (Fig. S1). In SI Text we show that these results hold for
a different production model (Alternative Production Models)
and other formulations of fishing mortality (Alternative Models
of Fishing).
A varying environment produced populations that show tem-

poral variability in abundance (coefficient of variation of biomass,
CV(B) > 0). However, variation in α and natural mortality (Mp)
do not contribute equally to increasing population variability (Fig.
2 and Fig. S2). Specifically, variability in α has a disproportionate
effect in driving the variability of mature biomass. Intuitively, the
effect of recruitment variability lessens as mortality declines;
long-lived adults serve to buffer populations from extreme vari-
ation in abundance (24). We illustrate this by contrasting a short-
lived (anchovy) and long-lived species (Atlantic cod) across

Fig. 1. Parameter estimates for a global sample of fish species and stability criteria for Eq. 6 in the absence (Left) and presence (Right) of fishing mortality.
Shaded regions indicate areas with deterministic cycles or chaotic dynamics, for four recruitment lags τ = 1, 2, 3, or 4). For example, deterministic cycles and
chaos for τ = 1 includes only the gray region, whereas the deterministic cycles and chaos for τ = 2 includes both gray and red regions, and so on. For each lag,
regions outside of shaded regions denote parameter space with stable equilibrium dynamics or damped oscillations. Yellow regions indicate parameter
values that result in negative equilibrium biomass (i.e., population extinction). Points indicate individual species (±SEM), with color corresponding to the
appropriate τ. Pink points indicate species for which τ > 4. Mortality rates of ∞ are indicative of semelparous species, which die after reproduction. Iteroparous
species with mortality rates >2 are plotted at Mp = 2 or Mp + F = 2 to enhance readability.

Fig. 2. Predicted consequences of variation in vital rate parameters on the CV of biomass, CV(B), for two species, Atlantic cod (Gadus morhua) and anchovy
(Engraulis encrasicolus) for autocorrelated environments, ϕ = 0.8, and uncorrelated environments, ϕ = 0. Each point is CV(B) from a 5,000-y simulation, and solid
(anchovy) and dashed (cod) lines show trends. In all simulations, mean values of α and Mp are held constant (Table S1) and Cor(α, Mp) = 0. See Fig. S4 for an
alternate correlation scenario. (A) Increasing variation in reproductive rate, CV(α), results in rapid increase in the variability of mature biomass. CV(Mp) = 0.4 in
all simulations. (B) Increasing variation in natural mortality rate, CV(Mp), modestly increases the variability of mature biomass. CV(α) = 0.8 in all simulations.
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a range of variability in α and Mp (Fig. 2). Positive temporal
autocorrelation in the environment, (ϕ > 0), increases temporal
variation in biomass (Fig. 2 and Figs. S2 and S3).
To assess the effect of covariation between juvenile and adult

vital rates on population fluctuations, we compute the variance
of the steady-state biomass (B0) for a population given values of
α, Var(α), Mp; Var(Mp), and β (SI Text, Delta Method)

Var ðB0Þ ≈ c−
2e−Mp

β2αð1− e−MpÞ
Cor ðα;MpÞ½Var ðαÞVar ðMpÞ�0:5

[1]

where c is a constant and Cor(α,Mp) is the correlation between α
and Mp. The right-most term in Eq. 1 is the only term in the full
moment expansion in which Cor(α, Mp) occurs (SI Text, Delta
Method). All terms in Eq. 1 except Cor(α, Mp) are nonnegative,
so positive correlations between α and Mp decrease variance
around the steady state, whereas negative correlations increase
the variance. Thus, years of good recruitment cooccurring with
years of poor adult survival (or vice versa) will tend to reduce
variation in the population, whereas a coincidence of good years
will cause variability to increase. The consequences of this cor-
relation for CV(B) can be substantial (Fig. 3). Indeed, the addi-
tion of strong positive correlations between α and Mp can even
reverse the consequences of increasing CV(Mp) for populations,
producing a decline in CV(B) as CV(Mp) increases (Fig. S4).
Finally, the interaction between environmental variability and

nonlinear dynamics results in fished populations experiencing
increased temporal variation in abundance relative to unfished
populations (Fig. 4). Although the magnitude of increase in CV in
response to fishing varies among species and with the magnitude
of environmental variability, at an exploitation level that approx-
imates maximum sustained yield, FMSY, all simulations predict that
populations will increase in temporal variability. The addition of
temporal autocorrelation in vital rates increases slightly the pre-
dicted variability of populations (Fig. 4). Temporal variability in
fish mortality as described by CV(FMSY) has a very small effect on
CV(B) (Fig. 5).
The simulations also lead to the prediction that species with

longer recruitment lags (i.e., long-lived species) generally expe-
rience lower coefficients of variability than shorter-lived species
(Fig. S5). We lack data in the absence of fishing for most species,
so a direct comparison of our model and data from exploited and
unexploited populations is not possible. However, our simu-

