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Abstract

The illustrations in biomedical publications often provide useful information in aiding clinicians’
decisions when full text searching is performed to find evidence in support of a clinical decision.
In this research, image analysis and classification techniques are explored to automatically extract
information for differentiating specific modalities to characterize illustrations in biomedical
publications, which may assist in the evidence finding process.

Global, histogram-based, and texture image illustration features were compared to basis function
luminance histogram correlation features for modality-based discrimination over a set of 742
manually annotated images by modality (radiological, photo, etc.) selected from 2004-2005 issues
of the British Journal of Oral and Maxillofacial Surgery. Using a mean shifting supervised
clustering technique, automatic modality-based discrimination results as high as 95.57% were
obtained using the basis function features. These results compared favorably to other feature
categories examined. The experimental results show that image-based features, particularly
correlation-based features, can provide useful modality discrimination information.

1. Introduction

Querying publications to find relevant information regarding a clinical situation that can
assist a clinician can be a challenging task. There are many types of information present in
publications that can be useful to clinicians. In previous research, automatic illustration
identification was investigated for illustrations in medical publications to assist in providing
information that could aid clinicians evaluate the usefulness of a publication for a particular
clinical situation [1,2]. Specific modalities were examined for illustration classification
based on providing delimiters for the types of information present within the medical
publication [1,2]. Our research group has also explored image features to foster the finding
of relevant images that appear in publications and machine learning- and pipeline
information retrieval-based approaches that facilitate the leveraging of information
contained in the text and images [3]. Experimental results for this research showed the

© 2010 Elsevier Ltd. All rights reserved.

Correspondence should be sent to Dr. R.J. Stanley at The Department of Electrical and Computer Engineering, Missouri University of
Science and Technology, Rolla, MO 65409-0040 stanleyj@mst.edu Telephone: 573-341-6896 Fax: 573-341-4532.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Stanley et al.

Page 2

potential to obtain image annotation and retrieval accuracy acceptable for providing clinical
evidence, given sufficient training data [3]. In this research, numerous types of image
descriptors are investigated for modality-based illustration classification. The descriptors
examined build upon features used in Content Based Image Retrieval (CBIR) systems and in
medical image analysis.

In this research, we have studied various techniques for Content Based Image Retrieval
(CBIR) systems and investigated a number of features for classifying images extracted from
biomedical journal articles into categories by modality, anatomy, and evidence-based
practice Content Based Image Retrieval.

An overview of some existing features and techniques used in image retrieval systems is
presented here, which provided the basis for the features and classification techniques
investigated in this research. For CBIR, color, shape and texture features of an image are
widely used to measure similarity between images [1-11]. Some other approaches include
wavelet decomposition and analysis [12,13], hierarchical [14], user interest modeling [15],
and multi-modal [1,2,16]. In order to illustrate specific features, a multi-resolution, multi-
grid framework has been applied to localized color moment and Gabor filter features as well
as the calculation of shape features based on edge information obtained from gradient vector
flow fields [4]. Texture and grey level features have also been utilized in CBIR systems [9].
In particular, grey level features based on histogram analysis and grey level distribution such
as mean, standard deviation, root mean square, skewness, and Kurtosis. For this study,
texture measures based on grey level co-occurrence and LAWS filters have been explored
[9]. A combination of color and texture features with different weights has been investigated
[13]. The color histogram was generated using the HSV representation of the image and a
weighting scheme was applied to each pixel based on hue and saturation values. The texture
features were extracted using Haar or Daubechies’ wavelet.

In this research, basis function correlation features computed from the luminance histogram
are compared to other global and texture measures for discrimination of images as modality-
based illustration classification indices. These basis function correlation features have been
explored in dermatology imaging research to provide grey level distribution information for
skin lesion discrimination [17]. The measures investigated are applied to a set of medical
publication illustrations and modalities examined in previous research [1]. The remainder of
the paper is organized as follows: 1) description of the features and feature groups
investigated, 2) modality-based illustration experiments performed, 3) results and
discussion, and 4) conclusions.

