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Measuringprotein interactions is key to understanding cell signaling
mechanisms, but quantitative analysis of these interactions in situ
has remained a major challenge. Here, we present spatial intensity
distribution analysis (SpIDA), an analysis technique for image data
obtained using standard fluorescence microscopy. SpIDA directly
measures fluorescent macromolecule densities and oligomerization
states sampled within single images. The method is based on fitting
intensity histograms calculated from images to obtain density maps
of fluorescent molecules and their quantal brightness. Because spa-
tial distributions are acquired by imaging, SpIDA can be applied to
the analysis of images of chemically fixed tissue as well as live cells.
However, the technique does not rely on spatial correlations, free-
ing it from biases caused by subcellular compartmentalization and
heterogeneity within tissue samples. Analysis of computer-based
simulations and immunocytochemically stained GABAB receptors
in spinal cord samples shows that the approach yields accurate
measurements over a broader range of densities than established
procedures. SpIDA is applicable to sampling within small areas
(6 μm2) and reveals the presence of monomers and dimers with
single-dye labeling. Finally, using GFP-tagged receptor subunits,
we show that SpIDA can resolve dynamic changes in receptor olig-
omerization in live cells. The advantages and greater versatility
of SpIDA over current techniques open the door to quantificative
studies of protein interactions in native tissue using standard fluo-
rescence microscopy.

homodimerization | quantitative immunocytochemistry | fluorescence
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Cell-signaling mechanisms are regulated by protein–protein
interactions and their trafficking to different cellular com-

partments. Our ability to unravel the complex molecular mech-
anisms of cell function, thus, relies critically on the development
of quantitative techniques that can measure the density of pro-
teins in different cellular compartments along with their oligo-
merization state and interactions (1). To date, such quantifica-
tion has remained a daunting challenge when it comes to in situ
(animal intact tissue) studies. Several optical methods have been
developed in recent years based on fluorescence fluctuation
spectroscopy (2–6) and resonance energy transfer (RET) (7, 8),
but they each have a number of constraints that limit their use
for in situ analysis. For example, densities and oligomerization
states can be measured using a photon-counting histogram
(PCH) (3), fluorescence intensity distribution analysis (FIDA)
(4), or fluorescence correlation spectroscopy (FCS) (9) by ana-
lyzing temporal fluorescence intensity fluctuations in time ex-
cited from a stationary laser beam focal volume. For such time-
dependent approaches, molecules must undergo diffusion or
flow to be detected, and hence, the methods cannot be applied to
fixed tissue samples. Image correlation spectroscopy (ICS), an
extension of FCS to the spatial domain, can overcome some of
those limitations (6). However, with ICS, samples with spatial
fluorescence intensity discontinuities introduce artifacts in the
spatial correlation functions that result in systematic errors in the

measurements (10). Approaches based on RET have proven to
be powerful, because they directly reveal protein interactions
within a 10-nm-length scale. However, lack of suitable fluores-
cent probes for in situ measurements make RET mainly ame-
nable to studies in expression systems (7), and furthermore, RET
does not provide information on protein densities or multimeric
organization beyond dimers, because multiple experimental
steps must be used to vary the donor to acceptor ratio. Alter-
native immunocytochemical analyses at the ultrastructural level
can quickly become impractical when performed on large tissue
areas and may introduce processing steps that limit their use for
detection of certain antigens.
We introduce spatial intensity distribution analysis (SpIDA),

which is based on spatial histogram analysis of fluorescence in-
tensities from images that can accurately extract information on
protein densities and aggregation states and is not significantly
perturbed by the inhomogeneities inherently present in real tissue
samples. The approach allows for dynamic measurements of re-
ceptor oligomeric states, densities, and cellular/tissue localization.A
unique advantage of SpIDA is that it is applicable to single images,
and therefore, it can be applied to measure protein interactions and
distributions in situ infixed tissue samplesusingfluorescent antibody
labeling. However, the technique remains compatible with live cell
analysis using fluorescent protein expression systems.

