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Abstract: For many pathogens with environmental
stages, or those carried by vectors or intermediate hosts,
disease transmission is strongly influenced by pathogen,
host, and vector movements across complex landscapes,
and thus quantitative measures of movement rate and
direction can reveal new opportunities for disease
management and intervention. Genetic assignment
methods are a set of powerful statistical approaches
useful for establishing population membership of individ-
uals. Recent theoretical improvements allow these tech-
niques to be used to cost-effectively estimate the
magnitude and direction of key movements in infectious
disease systems, revealing important ecological and
environmental features that facilitate or limit transmission.
Here, we review the theory, statistical framework, and
molecular markers that underlie assignment methods, and
we critically examine recent applications of assignment
tests in infectious disease epidemiology. Research direc-
tions that capitalize on use of the techniques are
discussed, focusing on key parameters needing study
for improved understanding of patterns of disease.

Introduction

For many infectious diseases, transmission is strongly influenced

by pathogen, host, and vector migration across complex landscapes

[1]. This is especially true for pathogens with environmental stages,

or those carried by vectors and intermediate hosts. The spread of

rabies, for instance, has been shown to be regulated by rivers that

act as barriers to host movement [2], and the onset of diseases such

as measles or foot-and-mouth disease is governed in part by human

or animal hosts migrating across heterogeneous landscapes [3,4].

Disease persistence, synchrony, and establishment are known to be

modified by host migrations between populations [5–9], and thus

direct measures of migration rates in real transmission systems are

very much needed to optimize disease management and improve

intervention campaigns.

Genetic assignment methods can provide such measures; they

are a set of powerful statistical approaches that, at their most basic,

can be used to establish population membership of individuals.

When applied to organisms distributed among spatially distinct,

interconnected populations, the techniques can be used to derive

quantitative estimates of movement across a network, and

determine the degree to which landscape features aid or impede

movement. Genetic assignment methods have, for the most part,

been limited to applications in ecology and conservation biology.

This is despite their utility for estimating the magnitude and

direction of key movements in infectious disease systems, where

they could reveal important environmental and ecological features

that facilitate or limit the spread of disease with important

implications for control.

For example, estimates of pathogen transport can be used to

design more efficient anthelmintic treatment campaigns for

important macroparasites of humans [10], and where environ-

mental change is occurring, estimates of the associated change in

migration can aid in the identification of new risks that arise

from vectors and hosts moving effectively closer than they have

been historically [1]. Genetic assignment tests (ATs) have

potential for estimating these pathogen, host, and vector

movements, and recent improvements in theory underpinning

ATs have increased their utility at fine spatial and temporal

scales, while overcoming the cost, time, and scale limitations of

traditional approaches such as mark-recapture experiments [11].

Here, we discuss the molecular and statistical methodologies that

make possible the application of ATs. We review current

applications of ATs in infectious disease epidemiology, and

discuss research directions that are positioned to capitalize on

use of the techniques. We use the term ‘‘migration’’ to en-

compass the movement of human hosts, the dispersal of animal

hosts and vectors, and the transport of pathogens in environ-

mental media (e.g., flowing water).

Estimating Migration Rates

While many free-living pathogens, vectors, and intermediate

hosts are capable of moving several kilometers, their specific

mobilities are rarely estimated or incorporated into efforts to
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control disease [10,12]. Historically, ecological migration rates

were estimated using direct measures such as mark-recapture and

radio tagging, which obviously present limitations when applied to

small organisms, large populations with small numbers of

migrants, or organisms that are difficult to durably mark [13].

Indirect genetic methods are also available, such as inferring Nm,

the number of migrants exchanged between populations per

generation, using gene flow estimators based on Wright’s infinite

island model [14,15]. This approach makes a number of

simplifying assumptions, such as assuming symmetrical, constant

migration and constant population size, assumptions which were

partially relaxed with the development of coalescent-based

methods [16].

Coalescent theory describes the statistical properties of gene

trees under a standard demographic model (namely the Fisher-

Wright model). Present day samples of a non-recombining gene

can be seen as lying on a branch of a gene tree rooted at the most

recent common ancestor of the sample. Moving backward in time

from each branch, genes coalesce until the common ancestor is

reached, and in this way, present-day samples can be used to infer

the past, including past migration among mating populations.