2. Methodology

2.1 Data Set Examined

For this research, a data set of images encompassing nine different modalities was selected
from the British Journal of Oral and Maxillofacial Surgery, which has been used in previous
research [1]. The rationale for choosing this journal to obtain images for the experimental
data set is that it is an area of expertise for one of the co-authors, and the images from this
journal are representative of the specialties that could benefit from visual information
obtained early in the information retrieval process. For obtaining the data set, two authors of
this paper studied 2004 and 2005 online issues of the journal and downloaded full-size
images and HTML text of articles and short communications containing images. The images
were manually annotated and cross validated for their modality and utility in finding clinical
evidence. In this research, image features are investigated for modality-based classification
using supervised machine learning techniques as a means to determine the feasibility of
automatic image annotation based on clinical utility. In previous research, analyzing 2006
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issues of the British Journal of Oral and Maxillofacial Surgery, it was observed that the
aspects of the clinical scenario such as patient/problem, intervention/comparison, and
outcome for the clinical tasks of diagnosis and therapy typically are often illustrated [1].

Table 1 presents the nine categories for image modality explored in this research. The
rationale for selecting these modalities is given in [1]. Overall, the experimental data set
consisted of 742 images. Table 2 contains the distribution of the images in the different
categories for image modality given in Table 1. Figures 1-9 provide examples of images
from each modality.

2.2 Features and Feature Groups Investigated

The global, texture-based, and basis function correlation measures investigated are presented
in this section. These features were divided into three groups, labeled as Group 1, Group 2,
and Group 3, based on the feature type. Modality-based classification algorithm
investigation and development were explored for the image set with categories and numbers
of images as provided in Tables 1 and 2, respectively. The Group 1 features included the
following global features: 1) the standard deviation of the standard deviation computed over
the columns of the image. Let stdColRed, stdColGreen, and stdColBlue denote these
standard deviation features computed for the red, green, and blue planes, respectively, for a
color image. stdColRed, stdColGreen, and stdColBlue are the same values for grayscale
images. These features were examined to evaluate the change in contrast across the image.
2) the ratio of the pixels in the image in which the green value is less than the red value and
the green value is less than the blue value, given as pixelsG, to the area or size of the image.
The ratio is denoted as percentG and is given as follows:

pixelsG
area (1)

percentG=

This feature provides a basic measure of the greenness of the image. 3) the ratio of the pixels
in the image with luminance value greater than or equal to 250, given as pixelsWhite, to the
area/size of the image. The ratio is given as percentWhite and expressed as:

. pixelsWhite
percentWhite=———
area (2)

This feature gives a whiteness metric which is prevalent in images from several modality
categories. 3) several descriptors computed from the L histogram of the image (from the
LUV color space). The first of the descriptors is the most frequently occurring L value in the
image, denoted as mostFrequentGray. If more than one value had the same (maximum)
frequency of occurrence, the lowest of those L values was chosen. The second of the
descriptors is the ratio of the number of pixels with the most frequently occurring L value,
given as the numberPixelsMostFrequentGray, to the area/size of the image. The ratio is
defined as percentMostFrequent in equation form as

numberPixelsMostFrequentGra
percentMostFrequent= mberrixelsiviostrrequentiray

area 3)

The third descriptor is the average L value over the image, given as avgGray. The fourth
descriptor is the standard deviation L value over the image, labeled as stdGray. Several
studies have cited descriptors from the LUV color space for content-based image retrieval.
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4) The square root of the area/size of the image, denoted as sqrtArea. This feature was used
to see if image area/size for the different categories was a distinguishing characteristic. 5)
The ratio of the pixels in the image with luminance values between 50 and 150 (inclusive),
labeled as pixels50t0150, to the area/size of the image. The ratio is defined as

pixels50to150

percentMiddle=
area (4)

The goal with this feature is to distinguish the images within particular categories as being
bright (white), dark or moderate. 6) The ratio of the sum of the absolute differences between
the red and green values and the red and blue values for each pixel in the image to the area/
size of the image. Let (R j),Gqi j):Bqi ) denote red, green, and blue values at pixel location
(i,j), respectively. The ratio is given as sumDiff and is defined in the following equation

2 Rij) ~ G(LJ)' + IR(i.j) -Bg)

(i,j) within the image

sumDiff=
area (5)

This feature provides a basic homogeneity measure. 7) The ratio of the pixels in the image
with luminance value less than or equal to 30, labeled as pixelsDark, to the area/size of the
image and is expressed as

ixelsDark
percentDarkzw
area (6)

8) Several color/luminance count indices. The first index is computed as the square root of
the number of luminance histogram bins with counts greater than or equal the area of the
image times 0.001 (0.001 is chosen to discount histogram bins with very small counts),
denoted as colorCount. The second index is computed as the square root of the number of
luminance histogram bins with counts greater than 0, denoted as colorCountl. The third
index is computed as the square root of the number of luminance histogram bins with counts
greater than or equal the area of the image times 0.01, denoted as colorCount2. colorCount,
colorCountl, and colorCount2 provide three grayscale counting metrics for quantifying
grayscale variation within the images in different categories. 9) Estimates of the fractal
dimension [27]. The first estimate of the fractal dimension is based on second order discrete
derivatives computed column-wise over the image, given as fractDim1. The second estimate
of the based on second order discrete derivatives computed column-wise over the image
using symlets (symb5), labeled as fractDim2. Fractal dimension was investigated here as a
global image measure.