Theory
The SpIDA technique is based on fitting super Poissonian dis-
tributions to intensity histograms calculated from confocal laser
scanning microscopy (CLSM) images of cells to measure num-
bers of fluorescent molecules and their quantal brightness. It is
inspired by the temporal PCH approach (3), but it is applied to
the spatial domain, enabling measurements on single images
collected on microscopes with analog detectors. The intensity
histogram simply reports the numbers of pixels for each intensity
calculated from an imaged region of interest (ROI). The pixel
intensity in a CLSM image is the integrated fluorescence from
within the beam focal volume at a given position. Histogram-
fitting functions are then calculated by computing the fluores-
cence intensity of all possible configurations of n particles in the
beam focal volume. Then, the values obtained for each of these
possible particle configurations are weighted by their probability
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considering a Poisson distribution of particles in space analogous
to what is done in PCH (3).
Let I(r) be the illumination intensity profile of the excitation

laser and ε be the quantal brightness of a single fluorescent par-
ticle. In a noise-free situation, the probability of observing an in-
tensity of light k (assumed proportional to the number of photons
emitted) by one particle of brightness ε is given by (Eq. 1)

ρ1ðε; kÞ ¼
ð
δðε·IðrÞ− kÞdr: [1]

For two particles, ρ2 is the convolution of the average configu-
ration for one particle (Eq. 2),

ρ2ðε; kÞ ¼ ρ1ðε; kÞ⊗ ρ1ðε; kÞ; [2]

and recursively for n particles (Eq. 3),

ρnðε; kÞ ¼ ρ1ðε; kÞ⊗ ρn− 1ðε; kÞ: [3]

The final histogram can be calculated by weighting each density
configuration with its proper probability assuming a Poisson
distribution. The fitting function becomes (Eq. 4)

Hðε;N; kÞ ¼
X
n

ρnðε; kÞ· poiðn;NÞ with ρ0ðε; kÞ ¼ δk;0: [4]

H is then normalized over all of the intensity values so that the
integral over k is unity. With the normalized functions, the two
fitting parameters in Eq. 4 are the fluorescent particle density
(N particles per laser beam-effective focal volume) and the quan-
tal brightness (ε intensity units in iu per unit of pixel integra-
tion time).
Usually, the fluorescence intensity is measured using analog

photomultiplier tubes (PMTs) on CLSMs, and the number of
collected photoelectrons is a function of the polarization voltage in
contrast to PCH, where the ε has units of photon counts per sec-
ond. PMTs broaden the signal variance, but this broadening can be
characterized and corrected for in the analysis, as shown below.
Given an image time series, SpIDA can determine the ag-

gregation state of the fluorescent particles in time and space. The
first step is to measure the monomeric quantal brightness ε0.
Then, for a mixture of monomers and dimers, fitting the data with
a one-population model (Eq. 4) will yield an intermediate value of
ε between ε0 and 2ε0, indicating that a higher-order model must to
be used.
We refer to a population with ε= 2ε0 as the dimer population.

In contrast to RET techniques, SpIDA does not give insights on
the distance between the fluorophores labeling a dimer, and
therefore, particles separated by 5 or 50 nm are treated the same
way provided that the interparticle distance is constant and
within the point-spread function (PSF) spatial resolution. Thus,
SpIDA cannot reveal direct protein–protein interactions. How-
ever, unlike RET-based techniques, where nonspecific RET
occurs at densities >1,000 particles/μm3 and where measurable
signals require very close proximity of donor and acceptor (8),
SpIDA can detect protein associations over distances >10 nm
and can differentiate between monomers and oligomers at high
densities of randomly distributed particles [e.g., >10,000 par-
ticles/μm3 or an average distance of <30 nm, assuming sufficient
signal to noise ratio (S/N)].
A population of true dimers can be differentiated from a pop-

ulation of single monomers of two times the density by the dif-
ference in the intensity fluctuations. Even if the mean intensities
for those two cases are equal, the histograms will be different, and
SpIDA will differentiate them.

Two Population Image Histograms
Two populations can be either spatially segregated, which leads
to visible edge boundaries, or spatially mixed. When two pop-
ulations are spatially segregated, the histogram of the image is

the sum of the two independent histograms for each population
(Eq. 5),

Hðε1;N1; A1; ε2;N2; A2; kÞ ≈ A1·Hðε1;N1; kÞ þ A2 ·Hðε2;N2; kÞ;
[5]

where Ai, Ni, and εi are the parameters of Eq. 4 for the ith
population. The two sides of Eq. 5 are not strictly equal because
of the contribution of the edge boundary between the two pop-
ulations. Indeed, this edge introduces a distortion in the distribu-
tion. However, because the technique does not rely on correlations,
this error decreases as the ratio of the edge length to total area
decreases with larger ROI sampling. In contrast, for correlation-
based methods such as ICS and FCS, the distortions introduced
when analyzing populations segregated in space and time cannot
be compensated for by increasing the ROI.
When the populations are mixed within the same region in

space, the total histogram becomes the convolution of the two
individual distributions (Eq. 6):

Hðε1;N1; ε2;N2;A; kÞ ¼ A ·Hðε1;N1; kÞ⊗Hðε2;N2; kÞ: [6]

Eq. 6 can be used when there is a mixture of more than one
oligomerization state or when significant autofluorescence occurs,
which is often the case with tissue samples.