Fig. 3. Changing the correlation between total mortality and the re-
productive rate substantially affects the variability of populations. For this
scenario, changing correlation from −0.5 to 0.5 results in a ≈20% decline in
CV(B). Lines are loess fits. Each point represents a 50,000-y simulation. For all
simulations, α = 2, CV(α) = 0.8, and CV(Mp) = 0.5.

Fig. 4. Variability of populations as a consequence of fishing mortality for a global sample of fish species under low (A and B) or high (C and D) recruitment
variability and uncorrelated (ϕ = 0; A and C) or autocorrelated environment (ϕ = 0.8; B andD). All points are from simulations using theminimum estimate ofMp

(Table S1) and CV(Mp) = 0.001. In all cases, exploitation leads to increased variability of populations despite the absence of deterministic cyclic or chaotic dynamics.
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lations produce patterns similar to the only published compari-
son of variability between exploited and unexploited species (16)
(Fig. S5); our model and simulations match available data from
natural populations.

Discussion
There are three main hypotheses for the causes of fluctuations in
populations. Our analysis suggests little support for hypothesis ii
(nonlinear single-species dynamics generate deterministic fluctu-
ations) and strong support for hypothesis iii (environmental var-
iation drives population fluctuations). Nonlinear dynamical
models have garnered a great deal of attention because of their
potential to generate a wide range of dynamical behavior de-
pending on the values of model parameters. However, models
need to be linked to the natural species they represent. We use a
biologically reasonable model that broadly matches the common
assumptions made in fisheries science and has characteristics—
discrete time, lagged recruitment, and the potential for strong
overcompensatory recruitment—that are known to increase the
possibility of generating deterministic fluctuations in abundance
(9). Despite the potential for complex dynamics and a data se-
lection procedure that bias our results toward identifying species
as deterministically fluctuating (SI Text, Sources of Data), em-
pirical estimates for virtually all fish species fall in regions of
stable, equilibrial dynamics. Given that recruitment models
lacking the strong overcompensatory potential of the Ricker
model may be more appropriate for many fish species (e.g., the
Beverton-Holt model) (25), and that using such alternative
models will increase the likelihood of stable dynamics, we view
our results as conservative. Thus, we likely overestimate the true
importance of nonlinear behavior in generating population fluc-
tuations. Because statistical approaches for analyzing complex
dynamical systems change as populations shift from stable equi-
libria toward chaotic dynamics (26), our results have direct impli-
cations for the analysis of fish population data.
Without models that explicitly describe the dynamics for mul-

tiple species, we cannot directly assess the role of hypothesis i,
that species interactions drive the variability of fish populations.
However, we note that even in the single-species model used here,
both α and Mp are strongly affected by species interactions in ad-
dition to abiotic conditions. Specifically, α controls the production
of new individuals and thus is strongly connected to food available
from lower trophic levels (bottom-up forcing), and Mp is adult
mortality and therefore should be strongly linked to the abundance

of predators (top-down control). Therefore, variability in either
the abundance of prey or predators should translate into variability
in α and/or Mp. We emphasize, however, that the structure of
parameter variation arising from environmental drivers vs. species
interactions may differ in significant but poorly understood ways,
and consequences of alternate patterns of parameter variability for
population dynamics are far from certain.
Our results may explain the discovery that despite the several

orders of magnitude variation in egg production among fish
species, a narrow range of maximum reproductive rates occurs (α
ranges from 1 to 7) (23). Our results provide a potential expla-
nation for their result; populations with larger reproductive rates
than ≈7 tend toward cyclical or unpredictable dynamics (Fig. 1).
Given that increased temporal variability may lead to increased
probability of extinction, over time only species with repro-
ductive rates in a constrained range may have persisted (27, 28).
However, the mechanisms underlying such extinction dynamics
remain highly debated (28).
The addition of biologically reasonable ranges of environmental