Coalescent-based estimates of migration rates, obtained by

comparison of allele frequency distributions observed in popula-

tion samples, assume that all potential source populations have

been sampled and that populations have followed relatively simple

demographic progressions (constant size or deterministic expan-

sion) while experiencing constant migration [16,17]. Migration

rates obtained in this fashion reflect the effect of migration

occurring over long time scales, and do not reflect (i.e., are

insensitive to) contemporary changes such as interventions (e.g.,

vector control) and recent environmental change. ATs, through

the combination of highly variable genetic markers with Bayesian

statistical methods, allow the estimation of recent migration rates

that strongly reflect the influence of contemporary changes.

Assignment Tests
ATs use multilocus genotypes to identify the source population

of individuals that have migrated within the past several

generations [18]. Early ATs estimated the probability of an

individual’s multilocus genotype in relation to the frequency of

alleles at different loci in potential source populations. After all

sampled individuals were assigned, the migration rate between two

populations was estimated by dividing the number of identified

migrants by the sample size of the origin population [18–20]. A

notable recent Bayesian method [21] directly estimates migration

rates (and infers inbreeding coefficients and individual migrant

ancestries) by detecting the temporary disequilibrium in immi-

grants’ genotypes relative to the population under consideration,

while relaxing the assumption that genotypes within subpopula-

tions are in Hardy–Weinberg equilibrium. A related class of

clustering methods [19,22,23] aims to partition individuals into

genetically distinct subpopulations without prior assumptions

about population membership; i.e., the methods calculate the

probability that each individual genotype originates from one of K

populations, with K, the number of subpopulations, among the

inferred parameters.

Bayesian models (also known as fully probabilistic models) provide

a convenient means to deal with complex (and inherently stochastic)

phenomena that determine the genetic properties of individuals and

populations [24]. Like other Bayesian approaches, Bayesian ATs

take the position that model parameters and data are random

variables with a joint probability distribution specified by a

probabilistic model. The model structure and parameters proposed

by Wilson and Rannala’s [21] notable recent method are described

in detail in Text S1. The data and parameters of the inference model

implemented in [21] are summarized in Table S1, and Figure S1

shows a probabilistic graphical model indicating the conditional

dependencies in [21]. Population assignment is a trivial task if there

are fixed differences (no shared alleles) between populations.

However, this is rarely the case: typically historical connections,

ongoing gene flow, and perhaps convergent evolution lead to the

sharing of alleles between populations. Consequently, computation-

ally intensive approaches are required to identify the likely source

population of any given individual (see Text S1). Software

implementations of Bayesian and maximum likelihood–based

methods for inferring migration and population clustering param-

eters are widely available (Table 1). The extent of population

differentiation, the number of individuals that can be sampled, the

number of loci, and the specific genetic markers and their

polymorphism, all interact in determining the power of any approach

[25]. Markers appropriate for ATs are reviewed in detail in Text S2,

and different classes of genetic markers and their corresponding

advantages and disadvantages are summarized in Table S2.

Application of ATs in Infectious Disease Systems

Recent infectious disease applications of ATs have estimated

pathogen, vector, and host dispersal characteristics in order to

explain patterns of transmission and better target control activities.

Here, we review four such applications.

Case 1: Chagas Disease
In the absence of a vaccine or effective theraputics, Chagas

disease control is largely dependent on elimination of the vector,

members of the genus Triatoma, using insecticides. The hema-

tophagous triatomines carry Trypanosoma cruzi, the protozoan

parasite that causes Chagas disease in much of Latin America. The

insects are present in sylvatic and peridomestic populations, with

transient and seasonal invasion of homes leading to blood meals

and transmission [26]. In the Mexican Yucatán, Dumonteil,

Tripet, and colleagues [26] evaluated the genetic structure of T.

dimidiata to assess dispersal of individuals, better understand

domestic infestation, and inform vector control. Insects were

sampled from domestic, peridomestic, and sylvatic populations,

genotyped at eight microsatellite loci, and analyzed using F

statistics and both Bayesian- and likelihood-based ATs [18,27].