Results
Validation of SpIDA Using Simulated Data. Single oligomeric state
population. To establish the sensitivity and detection limits of
SpIDA for images containing a single oligomeric state pop-
ulation (i.e., single ε), computer-simulated datasets of multiple
images with known densities, No, and brightness values, εo, and
their histograms were generated and fit to single-population
distributions (Eq. 4 and Fig. 1A).
We first determined the minimum ROI necessary to obtain

accurate and precise estimates of No and εo. The density esti-
mates and their deviations obtained with SpIDA were plotted as
a function of ROI in units of laser beam areas (BAs) for simu-
lated images containing on average 10 monomeric particles per
BA. For any sample size, the technique provided accurate esti-
mates (Fig. 1E). A precision of >80% was obtained if at least 50
BAs were sampled. In practice, an image region of 128 × 128
pixels was needed to obtain a statistical sampling error of 20%
for a real image obtained using a Gaussian beam with an e−2

radius of 10 pixels (Fig. 1E).
To establish the dynamic range of the technique, we then

conducted simulations for densities ranging from 1 to 10,000
particles per BA. The technique yielded accurate measurements
over the entire range of simulated densities. Thus, SpIDA is not
biased by high-density conditions assuming detection above noise
background. For a typical sampling condition using a diffraction
limited-beam focus with a radius of 200 nm, 1,000 particles/BA
represents >10,000 particles/μm2, which is well beyond typical
protein densities found in native cells.
Two oligomeric state populations. To determine the accuracy and
precision of SpIDA to measure values from heterogeneous olig-
omer populations, we simulated images with two species of dif-
ferent ε (ε1 and ε 2), each with variable densities (N1 and N2). We
simulated either spatially segregated or intermingled (mixed)
populations (Fig. 1 B–D). SpIDA yielded unbiased values with
<10% error for sample sizes >50 BAs (Fig. 1 E and F) and <5%
error for 500 BAs. When distinct populations were unevenly rep-
resented within a sample, we obtained accurate measurements for
both populations when the dimer density fraction was within the
range of 0.1–0.85 (Fig. 1G). Finally, for distributions segregated in
space, SpIDA yielded unbiased measured values (<10% error) for
populations occupying >8% of the sample region (Fig. 1H).

Potential Sources of Error. Effect of sample heterogeneity. Hetero-
geneities occur in biological tissue, where cells can contain
microdomains and protein clusters as well as gradients across
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subcellular compartments, and these have the potential for bi-
asing measurements. In the case of clustering or microcom-
partments (e.g., fine neuronal dendrites), a mask can be used to
select areas with distinct intensities in the image. Using this
approach, SpIDA can be applied to measure accurately different
densities of particles inside vs. outside the masked area (Fig. S1
A–I). For gradients, by modifying the sample area to cover a
smaller fraction of the gradient, it was possible to minimize es-
timation bias to <5% (Fig. S1J). In practice, this corresponds to
adapting the sample area to a region where the gradient is not
visible by eye (Fig. S1H). Biases caused by spatial heterogeneities
in distributions can, therefore, be minimized by adjusting the
sampling strategy to the features of the image, which represents
a significant advantage of SpIDA over correlation-based tech-
niques like ICS. This is because SpIDA does not calculate cor-
relation functions, making it compatible with a mask-based
sampling strategy (Fig. S1 K–P has illustrations of distortions in
the correlation function). Thus, SpIDA can be applied more
robustly to analyze images that contain significant heterogeneity
because of cell morphology or boundaries of fluorescence la-
beling in ramified cells (e.g., neurons), which is often the case
with immunolabeling in tissue sections.
Impact of detector properties, signal strength, and noise. SpIDA is
based on the assumption that the measured intensity is linearly
proportional to the photon counts. We, thus, first confirmed that
the response of our PMT was linear over the range of intensity
used in our experiments (0–2,000 iu) (Fig. S2A). To properly
model the measurement in a real experiment, we must include
the noise characteristics of the light detector in the fitting func-
tion. For this, we empirically determined the inherent noise over
the entire output range of the PMT for our system (Fig. S2B).
The SpIDA histograms incorporating this detector noise for one
or two populations can be obtained assuming a Gaussian noise
function at all intensities (Eq. 7):