variation substantially changes our conclusion about the effect of
fishing on the temporal variation of populations. Four results are
paramount: (i) under all reasonable scenarios of environmental
variability, the addition of fishing mortality leads to increased
coefficients of variation; (ii) recruitment variability contributes
substantially to population variability, whereas variation in both
natural mortality and fishing mortality contribute relatively little;
(iii) correlation among life-stages under environmental variation
can play an important role in the variability of populations; and
(iv) the addition of autocorrelated environmental variability affects
the magnitude but not the direction of our results.
The second result has important implications for detecting the

consequences of fishing in natural ecosystems. Our simulations
show that the coefficient of variation (CV) of the biomass of the
population is relatively insensitive to the variability in natural
mortality (Fig. 2) and fishing mortality (Fig. 5). Because the
abundance of natural populations are observed with uncertainty
(i.e., there is observation error), our result may explain why efforts
to relate variation in fishing effort and temporal variability in
biomass have only rarely been successful (21; but see ref. 29) and
suggest that this type of analysis will be generally unfruitful for
understanding the causes of population fluctuations.
Understanding recruitment variability for fish populations has

been a topic of intense interest for much of the past half century
(24, 30, 31), and our analysis affirms the importance of under-
standing recruitment processes. However, knowledge of mortality
and growth variation in mature fish remains poor, and our results
suggest that a renewed emphasis on understanding the correlation
among life stages is warranted (10, 32–34).
Behavioral or ontogenic mechanisms that affect the correlation

of juvenile and adult vital rates will thus have strong consequences
for temporal variation in abundance. In particular, the effect of
this correlation on population variability can be of a similar mag-
nitude to the addition of fishing mortality (Figs. 3 and 4). One area
that has received attention is understanding the role cannibalism
plays in determining variability of populations (35). However, even
cannibalism can act to reduce or increase the variability of pop-
ulations, depending on the ecological context (35).
Our model does not include all of the details available for each

species. Although this lack of detail is compensated for by the
generality that arises from comparing a global sample of species,
our approach makes a number of necessary assumptions. Most
notably, we use species-level estimates for stock–recruitment rela-
tionships (23) and a range of potential mortality rates and thus
model a range of possible dynamics for each species, not specific
populations for each species. Individual populations of each spe-
cies will differ from the species-level mean, and so populations of
a given species will have a range of pattern of temporal variability
around what is presented here. Available evidence suggests that

Fig. 5. The effect of variability in fishing mortality, CV(F), on variability in
populations. Box plots represent the variability of populations across fish
species exploited at maximum sustained yield, F ¼ FMSY, for a range of CV(F).
Simulations under high [gray; CV(α) = 1.2] and low [white; CV(α) = 0.4]
recruitment variability are shown. For both scenarios, CV(Mp) = 0.1, and
Cor(α, Mp) = 0.
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among-population variability in reproductive rates is not suffi-
ciently large tomarkedly change our conclusions (Fig. S1), and our
simulations span published parameter ranges. With additional
data, estimates of α and Mp will improve, but our results are very
robust to deviations from the literature values used here.
We assume that fisheries remove mature biomass and not

juvenile biomass (Eqs. 2 and 6). Harvesting individuals before
they reproduce is generally a poor management strategy. One
group in particular, the Pacific salmon, violates this assumption.
Pacific salmon die immediately after spawning, and therefore
fishing mature, postspawning individuals is impossible. We dis-
cuss the consequences of the harvest of juveniles in salmon and
other species in SI Text (Alternative Models of Fishing).
A final assumption of our model is the structure of environ-

mental variation. We examine a range of environmental vari-
ability, from modeling sequential years independently (3) to
including a positive lag-one autocorrelation in the environment.
Previous investigators have shown that autocorrelation in the
environment or in harvest rates can have important effects on
the persistence, variability, and yield of populations (12, 34, 36,
37) (Figs. 2 and 4). However, for most systems empirical esti-
mates of environmental autocorrelation structure are poorly
documented (38). Additionally, the mechanisms driving auto-
correlation in vital rates remain opaque, so although we can
predict the general consequences of autocorrelated vital rates,
the relative contribution to population variability from environ-
mental autocorrelation remains uncertain.
Our study makes strong predictions about the drivers of tem-