The Group 2 features investigated included the basis function features computed based on
correlating the luminance histogram with a set of six weight density distribution (WDD)
functions [28], i.e. basis functions. Twelve WDD-based features are computed. Each of the
WDD functions is decomposed into 256 discrete points for point-to-point correlation with
the luminance histograms of the images. Let W1 denote the WDD function in Figure 1 (a),
W, denote the WDD function in Figure 1 (b) and so on. For an image, six WDD features
(fr1, ....fr ) are computed using the luminance histogram I" according to the expression
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255
_fm:;r () Wi (i) fork=1,2,...,6 o

The WDD functions were adjusted to have 256 points that were point-to-point correlated
and multiplied with the WDD functions, with the feature values as the sums of the point-to-
point multiplications. Six additional features (f-7, ..., f;12) are computed by correlating the
six WDD functions with the sequence of absolute differences between of the histogram
frequencies for consecutive luminance values as

255
=2 0@ -TE-DW (@) fork=7,8,...,12,
i=0
where I (—1) =0. (8)

The WDD features provide different ways of quantifying the variation, symmetry and
distribution of gray values within the images.

The Group 3 features examined in this study were texture measures based on the
Generalized Gray Level Spatial Dependence Models for Texture using the implementation
given in [29]. The following features were computed with the luminance image for finding
the gray level co-occurrence matrix with a radius of 1. This means that gray level co-
occurrence was found for each pixel (i,j) over the 3x3 neighborhood of (i,j). Let Q represent
the gray level co-occurrence, K represent the maximum intensity in the image with k = 1,
..., K, and S provide the neighborhood count (maximum of 9=3x3) withs=1, ..., S. The
features calculated from the luminance image include:

IR

_ ks
Ti= D (9)

ngPQ (k,s)

T =°>
D (10)

S

ZEQ (k. S)J_

=
D (11)

Y 3Q(k, )

Ta=Xs
D (12)
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_%ZQ (k,s) logm (Q(,x) /D)
D (13)

T5=

22 (k—=mp) (s —me) (Q(k,s) /D)
Te=X"

010 (14)

T7=ZZ(k— $)2(Q(k,s) /D)
kK s (15)

T8=ZZ(Q (k,s) /D)

(16)

Q(k.s)/D)

T9:;Zﬁ

(17)

D:ZZQ (k,s)
For the expressions above kK s , M, and m, are the row and column means for
Q, respectively, and o, and o are the row and column standard deviations for Q,
respectively. The features above include entropy, contrast, homogeneity, correlation, energy
uniformity, and inverse difference moments. The goal with these features is to provide
rotation and size invariant global texture measures using the entire image as the region of
interest for these feature calculations.

All features from Groups 1-3 presented above were implemented in Java and were computed
over the 742 image data set. The feature vectors for Groups 1-3 are summarized as follows.
Group 1 includes the general features with stdColRed, stdColGreen, stdColBlue, percentG,
percentWhite, percentMostFrequent, sqrtArea, avgGray, stdGray, percentMiddle, sumDiff,
percentDark, colorCount, fractDim1. Group 2 consists of the WDD features (frq, ..., fr12).
Group 3 includes the texture features T1-T9. The features were divided into these groups to
avoid large feature vectors and to evaluate and compare the classification results of the
different types of features.

2.3 Image Classification for Modality Cases

In order to evaluate the discrimination capability of the different features groups, radial
clustering, and a modification for a gradient density function clustering-based [30]
classification techniques were examined. Both algorithms were implemented in Java and are
described below. For image classification, each category of the image set (given in Table 1)
was partitioned using 90% of the images within the category for the training set and the
remaining 10% of the images within the category for the test set. Feature normalization was
performed using a fuzzy set approach. Using the training set for each feature, the minimum
and maximum feature values, denoted as m and X, respectively, are determined. Let A
denote the fuzzy set for a particular feature. The membership function for A is labeled as
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1 if p>0.95 x
uy(p)={ (p—m)/(x—m)
pa(p) for feature value p and is defined as 0 ifp<m NN

found for all features for each category from the training set of images. All feature values for
each training and test set image are normalized using pa found for the respective features.
The normalized training feature vectors are used to find cluster centers for the radial
clustering and gradient density function clustering-based methods.