H′ðε;N; kÞ ¼
X
k′

Hðε;N; k′Þ ·
 
e

− ðk− k′Þ2
2σðk′Þ2

,X
k′′

e
− ðk′′− k′Þ2
2σðk′Þ2

!
: [7]

Replacing each value in the histogram with a normalized Gaussian
centered at the intensity k′ with variance σ2(k′) corrects the final
histograms for PMT noise. Plots of histograms generated by Eq. 4
(without noise) and Eq. 7 (with noise) for the same ε and N show
that the data are best fit with Eq. 7 (Fig. S2 C and D). Similar noise
properties can be measured for other types of detectors, making
SpIDA compatible with CCD-based systems such as total internal
reflection fluorescence (TIRF).
Impact of signal strength. We performed additional simulations to
assess the accuracy of SpIDA as a function of ε. Given the noise
characteristics of our PMT (Fig. S2B), the minimal ε needed to
obtain accurate estimates with the analysis was 6 iu (Fig. S2E).
Thus, to ensure negligible bias resulting from low ε, in each ex-
periment, PMT parameters and laser power were set to achieve an
equivalent ε > 20 iu/pixel dwell time while remaining in the
linear regime.
Impact of autofluorescence. To investigate how autofluorescence
affects the accuracy of SpIDA, we simulated images containing
background signal. Applying SpIDA under these conditions but
assuming a single-population model yielded values with >95%
accuracy for S/N > 4 (Fig. S2F). Empirical measurements of S/N
achieved with our labeling approaches ranged from 10 to >50
(Fig. S3). Therefore, the impact of autofluorescence was con-
sidered negligible in these studies.
Effects of distributions in ε. The ε-value reflects the response of
a single fluorescent molecule (e.g., GFP) or a group of fluorescent
moieties attached to a single probe (e.g., labeled antibodies). In
the case of labeled antibodies, the total number of fluorophores
per antibody can vary, thus yielding a greater SD for ε. However,
the S/N may improve by increasing the number of fluorophores
per antibody. To examine the impact of a distribution in ε, we
simulated probes having dye labels that followed a Poisson dis-

Fig. 1. Validation of SpIDA using computer simulated data. A–D show sim-
ulated images. (A) A single-point emitter population, with No = 10 particles/
BA and εo = 100 iu; the fit to Eq. 4 yieldedNSpIDA = 9.6 particles/BA and εSpIDA =
104 iu. (B) Two intermixed populations made of monomers and dimers. NoM

and NoD = 10 particles/BA, with εo = 100 iu. The fitted distribution to Eq. 6
(convolution of two independent populations) yielded NM-SpIDA = 9.6 with εM-

SpIDA = 102 iu and ND-SpIDA = 10.2 particles/BA with εD-SpIDA = 198 iu. (C) Two
monomeric (εo = 100 iu) populations segregated within equal area regions
(left and right), withNoL = 5 andNoR = 15 particles/BA. Thefit to Eq. 5 returned
NL-SpIDA = 5.3 particles/BA with εL-SpIDA = 93 iu and NR-SpIDA = 14.5 particles/BA
with εR-SpIDA = 102 iu. (D) Twomonomeric populations segregated within two
regions (left and right) that differ in area by a factor of four (100 and 400 BA,
respectively). NoL = 5 and NoR = 15 particles/BA. The histogram fit to Eq. 5
returned NL-SpIDA = 4.5 with εL-SpIDA = 109 iu and NR-SpIDA = 14.3 particles/BA
with εR-SpIDA = 103 iu. (E and F) Accuracy of SpIDA for one- and two-
population images as a function of sample size (number of BAs). (G) Accuracy
of SpIDA applied to images of monomer/dimer mixtures while varying the
fraction of dimers. Fixed image size of 1,000 BAs was chosen for these simu-
lations. The monomer density was fixed at 50 monomers/BA, whereas the
dimer density varied from 1 to 1,000 dimers/BA. (H) Accuracy of SpIDA applied
to segregated population images. The total image size was fixed to 1,000 BA.
Each data point was obtained as the mean from analysis of 100 separate
simulated images, and the error bars represent the SDs.
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tribution (11) with mean μ for the number of dyes per probe, and
we generated images with varying density from 1 to 100 particles/
BA. Under such conditions, applying SpIDA without correcting
for the distribution of ε yields underestimated densities relative to
the set values (Fig. S2G). However, for μ> 6, the error on the fits is
<15%. Furthermore, the estimates are always linearly related to
density, which means that ε is constant at all densities for a given
labeled probe. Thus, although a correction for the distribution
could be incorporated into SpIDA (Eq. 4), it is not necessary when
using the same probe across samples.

