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Abstract
Gsα is a ubiquitously expressed G protein α-subunit that couples receptors to the generation of
intracellular cyclic AMP. The Gsα gene GNAS is a complex gene that undergoes genomic
imprinting, an epigenetic phenomenon that leads to differential expression from the two parental
alleles. Gsα is imprinted in a tissue-specific manner, being expressed primarily from the maternal
allele in a small number of tissues. Albright hereditary osteodystrophy is a monogenic obesity
disorder caused by heterozygous Gsα mutations but only when the mutations are maternally
inherited. Studies in mice indicate a similar parent-of-origin effect on energy and glucose
metabolism, with maternal but not paternal mutations leading to obesity, reduced sympathetic
nerve activity and energy expenditure, glucose intolerance and insulin resistance, with no primary
effect on food intake. These effects result from Gsα imprinting leading to severe Gsα deficiency in
one or more regions of the central nervous system, and are associated with a specific defect in
melanocortins to stimulate sympathetic nerve activity and energy expenditure.
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1. Introduction
The heterotrimeric G proteins are a large family of membrane-associated proteins that
couple with seven transmembrane receptors to transmit signals to the intracellular
compartment. Each G protein is defined by its specific α subunit and is composed of α, β
and γ subunits that are the product of separate genes. The G protein Gs contains Gsα,
stimulatory α-subunit that couples cell surface receptors to adenylyl cyclase and mediates
receptor-stimulated intracellular cAMP generation. Gsα is encoded by GNAS, a gene that is
affected by genomic imprinting, and therefore heterozygous Gsα mutations in both humans
and mice lead to effects on energy and glucose metabolism that are dependent on the parent-
of-origin of the mutation (Weinstein et al., 2007). Recent studies show that this is due to Gsα
imprinting in the central nervous system which leads to specific impairment on the actions
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of central melanocortins. In this paper we will review the evidence for Gsα imprinting
effects on metabolic regulation and melanocortin action.

2. Gsα signaling and function
Gsα, a product of the imprinted GNAS gene, is a ubiquitously expressed G protein α-subunit
which couples many seven-transmembrane receptors for hormones, neurotransmitters, and
other extracellular stimuli to the stimulation of adenylyl cyclase and the generation of
intracellular cyclic AMP (Weinstein et al., 2007). cAMP mediates its effects primarily by
activation of protein kinase A, a serine/threonine protein kinase which was classically
known to phosphorylate enzymes and other factors to stimulate release of glucose and free
fatty acids into the circulation through increased gluconeogenesis, glycogenolysis, and
lipolysis, and many other cellular substrates. Protein kinase A also chronically stimulates
gene expression via phosphorylation of transcription factors such as cAMP response element
binding protein (CREB) (Montminy, 1997). In addition, Gsα/cAMP mediates the effects of
sympathetic nerve activity on peripheral tissues such as brown and white adipose tissue,
liver, and muscle as this signaling pathway is stimulated by β adrenergic receptors
(Bachman et al., 2002). cAMP also mediates some of its actions, particularly in
neuroendocrine cells, by stimulating cAMP-regulated guanine nucleotide exchange factors
leading to activation of ras-like proteins such as Rap1 (de Rooij et al., 1998). Gsα may also
mediate its effects by stimulating other downstream effectors, such as Ca2+ channels
(Mattera et al., 1989), and many interact with receptors outside of the seven transmembrane
receptor family (Sun et al., 1997).

3. Organization and imprinting of the Gsα gene GNAS
The Gsα gene GNAS and its mouse ortholog Gnas have similar overall organizations and
reside within syntenic regions at 20q13.2-13.3 and distal chromosome 2, respectively
(Weinstein et al., 2007). GNAS and Gnas also undergo genomic imprinting and have similar
overall imprinting patterns. Genomic imprinting is an epigenetic process in which a specific
biochemical imprint ‘mark’ (e.g. DNA methylation) is erased in primordial germ cells and
then reestablished during oogenesis or spermatogenesis (depending on the specific imprinted
gene), resulting in suppression of gene expression from one parental allele (Reik and Walter,
2001). All imprinted genes have one or more regions in which the maternal and paternal
alleles are differentially methylated. DNA methylation of a gene promoter region leads to
silencing, but in other cases DNA methylation may occur on the transcriptionally active
allele when it is outside the promoter region.