The radial clustering method determines cluster centers from the training data for each
modality category by specifying an intra-cluster distance, i.e. radius for the cluster, 8. For
each category, cluster centers are determined from the training data using the following
steps. First, select an initial cluster center as the first normalized training feature vector for a
specified category. Second, for the next normalized training feature vector, compute the
Euclidean distance to the initial cluster center. If the distance is greater than 5, create a new
cluster and initialize its cluster center as the current normalized feature vector. Otherwise,
select the cluster for membership for which the feature vector has a minimum Euclidean
distance. The cluster center for the selected cluster is updated as the mean feature vector of
all feature vectors belonging to the cluster. Third, repeat step 2 for all training feature
vectors for the specified category. Fourth, repeat steps 2 and 3 until the cluster centers do
not change for an iteration through the training data or a specified number of iterations
through the training data, whichever requires fewer iterations through the training data.

The gradient density function clustering-based technique (also referred to as mean shift
clustering method) is implemented based on the algorithm presented in [30]. This technique
automatically determines the number of cluster centers from the training set and is applied to
test set for classification into the different categories. As part of this technique, there is a
bandwidth parameter (o)) which is used for data partitioning for cluster and number of cluster
determination.

In order to classify each test image, the following steps were performed. First, the Euclidean
distance from the test image feature vector to each of the cluster centers for a specified
category is computed. Second, the minimum Euclidean distance is found and is used to
represent the distance to the specified category. Third, steps 1 and 2 are repeated for all
categories. Fourth, the test image feature vector is assigned to the category with the
minimum Euclidean distance. These steps were applied to classifying each test image based
on the feature vectors and clusters determined for Groups 1, 2, and 3.

3. Experiments Performed

In order to evaluate the different feature groups, fifty randomly generated training and test
sets were used for the data set described in section 2.1. Each training set consists of 90% of
the image data feature vectors for each category, and each corresponding test set contains
the remaining 10% of the image data feature vectors for each category. The image data
feature vectors includes the features computed from Groups 1-3. Radial clustering and
gradient density function clustering-based classifiers were used to evaluate the different
feature groups over the 25 training/test sets.

4. Experimental Results and Discussion

For radial clustering, 6 = 0, 0.5, 1.0, 5.0, 10.0, and 30.0 were examined for one iteration
through the training data. Table 3 presents the test results using the radial clustering method
for 6 = 0.5 for feature groups 1-3. The test results for each of the 25 randomly generated
training/test sets are given with the mean and standard deviation for the respective feature
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groups. Table 4 provides the average number of cluster centers determined from the training
data for 6 = 0.5 for each category over the 25 randomly generated training/test sets. These
are the cluster centers used for classifying the image feature vectors into the different
categories. Table 5 presents the average and standard deviation test results over the 25
randomly generated training/test sets based on the features computed for Groups 1-3 using
the radial clustering method with 6 =0, 0.5, 1.0, 5.0, 10.0, and 30.0.

Inspecting the results from Tables 3-5, several observations can be made. First, the =0
case corresponds to a nearest neighbor classifier. From the training mode, the number of
cluster centers equals the number of training feature vectors. Increasing values of 6 increases
the number of feature vectors belonging to each cluster, thereby, reducing the number of
cluster centers. Second, the Group 2 features computed by correlating the basis functions
given in Figure 1 with the luminance histogram of the image provide the highest overall
classification into the different categories. The classification results are as high as 95.57%
for 6 = 0 (nearest neighbor case) and as low as 90.88% for & = 30.0. These results show that
these features generalize reasonably well as the number of clusters increase for representing
the different categories of the data set investigated in this study. Table 6 provides the
average number of cluster centers determined from the training data for 6 = 30.0 for each
category over the 25 randomly generated training/test sets. From Tables 4 and 6, the number
of clusters substantially declines from & = 0.5 to & = 30.0 for feature Groups 1-3. However,
the average test correct classification rates do not significantly decline with 95.41% for 6 =
0.5 and 90.88% for & = 30.0. Overall, the Group 2 feature results compare quite favorably
with the Group 1 and Group 3 feature sets, particularly with increasing values of 3, i.e.
increasing numbers of cluster centers. Third, the average test results for = 0 (nearest
neighbor case) for feature Groups 1-3 are higher than for the other values of 5. Because
many of the publications used in generating the image set may consist of similar images
which may be separated into the training and test sets, which could promote higher
classification using the nearest neighbor case from the radial clustering method. Fourth,
three types of features have been investigated in this study. The Group 1 features consist of
global image descriptors such as thresholding, color counting, statistical measures such as
standard deviation and most frequently occurring gray level, and Fractal dimension. As
global measures, these features do not provide context to the distribution of gray level
information within the images for the different categories. The Group 3 features provide
texture measures for distinguishing the different modality categories. The Group 2 features
quantify the luminance value distribution for the different categories based on correlating
the luminance histograms with a set of basis functions to provide global measures for
distinguishing the different categories. The basis functions used in this study, shown in
Figure 1, are zero sum except for (d). Correlation of the luminance histogram with these
basis functions quantizes the global gray level distribution within the different categories.
The experimental results show that the correlation features provide effective similarity
measures for images within each category. Furthermore, experimental results show that
clustering of these features yield strong discriminators for the different categories examined
in this study. Finally, Tables 7-9 show the average correct results over the 25 test sets in
confusion matrix form for the features for Groups 1-3, respectively, for 6 = 1.0.