Measurement of Oligomerization States in Tissue Samples. We then
sought to test whether, under experimental conditions, SpIDA was
able to reveal receptor oligomerization. To verify the applicability
of the technique for different combinations of oligomeric states,
we used a system where we could control the subunit labeling for
monomers and dimers. For this, we analyzed the densities and
aggregation states of a G protein-coupled receptor (GPCR), the
GABAB receptor, and a known heterodimer (12) with a B2 subunit
that seems linked to trafficking of the receptor, whereas its B1 sub-
unit contains the agonist binding site (13). By labeling with anti-
bodies specific for each of the two subunits alone or in combination,
we tested whether SpIDA measures the expected oligomerization
state. We applied SpIDA to sets of immunocytochemically labeled
sections of rat spinal cords, one with only B1 labeled, another with
only B2 labeled, and the third with labeling of both subunits. Each
time, theanalysiswasperformedon the same subregionof thedorsal
horn of the spinal cord (Fig. 2A). Thus, only the combination of
subunits labeled varied between the samples.
To obtain a measure of monomeric ε, we applied SpIDA to

regions where the tissue was exposed to a secondary fluorescent
antibody in absence of the primary antibody. Under these con-
ditions, the signal reflects a nonspecific and assumed monomeric
distribution of the secondary antibody. The analysis revealed an ε
of 3.2 ± 0.2 Miu/s (n = 11 samples from three rats). We also
conducted similar analysis after performing a complete immu-
nostaining, with primary and secondary antibodies, in a region of
the tissue section where there was only nonspecific labeling (no
receptor expression). In this region, the signal reflects a non-
specific and assumed monomeric distribution of primary anti-
body, which is detected by the secondary antibody (Fig. 2A). The
ε measured was 3.3 ± 0.7 Miu/s (n = 20 samples from five rats)
(Fig. 2C), which is the same as the value obtained with secondary
antibody alone within error (P > 0.5). This result indicated a
ratio of 1:1 for secondary to primary antibody binding, and the ε
value obtained for these controls served as the reference for
monomers to be used for subsequent analysis.
SpIDA was then applied to the labeled samples using a two-

population model, including the known monomeric ε. For samples
in which only one of two subunits was labeled, the analysis revealed
mostly monomers (Fig. 2 B, D, and E). In contrast, when labeling
both subunits through the two types of primary antibodies and re-
vealing them with the same secondary antibody, SpIDA detected
a significantproportion ofdimers (Fig. 2B andF). Furthermore, the
dimer to monomer ratio increased when the two subunits were la-
beled together, such that the estimated total number of proteins
(273 ± 12 per μm3; from 60 regions taken from five rats) was com-
parable with the sum of proteins detected with each antibody sep-
arately [127± 4 per μm3 for B1 (66 regions) and 113± 4 per μm3 for
B2 (79 regions) fora sumof240±8perμm3;P>0.1], confirming the
consistency of the analysis. Complementary ultrastructural immu-
nolabeling confirmed that the spatial distribution of the receptors
was well-approximated by a Poisson distribution (Fig. S4A).
These results indicate that the method is able to provide ac-

curate information on protein density and oligomerization in
fixed tissue sections using antibody labeling.