The authors found that T. dimidiata is capable of dispersal over

large geographic distances in the Yucatán Peninsula (up to

280 km) as suggested by low population differentiation and weak

genetic structure. In this case, ATs provided a clearer picture than

conventional Fst, allowing for the identification of immigrants

even among populations with low genetic differentiation and no

detectable correlation between genetic and geographic distance

(isolation by distance). ATs indicated that 10%–22% of the insects

collected within homes were immigrants from the peridomestic

and sylvatic areas. Dispersal was detected in the opposite direction

as well, with several insects in peridomestic and sylvatic areas

having originated from populations within homes. The ecological

basis of genetic structure in this study provided dispersal

information that supports pesticide application and refuge removal

in peridomestic areas. This zone appears to serve as an important

‘‘transit area’’ between sylvatic and domestic populations,

contributing to household reinfestation after control, and largely

agreeing with the findings from a small study in Bolivia [28].

Case 2: Coccidioides Species
The Coccidioides soil fungi, found in arid zones of the

southwestern United States and northwestern Mexico, can cause
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community-acquired pneumonia and severe disseminated disease

(coccidioidomycosis) when inhaled by a vertebrate host [29].

Several western US states have seen dramatic increases in the

incidence of coccidioidomycosis (from 2.5 to 8.4 cases per 100,000

in California between 1996 and 2006, and from 21 to 91 cases per

100,000 in Arizona between 1997 and 2006), raising the need for

improved surveillance measures [30,31]. The diagnosis and

clinical management of coccidioidomycosis in areas such as New

York, where the disease is not endemic, pose unique challenges,

and the source of Coccidioides infections in these settings is poorly

understood. To improve molecular surveillance, identify sources of

infection, and allow the early detection and management of

outbreaks, Fisher et al. [32] used an AT to assign Coccidioides spp.

clinical isolates to their populations of origin. The application of

ATs to these organisms was complicated by their haploid, rather

than diploid, genome, requiring the authors to modify existing AT

methods.

More than 160 isolates from eight geographical populations of

Coccidioides immitis and Coccidioides posadasii were genotyped at nine

microsatellite loci. Isolates were both clinical and environmental in

origin, and spanned the worldwide distribution of Coccidioides spp.

Sixteen clinical isolates of unknown origin were obtained from

patients diagnosed in the nonendemic state of New York. Using a

modified AT procedure, 12 of these isolates were assigned to

source populations with high probability, most to a source that

matched the recent travel history of the patient. Thus, source

identification in this nonendemic area was able to detect common-

source infections. In two cases, however, travel history did not

match assignment, raising questions about whether genetic

differentiation was driven by host travel or pathogen dispersal;

either an incomplete travel history or exposure to an isolate that

had dispersed a great distance could explain the mismatches [32].

Case 3: Hosts and Vectors of Yersinia pestis
Yersinia pestis, the bacterium that causes plague, is readily passed

between wildlife and humans via flea vectors. In the plains regions

of North America, black-tailed prairie dogs (Cynomys ludovicianus)

live in high-density, communal colonies that favor the spread of

plague, making this species an important host for Y. pestis. Oropsylla

hirsuta is a flea very commonly associated with C. ludovicianus, and is

thought to contribute substantially to Y. pestis transmission [33].

Because fleas (and many other ectoparasitic disease vectors) rely on

their hosts for dispersal, quantifying host movement can aid in

understanding the spread of flea-borne diseases. In a study in the

northern US, Jones and Britten [33] investigated the role that

prairie dogs play in dispersing fleas infected with Y. pestis. The

dominant hypothesis in this transmission system, and many others,

is that host movements determine vector movements, and thus

concordance between host and vector population genetic charac-

teristics would be expected. The study used ATs, among other

genetic analyses, to test this hypothesis, sampling 112 prairie dogs

from six colonies in north-central Montana and genotyping them

at 14 microsatellite loci. At the same time, 84 fleas were collected

directly from prairie dog burrows and genotyped at seven

microsatellite loci. Genetic structure and variability were analyzed

using multiple methods, including the estimation of recent

migration rates of prairie dogs and fleas using the Bayesian

techniuque described in detail in Text S1 [21].