poral variability. All of the parameters have straightforward bi-
ological interpretations, so it should be easy to modify this model
to account for the detail available for particular species. Further,
our results motivate analyses of existing data, particularly the
temporal autocorrelation structure of vital rates and correlation
in vital rates between life stages. A notable aspect of our model is
that many of the parameters modeled here are poorly docu-
mented natural populations. Generally, researchers have focused
on estimating the means of α, Mp, and F and to a lesser extent,
understanding variability of α. However, variances of Mp and F
and covariation among these parameters are virtually unknown.
This is not for a lack of desire or effort; extracting estimates of
vital rates from time series data remains an extremely difficult
biological and statistical challenge. Our results emphasize the
value of understanding vital rate variation and covariation for
population dynamics and natural resource management.

Methods
Model. In many fish species, complicated life cycles can be simplified to two
distinct stages: an immature juvenile stage and mature adult stage. Let Bt

denote the biomass of mature fish in a population at time t (nominally
years) and R(B) be a function that governs the recruitment of new individ-
uals to the mature stage. Production models, where the state variable is
biomass instead of individuals, are uncommonly used outside of fisheries
biology. However, such models yield similar results to those that model the
number of individuals in many cases (39–41). Assuming that density de-
pendence acts only on the juvenile, recruiting class of individuals (25),
a general discrete time model for fish populations is

Bt ¼ Bt −1e− Z þ RðBt −1Þ ≡ gðBtÞ [2]

where Z is the total instantaneous mortality rate for mature biomass,
decomposed into natural mortality (Mp), and fishing mortality (F), so that
Z = Mp + F. One classical and flexible recruitment function is the two-
parameter Ricker function (30, 42),

RðBtÞ ¼ αBte− βBt : [3]

Here, α is the maximum per capita reproduction rate and is the slope of the
stock–recruitment relationship when the population is at very low abundance
and β controls density-dependent mortality near equilibrium abundance. The
Ricker is distinguished by its potential for strong overcompensatory re-
cruitment as spawning biomass increases, absolute recruitment can decline

(30). Given this potential for overcompensation, it is not surprising that this
and related models are among the most frequently used models for in-
vestigating dynamic behavior of natural populations (2, 3). For example, Eq. 2
with Z = ∞ was used by Anderson et al. (21) to explore how fishing may
magnify fluctuations due to nonlinear dynamics.

The steady-state biomass, B0, for Eq. 2 is either B0 = 0 or

B0 ¼ 1
β
log

 
α

1− e− Z

!
[4]

As Z → ∞, B0 →
1
β
logðαÞ; in the limit Eq. 2 can be viewed as the dynamics

of a semleparous species but for finite values of Z as an iteroparous species.
We discuss alternative formulations of fishing morality in SI Text (Alternative
Models of Fishing).

At the steady state given by Eq. 4:

g′ðB0Þ ¼ 1− log
�

α
1− e− Z

��
1− e− Z

�
: [5]

Thus, the stability condition jg′ðB0Þj<1 is determined by the ratio of α to Z
but does not include the density-dependent parameter β (23, 41). When
jg′ðB0Þj> 1, cyclic or chaotic dynamics around B0 occur.

A more general form of Eq. 2 that accounts for a lag of τ time units be-
tween reproduction and recruitment to mature biomass is:

Bt ¼ Bt − 1e−Z þ αBt − τe− βBt − τ : [6]

We used simulation to calculate the stability surface at B0 for τ > 1 (SI Text,
Simulation Details). Because the discrete Ricker model is only one of many
possible production models, we analyze a second model, the Deriso-Schnute
model (43) in SI Text to assess the sensitivity of our results to the assumptions
of the Ricker (Alternative Production Models).

Stability Conditions for Fish Populations. We collected estimates of α, Mp, F,
and τ for a globally representative sample of exploited fish species. We
mapped published parameter estimates from 45 fish species representing
222 fish stocks onto the theoretical stability results and determined whether
the empirical parameter estimates indicated steady-state or fluctuating dy-
namics (deterministic cycles or chaos) for each species. We performed this
analysis in the absence (Z = Mp) and presence (Z = Mp + F) of fishing mor-
tality to ask whether the addition of fishing mortality changed the de-
terministic stability profile for fish species. To control for within-species
variation in fishing mortality, we examined each population at a harvest rate
that produces maximum sustained yield (F = FMSY; SI Text, Sources of Data).