Measurement of Dynamic Changes in Oligomerization States in Live
Cells. To test the applicability of SpIDA to detect dynamic di-
merization of membrane receptors in live cells, we studied the
epidermal growth factor receptor (EGFR) labeledwithGFP that is

expressed in Chinese hamster ovary (CHO-k1) cells (Fig. 3A). It is
well-accepted that EGFRs exist mainly as monomers in the ab-
sence of EGF, but on ligand binding, the receptors homodimerize
(14, 15).
CHO-k1 cells expressing the EGFR-GFP were serum-starved

for 16 h to ensure a dominant distribution ofmonomeric EGFRon
the membrane surface. This cell line was found to express 600,000
receptors/cell (16). With this cell line, SpIDA recovered a density
of EGFR on the membrane of 220 ± 18 per μm2. In contrast, for
another cell line with 100,000 receptors/cell, SpIDA recovered
a density of 32 ± 9 EGFR per μm2 of membrane (n = 15 cells).
This corresponds to a ratio of 6.9± 2.5, consistent with the ratio of
EGFRs expressed by the two cell lines (16). Cell images were
obtained before activation with 20 nM EGF and 7 min post-
stimulation at room temperature (Fig. 3B). Although no clear
change was apparent by eye, SpIDA resolved the relative con-
tributions from the monomers and an emerging homodimer
population (Fig. 3B). There was no change in the total proteins
detected, indicating that changes in monomer density were not

Fig. 2. Detecting receptor oligomerization by immunocytochemistry in
native tissue by SpIDA. (A) CLSM image of a spinal dorsal horn section in
which only the GABAB1 subunits were detected by immunofluorescence. The
pixel size is 0.058 μm. ROIs of analyzed regions with nonspecific (primary
with secondary; NS) and specific labeling (S) are also shown; six regions per
section were analyzed. C–F show examples of histograms fitted for the four
types of samples analyzed with their corresponding fits and the best-fit
values. (B) Results of SpIDA applied to the section incubated with anti-
GABAB1 only, anti-GABAB2 only, and a mixture of the two antibodies. A total
of 125 regions was analyzed for the nonspecific labeling taken from the
three types of samples from five rats; 66 regions were analyzed for B1, 79
regions were analyzed for B2, and 60 regions were analyzed for both sub-
units combined. Error bars = SEM. **P < 0.01. (C–F) Examples of intensity
distributions and fits of data from (C) a region where the labeled protein is
not present (i.e., NS background), (D and E) samples where only one type of
primary antibody was used to label the proteins (anti-B1 and anti-B2, re-
spectively), and (F) a sample in which both types of primary antibodies were
applied (labeling the GABAB heterodimer).
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resulting from receptor internalization. Detection of dimers was
confirmed with Förster resonance energy transfer (FRET) meas-
urements in Swift et al. (17). EGF-induced dimerization occurred
even in the absence of clustering and internalization (14, 17). The
results show that SpIDA can resolve dynamic changes in receptor
oligomerization within living cells, showing the power of the
technique and its applicability to fluorescent protein expression
systems. Furthermore, because SpIDA yields values from single
images, it can be applied to series with few images, minimizing
photobleaching and phototoxicity problems. Further validation of
the quantitative nature of SpIDA is presented in Swift et al. (17);
receptor binding dose-response curves using dimerization as an
index of receptor activation from which conventional biochemical
parameters such as EC50 and maximum activation values were
calculated are shown to match those obtained from conventional
binding assays.
Effect of 2D vs. 3D sampling. It has been argued for FCS and PCH
measurements that, because 2D and 3D samples have differ-
ent random particle distributions, the analysis yields different
ε-values if one does not apply a correction factor, termed the
γ-factor (18) (Fig. 3 C and D). In contrast to temporal techni-
ques, we do not think that this correction for 2D bias is required
with spatial techniques, because cell surfaces are highly uneven
and the scan is unlikely to be perfectly perpendicular to the
membrane. Thus, the membrane position will significantly vary in
z within the PSF, because it is rastered across the cell surface,
generating spatial variations in 3D. To test our assumption, we
compared ε obtained from analysis of cells transfected with cy-
toplasmic vs. membrane-anchored monomeric GFPs (mGFP)
(19). SpIDA yielded the same ε in both cases (Fig. 3D). This was

also true for samples with up to 10-fold differences in expression
levels, confirming that a γ-factor correction is not necessary for
SpIDA measurements on cell membranes.
Effect of photobleaching. If photobleaching of monomeric fluo-
rophores occurs as a random stepwise loss of fluorescence (20),
SpIDA should report a decrease in density, but values of ε
should be unaffected. To test this, we imaged mGFP-expressing
cells or immobilized Alexa488 on coverslips during repeated
scans (Fig. S5 A and D). As expected, SpIDA yielded constant ε
and decreasing N (Fig. S5 C–F).