The authors found that the host and vector differed widely in

genetic structure: prairie dog hosts exhibited low intercolony

migration (eight of 30 intercolony migration rates showed

m$0.05), and the scale of their genetic neighborhood was on

the order of a typical colony size. In contrast, the vector was well

mixed, showing considerable migration between colony pairs (22

of 30 intercolony migration rates showed m$0.05) and limited

colony-level population structure. Because fleas and prairie dog

hosts sampled from the same locations show limited concordance

in population genetics, it is likely that prairie dogs are not the

primary means of O. hirsuta dispersal in these colonies. Thus, the

authors concluded that other hosts should be considered when

responding to plague outbreaks, as O. hirsuta occurs on a variety of

host species that may be important in dispersing Y. pestis–infected

fleas [33].

Case 4: Oral Rabies Vaccination of Racoons
The common raccoon (Procyon lotor) is widely distributed

throughout North and Central America, and is capable of

occupying a broad range of habitats in close proximity to humans.

P. lotor is also the most frequently reported rabid wildlife species,

and is a particularly important carrier of the rabies virus in the

mid-Atlantic and northeastern US. Because of the risk of

transmission of rabies to humans, the US Department of

Agriculture conducts routine oral rabies vaccination programs

targeting P. lotor and several other important wildlife species. In a

large and expensive annual program, recombinant virus vaccine is

delivered to P. lotor populations in the eastern US in attractive

baits. A key question in optimizing these oral rabies vaccine

programs is how geographic features (e.g., rivers, mountains, etc.)

can be used to better target delivery of baits along important P.

lotor dispersal corridors, reducing their virus trafficing potential. In

a study in southwestern Pennsylvania state, Root, Puskas,and

colleagues [34] used ATs to investigate which geographic features,

if any, hinder or enhance P. lotor dispersal, and thus can be used to

improve oral vaccination programs.

Table 1. Select software packages providing AT functionality, following Excoffier and Heckel [41].

Software Description Inference Framework References

BAYESASS+ Provides estimates of recent migration rates between populations
using multilocus genotype data

Bayesian, MCMC [21]

BAPS Assigns individuals to genetic clusters using a partition-based mixture model Bayesian [42,43]

GENECLASS Selects or excludes populations as origins of individuals using multilocus
genotype data

Bayesian, likelihood [44]

GENELAND Detects population subdivisions using multilocus genotype data,
accounting for the spatial location of sampled individuals

Bayesian, MCMC [45]

STRUCTURE Infers the presence of distinct populations, assigns individuals to
populations, and identifies migrants using multilocus genotype data

Bayesian, MCMC [19]

MCMC, Markov chain Monte Carlo.
doi:10.1371/journal.ppat.1002013.t001
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Live raccoons were trapped from five study sites distributed

along valleys separated by a high elevation ridge; the authors

aimed to test the hypothesis that the ridge isolated the populations

on either side. DNA from a total of 185 raccoons was genotyped at

nine microsatellite loci, and Bayesian clustering [19] and ATs [18]

were used to assess the number of genetic clusters and infer the

population of origin of P. lotor specimens. Specimens from all five

study sites were found to compose a single genetic population, and

few animals were assigned to their population of origin, with many

assigned to sources across the ridge (i.e., sampled from one valley,

but assigned to the valley on the opposite side of the ridge; [34]).

The results indicate that neither ridge nor valley features in this

setting influence P. lotor dispersal, as individuals can transcend

ridges and can readily traffic virus between (and within) valleys.

Thus, ridge and valley features may not be suitable for use in

optimizing the geographic placement of oral vaccine baits, despite

the finding in other settings that major rivers and mountains may

constrain P. lotor dispersal [34].

Discussion

Contemporary movements of hosts can contribute to increased

frequency and intensity of malaria epidemics in some regions

[35,36], while transport of free-living pathogen stages can

determine the effectiveness of strategies for reducing schistosomi-

asis infections [10]. Thus, quantifying these movements is of great

interest to the study of complex epidemiological systems, and the

routine use of ATs for this purpose is anticipated [24].

Among the epidemiological methods that can benefit from ATs

are spatial models of infectious disease transmission, which

incorporate knowledge of the location, movement rate, and travel

direction of hosts, vectors, and pathogens to explain observed

patterns of transmission and evaluate intervention options. ATs

can provide a quantitative description of migration between

populations in transmission models, particularly in the context of

network models that explicitly represent the exchange of

individuals between populations [1]. Indeed, rigorous quantifica-

tion of movement between nodes has been called for in network

models [4,37], and ATs offer a powerful alternative to traditional

methods (e.g., mark-recapture) that are difficult to apply to these

systems.