Environmental Variation. We used analytic and simulation approaches to
assess the effect of temporal variation in reproductive and natural mortality
rates on temporal variation in the absence of fishing mortality. For both
approaches we regard the maximum reproductive rate (α) and natural
mortality (Mp) as random variables with respective means, α and Mp, var-
iances, Var(α) and Var(Mp), and correlation, Cor(α, Mp). We use CV as our
metric of variability throughout this article because it is nondimensional and
thus enables comparisons among populations or species with differing ab-
solute numbers (16, 18, 44). Because β does not affect the deterministic
stability properties of our model and only scales the steady-state biomass
(Eq. 4), we treat β as a constant. We were interested in the effect of corre-
lation between the parameters because this interaction indicates how re-
cruit and adult stages respond to a shared environment. Given that
interactions between juvenile and mature individuals within a species can be
complex (33, 45) and that the two stages’ response to a shared environment
may be similar or different, we explored correlations between α and Mp

from strongly negative (i.e., years of high recruitment occur in years with
low adult mortality and the converse) to strongly positive (i.e., low re-
cruitment years cooccur with years of low adult mortality and the converse).

We used the δ method (44, 46) to approximate the expected value, var-
iance, and CV of the steady-state biomass [E(B0), Var(B0), and CV(B0), re-
spectively] as a function of the variability in and correlation between α and
Mp (SI Text, Delta Method). In addition, we conducted a series of stochastic
simulations under a range of parameter combinations of the means, var-
iances, and correlation of α and Mp. Our simulations spanned plausible
values for α (0.01–15) (23) and Mp (0.01–2). We also considered the semel-
parous case, Mp = ∞. We assume that both α and Mp have uncertainty that
follows a lognormal distribution (18). We bracketed published estimates of
temporal variability of α by simulating populations with CV(α) of 0.2–1.5
(47). In fish populationsMp is often assumed to be constant (40). However, in
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nature it must vary (11). We simulated a biologically plausible range of CV
(Mp), (0.001–1.0) and considered a range of Cor(α, Mp) from −0.7 to 0.7
(SI Text, Simulation Details).

We repeated these analyses under three scenarios of temporal autocorre-
lation.Wedenote the lag-oneautocorrelationof vital rates asϕ.Weperformed
simulations for temporally uncorrelated and two levels of autocorrelated vital
rates (ϕ = 0, 0.4, and 0.8, respectively; SI Text, Simulation Details).

Interaction Between Environmental Variability and Fisheries. Using our global
survey of fish data (Table S1), we used simulation to compute how CV(B)
changed in response to the joint effects of environmental variation andfishing
mortality. We simulated each species using Eq. 6 and available parameter
values (Table S1). Because fishingmortality varies among stocks within species,
we do not attempt to make stock-specific predictions about the effect of past
fishing on fluctuations. Rather, we use simulation to ask, how is fishing at
maximum sustainable yield FMSY expected to affect thefluctuation of different
species under a range of environmental variation scenarios? We follow ref. 41
and assume FMSY = Mp and simulate each species at both high and low esti-
mates of Mp in the absence and presence of fishing.

One of the great challenges in fisheries is estimatingmortality rates and, in
particular, the temporal variability of mortality rates: “It is not that difficult

to estimate Z but it is very hard to partition Z into F and M.” (ref. 48, p 202).
Most stock assessments avoid this difficulty by not attempting to jointly
estimate F and Mp. Instead, the common approach is to specify Mp as
a constant (either estimated or fixed a priori) and estimate F for each year.
Unfortunately, this fitting procedure eliminates the possibility of estimating
the variability of each mortality rate component; as a fixed constant Mp has,
by definition, no temporal variability. Further, most published estimates
of F contain both estimated fishing mortality and the variability of natural
mortality around its estimate and therefore are likely biased. With these
limitations in mind we used published estimates of variation in F to ap-
proximate variability of total mortality and performed simulations to assess
the general consequences of variable fishing mortality for the variability of
population biomass (Table S2; SI Text, Simulation Details).
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