Discussion
Resolving Oligomerization in Native Tissue.Although SpIDA allows
detection of interacting molecules below the optical resolution
limit, it does not imply direct protein interactions (i.e., the
interactions may occur through intermediary proteins in a mul-
timolecular complex. RET methods can reveal direct protein–
protein interactions but would fail to detect interactions at dis-
tances >10 nm. SpIDA offers several advantages over previous
methods. Because measurements do not require protein dy-
namics, SpIDA can be used to analyze single images and hence,
fixed tissue samples. The fact that SpIDA was applicable to
conventional immunocytochemical analysis opens the door to di-
rect studies of protein oligomerization in native tissue, which is
difficult with existing analytical techniques. SpIDA is also more
versatile and more general than ultrastructural approaches. Con-
versely, other fluorescence-based methods of analysis of receptor
oligomerization in subcellular compartments mostly rely on ge-
netic engineering approaches and expression systems or protein
overexpression in native tissue. These approaches have limitations,
including altered functionality of engineered proteins and imper-
fect modeling of native conditions by expression systems (1).

SpIDA vs. RET. SpIDA and RET provide complementary in-
formation on oligomerization. Direct comparisons of the two
techniques are presented in ref. 17. SpIDA, nevertheless, presents
several advantages. First, in addition to providing direct in-
formation on protein densities, it can detect oligomerization using
a single fluorophore and can be used to measure homooligomeri-
zation. Second, SpIDA is not biased and limited by an increase in
protein expression levels as are RET approaches. The latter
requires a calibration to take into account spontaneous collisional
RETevents at high densities (8). Third, a negative result in anRET
experiment is not necessarily interpretable in the absence of
a positive control, showing that specific RET can be achieved with
the molecular constructs used, and furthermore, changes in probe
dipoles orientation because of conformation changes can yield
changes inRETefficiency, which can be erroneously interpreted as
dimerization. Fourth, SpIDA can be used to resolve mixtures of
oligomerization states within a single subcellular compartment,
which is nearly impossible to do with RET. Finally, in addition
to being applicable to conventional immunocytochemical ap-
proaches, SpIDA relies on conventional image acquisition tech-
niques such as confocal microscopy that are widely used in the life
sciences; it, therefore, does not require more specialized acquisi-
tion systems, such as photon counters, lifetime measurement sys-
tems, or hardware correlators.
Homo-FRET or energy migration and anisotropy measure-

ments have the advantage, compared with two-color FRET, of
being able to detect interactions using a single fluorophore. They
are not amenable, however, to use with fluorescent antibody
labeling and are subject to the same limitations as those exposed
above for two-color FRET.

Spatial vs. Temporal Analysis Approaches. SpIDA relies on spatial
sampling, and therefore, it provides information on density and
oligomerization states withinmultiple subcellular compartments in
parallel. This has advantages for dynamic studies of trafficking and
molecular interactions in live cells. Currently, PCHandFCSrely on
sampling single or a few points at a time, and therefore, they are not
easily amenable to parallelization. Furthermore, they are difficult

Fig. 3. Detecting receptor oligomerization in live cells by SpIDA. (A) Image of
CHO-k1 cells expressing EGFR-GFP before treatment with EGF. Boxes indicate
the ROIs that were analyzed. (B) Shift in the distribution of monomers to
dimers after the addition of EGF (20 nM; the experiment was performed at
room temperature). The error bars represent the SE taken from five meas-
urements. **P < 0.01 between monomers and dimers for the two cases. No
significant difference (P > 0.1) was found for the total number of proteins
measured. (C) Images of CHO-k1 cells expressing cytoplasmic mGFPs (mGFP-
Cyto) and membrane-targeted mGFP (mGFP-Memb). Two images of the same
cell are shown for the two different sample types at two heights in the z stack
(0 and 3 μm). (D) Histogram representing the values of the best-fit ε on cells
expressing mGFP on the membrane (2D) and cells expressing mGFP in the cy-
tosol (3D). The experiments were performed on both living and fixed cells.
For each bar, a minimum N = 20 was sampled. Error bars = SEM. Image size =
1,024 × 1,024 pixels. Pixel size = 0.092 μm. Step size in the z stack = 0.5 μm.
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to apply to the analysis of moving cellular compartments (e.g.,
migrating cells or growingneurites)when theseoccuron time scales
comparable with that needed to obtain a time trace. Amore recent
technique based on fluctuation moment analysis [numbers and
brightness (N&B) analysis] of pixels across a temporal stack of
images has been developed to extract density and quantal bright-
ness values (21). However, as with PCH and FCS, N&B relies on
repeated sampling in time, and therefore, it too is not suitable for
fixed samples; all of these temporal methods are sensitive to pho-
tobleaching. Although ICS, raster image correlation spectroscopy
(RICS) (5), and other techniques (22) also allow parallel meas-
urements inmultiple compartments, they remain highly limited for
tissue studies, because unlike SpIDA, they are strongly perturbed
by inhomogeneous particle distributions. More importantly, those
techniques only provide average information on oligomermixtures
(6) and thus, do not yield information on monomer to dimer ratios
as achieved with SpIDA.
A comparison summary between SpIDA and other fluorescent