Challenging epidemiological questions can be addressed by

ATs. The source of infection for recombining organisms (as

opposed to those organisms where genetic structure is principally

clonal) can be determined. As in the Coccidioides case, independent

loci can be used to estimate the relatedness between isolates and,

when combined with travel patterns of infected hosts, assignments

can be used to improve surveillance in nonendemic areas, leading

to the identification of common source cases that may have

otherwise gone undiagnosed [32]. Moreover, ATs can also provide

valuable confirmation (or refutation) that a particular host is

responsible for the spread of pathogens or vectors [33].

Another key epidemiologcal use for ATs is in assessing the

landscape determinants of disease spread. ATs make it possible to

formally test previously held beliefs about the role of specific

landscape features in governing the mobility of vectors, hosts, and

pathogens. Just as valleys and ridges were found not to govern the

movement of racoon vectors of rabies [34], conventional wisdom

on other landscape determinants of spread can give way to

quantitative evidence from ATs. For this to happen, landscape

factors must be rigorously characterized and included in the

analysis. Simple Euclidean distance between populations has been

shown to be inadequate for this purpose [3,4], and thus alternative

(non-Euclidean) distance measures that account for landscape

complexity [1] must be employed following the lead of the

ecological sciences where much has been learned using this

approach [38,39].

Diffusive processes are ubiquitous in infectious disease trans-

mission [1], and despite limited efforts to quantify these processes

in the past, research interest is growing rapidly. The authors of this

review are engaged in an application of ATs to Schistosoma

japonicum, the parasite that causes schistosomiasis in East and

Southeast Asia. This organism is subject to transport in the

environment via multiple pathways [10]: parasites are carried in

advective flows along canals and streams as both larvae and ova;

within snail intermediate hosts, parasites are conveyed among and

between aquatic and riparian habitats; and for adult worms,

human and animal hosts serve as vehicles. ATs provide a powerful

means to comprehensively assess the role of these diffusive

processes in schistosome transmission, and when combined with

landscape data, can offer insights into how anthropogenic change

can modify diffusion parameters, thereby influencing transmission.

High priority research questions can be addressed, such as which

environmental pathways are most influential in maintaining

parasite transmission in endemic areas, and which are efficient

at spreading the parasite into new regions or among new

vulnerable subpopulations?

ATs represent just one analytical avenue in a sophisticated suite

of powerful genetic analysis tools available for such epidemiological

applications, including other methods for inferring demographic

parameters and for identifying genes or genomic regions involved in

human diseases [24,40]. There is diversity even within the set of

techniques for estimating migration, and thus, looking forward,

comparisons among estimators will be increasingly important, both

to validate methods for application to specific hypotheses and to

establish confidence in estimates for a particular system.

Supporting Information

Figure S1 Probabilistic graphical model indicating the condi-

tional dependencies (directed edges) in the Wilson and Rannala

[21] method. Nodes represent observed (data; squares) and

unobserved (parameters; circles) random variables. The observed

variables are the vector of sampled source populations S and the

matrix of multilocus genotypes of sampled specimens, X. Among

the unobserved variables (parameters) are the quantities of interest

in infectious disease systems, including the interpopulation

migration rates in matrix m and the specific migrant ancestry of

individuals in vector M.

Found at: doi:10.1371/journal.ppat.1002013.s001 (PDF)

Table S1 Data and parameters of the inference model

implemented in Wilson and Rannala’s [21] Bayesian assignment

test.

Found at: doi:10.1371/journal.ppat.1002013.s002 (PDF)

Table S2 Descriptions of different types of genetic markers and

the corresponding advantages and disadvantages when analyzed

using assignment tests.

Found at: doi:10.1371/journal.ppat.1002013.s003 (PDF)

Text S1 Bayesian assignment tests.

Found at: doi:10.1371/journal.ppat.1002013.s004 (PDF)

Text S2 Genetic markers.

Found at: doi:10.1371/journal.ppat.1002013.s005 (PDF)
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