For comparison purposes, modality classification was performed over the same 25 training/
test sets using the (mean shift) gradient density function clustering-based method. For the
experiments performed using this method, the bandwidth parameter (o)) was varied as a =
0.25, 0.5, 1.0, 5.0. Table 10 presents the average and standard deviation correct test results
for Groups 1-3 using the gradient density function clustering-based method. Inspecting
Table 10, the highest classification results for Groups 2 and 3 were obtained for a = 0.25,
and the highest discrimination results for Group 1 was found for o = 0.50. Overall, the
discrimination results obtained using the gradient density function clustering-based method

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 July 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Stanley et al.

Page 9

were very similar but slightly lower than the radial clustering method for Groups 2 and 3.
Group 1 results were slightly higher for o = 0.5 with 86.19% compared to 6 = 0 with
86.03%. The experimental results show the utility of both classification techniques for the
experimental categories used for image modality. It should be noted for comparison
purposes that other techniques including Hebbian networks and self organizing maps were
also investigated, but did not compare favorably to the radial clustering and gradient density
function clustering-based methods.

4. Conclusion

In this research, a variety of descriptors were investigated for modality-based classification
of images collected from the British Journal of Oral and Maxillofacial Surgery. For the
specific image features investigated, all of the feature groups (global features from Group 1,
basis function correlation features from Group 2, and texture features from Group 3)
provided modality-based image discrimination capability. Overall, the basis function
correlation features achieved average classification as high as 95.57% for the experimental
data set. For the data set examined and the modality categories selected, the classification
results show the potential for using image feature-based and machine learning classification
for obtaining information of possible clinical utility. However, the experimental results
achieved in this study are limited to the data set examined. As determined in previous
research [1], the number of images in the journal issues published over the two year period
examined was sufficient for cross-validation, but the range of modality classes and
sparseness of the diagnostic, procedural, and results images did not promote the equitable
evaluation of image classification into all of the modality classes. Future research needs to
include additional journals with varying scopes over extended time periods.
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Figure 1.
Example image for chart/graph modality (reproduced with permission [18]).
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Figure 2.
Example image for drawing modality (reproduced with permission [19]).
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Figure 3.
Example image for flowchart modality (reproduced with permission [20]).
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Figure 4.

Example image for form modality (reproduced with permission [21]).
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Figure 5.
Example image for histology modality (reproduced with permission [22]).
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Figure 6.
Example image for photography modality (reproduced with permission [23]).
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Figure 7.
Example image for radiology modality (reproduced with permission [24]).
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3 23(L5) 1.5(1.3)
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6 29(2.9) 0.6(03)
7 2.0(.2) 1.8 (1.3)

Figure 8.

Example image for table modality (reproduced with permission [25]).

Comput Med Imaging Graph. Author manuscript; available in PMC 2012 July 1.

Page 19



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Stanley et al.

Figure 9.
Example image for mixed modality (reproduced with permission [26]).
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Table 1

Categories for Image Modality

Category Definition

Chart / Graph | A geometric diagram consisting of dots, lines, and bars.

Drawing A hand drawn illustration

Flowchart A symbolic representation of sequence of activities.

Form A compilation of textual data and/or drawings related to patient and/or clinical
process.

Histology An image of cells and tissue on the microscopic level.