techniques is presented in Table S1.

Immunocytochemical vs. GFP Labeling. In principle, SpIDA is ap-
plicable to samples prepared using any of the standard fluores-
cence labeling methods. However, the fact that it can be applied
to samples prepared by standard immunocytochemistry offers the
advantage that the quanta of fluorescence—the labeled secondary
antibodies—can be built from clusters of fluorophores, yielding
a stronger, possibly more stable signal that is less susceptible to
unwanted photophysics, such as blinking or stepwise bleaching
events. In a paired submission (17), we show an example of ap-
plication of SpIDA to monitor receptor activation and trans-
activation in situ.

Materials and Methods
A summary of experimental techniques is given here, and full methods are
presented in SI Materials and Methods. All of the simulated images were
generated and analyzed by means of custom-designed software (A.G.
Godin; SpIDA routines can be downloaded from: www.neurophotonics.ca/
tools/software.html) and are described in SI Materials and Methods.

Cell Cultures. Stably transfected CHO-k1 cells containing EGFR tagged with
GFP (EGFR-GFP; gift from the Dr. Jovin Laboratory, Max Planck Institute for
Biophysical Chemistry, Göttingen, Germany) were prepared and maintained
as described in SI Materials and Methods. To avoid dimerization of EGFPs, we

used the monomeric A207K-mutant (mGFP) (19). Cells were transfected with
membrane-delimited (farnesylated) mGFP or regular mGFP, which distrib-
utes in the cytoplasm, using Lipofectamine 2000 (Invitrogen) as described by
the manufacturer.

Animals.All protocols were performed in accordancewith the guidelines from
the Canadian Council on Animal Care. Adult (250 g) male Sprague–Dawley
rats (Charles River) were anesthetized with Equithesin (6.5 mg chloral hy-
drate, 3 mg Na-pentobarbital in a volume of 0.3 mL i.p. per 100 g body
weight) and perfused transcardially with perfusion buffer followed by 4%
paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4, for 30 min as
described in detail elsewhere (23). Spinal cords were collected, postfixed for
2 h in the same fixative, and cryoprotected overnight in 30% sucrose in 0.1
M PB. The L4–L6 spinal cord segments were sectioned at 35 μm on a sledge-
freezing microtome (SM2000R; Leica).

Immunocytochemistry. Sections were pretreated for 1 h with 4% normal goat
serum (NGS) in phosphate buffer saline with 0.2% Triton (PBS+T) and then
incubated overnight at 4 °C in affinity-purified rabbit anti-GABAB1 (B17)
and/or anti-GABAB2 (B232) antibodies kindly provided by R. Shigemoto
Okazaki National Research Institutes, Okazaki, Japan (24) diluted 1:200 (3.3
μg·mL−1) or 1:1,000 (0.25 μg·mL−1), respectively, in PBS+T with 4% NGS. After
incubation, all sections were washed in PBS+T (four times for 5 min each)
and incubated in different wells for 2 h in a goat anti-rabbit IgG antibody
conjugated to Alexa488 at room temperature.

Imaging and Analysis. All of the imageswere obtainedwith anOlympus FV300-
IX71 (Olympus America) CLSM with a 60× plan-apochromatic apomorphine
(Apo) oil immersion objective (numerical aperture = 1.4). An optimal setting of
the laser power and PMT voltage was chosen to minimize pixel saturation and
photobleaching. TheCLSM settingswere kept constant for a given sample type
and its controls (laser power, filters, dichroic mirrors, polarization voltage, and
scan speed) so that valid comparisons could be made between measurements
from different images. Acquisition parameters were always set within the
linear range of the detector, which was determined by calibration.
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