Photograph Picture obtained from a camera

Radiology A 2D view of an internal organ or structure (includes X-ray, CT, PET, MRI,
ultrasound)

Table Data arranged in a grid

Mixed Images combining modalities (e.g., drawings over an x-ray)
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Table 2

Number of Images from Each Category for Image Modality Case

Category Number of Images Used in Study
Chart / Graph 108

Drawing 68

Flowchart 7

Form 11

Histology 134

Photograph 252

Radiology 108

Table 46

Mixed 8
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Test results using radial clustering method for 6 = 0.5 for feature groups 1-3 for 25 training/test sets are

presented with mean and standard deviation.

Table 3

Training/Test Set

% Correct Test
Image Results for
All Categories —
Group 1 Features

% Correct Test
Image Results for
All Categories —
Group 2 Features

% Correct Test
Image Results for
All Categories —
Group 3 Features

1 88.00 96.00 96.00
2 88.00 97.33 96.00
3 80.33 96.00 92.00
4 88.00 96.00 98.67
5 82.67 90.67 90.67
6 86.67 94.67 96.00
7 88.00 97.33 97.33
8 80.00 92.00 92.00
9 92.00 96.00 96.00
10 82.67 93.33 94.67
11 85.33 98.67 96.00
12 86.67 96.00 92.00
13 92.00 96.00 93.33
14 80.00 96.00 92.00
15 84.00 93.33 93.33
16 80.00 94.67 93.33
17 86.67 96.00 97.33
18 85.33 97.33 93.33
19 81.33 94.67 80.33
20 80.00 94.67 92.00
21 93.33 94.67 94.67
22 80.33 97.33 96.00
23 88.00 96.00 94.67
2 93.33 98.67 97.33
25 80.00 96.00 92.00
Average 86.03 95.57 94.24
Sandard 434 1.87 2.40
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Page 24

Average number of cluster centers generated from radial clustering method for & = 0.5 over 25 randomly
generated training/test sets.

Average Number

Average Number

Average Number

Category Clusters— Group 1 | Clusters—Group 2 | Clusters— Group 3
Chart / Graph 38.84 17.96 9.32
Drawing 39.88 23.80 15.48
Flowchart 4.56 6.00 4.68
Form 10.00 8.24 4.68
Histology 79.76 37.64 10.72
Photograph 146.76 28.72 17.08
Radiology 55.52 25.40 15.12
Table 12.00 12.48 6.60
Mixed 7.00 6.48 6.36
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Summary average and standard deviation test results over 25 training/test sets using radial clustering method
for 5 =0, 0.5, 1.0, 5.0, 10.0, and 30.0.

Groupl1 | Group2 | Group3
Average %
Correct Test
Results
6=0 86.03 95.57 94.24
6=05 84.91 95.41 85.92
6=1.0 84.32 95.31 78.83
6=5.0 76.21 93.39 70.24
6=10.0 72.16 91.73 68.53
6=230.0 57.71 90.88 70.29
Standard
Deviation Test
Results
6=0 4.34 1.87 2.40
§=05 421 1.93 4.90
6=1.0 3.93 2.18 6.27
§=5.0 5.96 3.23 4.42
6=10.0 6.35 2.55 4.75
§=230.0 9.16 2.82 5.79
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Table 6
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Average number of cluster centers generated from radial clustering method for & = 30.0 over 25 randomly
generated training/test sets.

Average Number

Average Number

Average Number

Category Clusters— Group 1 | Clusters—Group 2 | Clusters— Group 3
Chart / Graph 1.00 5.96 1.92
Drawing 1.08 5.12 1.44
Flowchart 1.92 3.24 1.04
Form 1.96 5.68 1.64
Histology 1.24 4.88 1.00
Photograph 2.32 7.84 1.00
Radiology 1.44 6.80 1.00
Table 1.96 3.32 1.96
Mixed 2.72 3.72 1.04
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Summary average and standard deviation test results over 25 training/test sets using gradient density function

clustering-based method o = 0.25, 0.5, 1.0, 5.0.

Groupl1 | Group2 | Group3
Average %
Correct Test
Results
a=0.25 86.03 95.57 94.13
a=05 86.19 95.52 91.52
a=1.0 81.97 93.12 55.57
a=5.0 46.56 90.77 71.15
Standard
Deviation Test
Results
a=0.25 4.34 1.87 2.52
a=05 4.20 1.88 3.26
a=1.0 4.17 3.58 5.56
a=5.0 6.99 3.08 5.00
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