GNAS and Gnas generate multiple gene products in addition to Gsα through the use of
alternative promoters and first exons that splice on to a set of common downstream exons
(Fig. 1). The two most upstream promoters generate transcripts for NESP55
(neuroendocrine-specific protein of 55 kDa) (Hayward et al., 1998b;Kelsey et al.,
1999;Peters et al., 1999) and the Gsα isoform XLαs (Hayward et al., 1998a;Kehlenbach et
al., 1994;Kelsey et al., 1999;Peters et al., 1999), respectively. NESP55 and XLαs are
oppositely imprinted, being expressed only from the maternal and paternal allele,
respectively, due to methylation of the respective promoter regions on the opposite parental
allele (Hayward et al., 1998b;Peters et al., 1999). NESP55 is a chromogranin-like protein
expressed primarily in neuroendocrine cells that is unrelated to the G protein family (Ischia
et al., 1997), and studies in both humans and mice suggest that it plays no significant role in
metabolic regulation (Liu et al., 2000a;Plagge et al., 2005). XLαs is a Gsα isoform with a
long amino-terminal extension encoded by its specific first exon that is expressed in the
central nervous system a few other organs, and is capable of also mediating receptor-
stimulated cAMP generation (Bastepe et al., 2002). XLαs knockout mice have elevated
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sympathetic nerve activity and are hypermetabolic with improved glucose metabolism,
indicating that XLαs normally plays a role in downregulating sympathetic nerve activity in
mice (Plagge et al., 2004;Xie et al., 2006). Alternatively, a truncated form of XLαs (XLN1)
highly expressed in neurons (Pasolli et al., 2000) may be a dominant negative regulator of
Gsα function. It is unclear whether XLαs plays an important role in metabolic control in
humans, as GNAS mutations on the paternal allele that disrupt XLαs do not produce a
similar phenotype.

The Gsα promoter is not methylated on either allele (Hayward et al., 1998a; Kozasa et al.,
1988; Liu et al., 2000b; Peters et al., 1999). In spite of this, Gsα is imprinted in a tissue-
specific manner being expressed primarily from the maternal allele in a number of tissues
including pituitary somatotrophs, thyroid, renal proximal tubules, ovaries, and the
paraventricular nucleus of the hypothalamus while being biallelically expressed in most
other tissues (Campbell et al., 1994; Chen et al., 2009b; Davies and Hughes, 1993; Germain-
Lee et al., 2002; Hayward et al., 2001; Liu et al., 2003; Mantovani et al., 2002; Weinstein et
al., 2001; Yu et al., 1998).

Just upstream of the Gsα promoter region is an imprint control region (the exon 1A or exon
A/B promoter region) (Fig. 1) that is methylated on the maternal allele (Ishikawa et al.,
1990;Liu et al., 2000a;Liu et al., 2000b). In pseudohypoparathyroidism type 1B, a condition
with renal parathyroid hormone resistance, the exon 1A methylation on the maternal allele is
absent (Bastepe et al., 2001;Jan de Beur et al., 2003;Liu et al., 2000a;Liu et al., 2005b).
Based upon this observation it has been suggested that this region has a negative regulatory
cis-acting element that suppresses the paternal Gsα allele in a tissue-specific manner (Liu et
al., 2005a;Williamson et al., 2004). For example, there may be a silencer that binds a tissue-
specific repressor protein on the paternal allele, but this repressor fails to bind to the
maternal allele due to methylation, allowing Gsα to always be expressed from the maternal
allele. Consistent with this, mice with paternal deletion of the exon 1A region had reversal
of Gsα imprinting with biallelic expression of Gsα in all tissues (Liu et al.,
2005a;Williamson et al., 2004).

4. Parent-of-origin metabolic effects of Gsα mutation in humans and mice
4.1 Role of Gsα in energy balance in humans

Heterozygous Gsα loss-of-function mutations lead to Albright hereditary osteodystrophy, a
congenital disorder characterized by the presence of short stature, brachydactyly (shortening
of various long bones in the hands and feet), subcutaneous ossifications, and
neurobehavioral abnormalities (Weinstein et al., 2006). When the mutation is on the
maternal allele patients also develop multihormone resistance to parathyroid hormone,
thyrotropin, growth hormone-releasing hormone, and gonadotropins, a condition known as
pseudohypoparathyroidism type 1A. In contrast patients with mutations on the paternal
allele only develop the features of Albright hereditary osteodystrophy without multihormone
resistence, a condition known as pseudopseudohypoparathyroidism (Davies and Hughes,
1993; Weinstein et al., 2006). This is the direct result of tissue-specific Gsα imprinting, as
mutation of the active maternal Gsα allele leads to severe Gsα deficiency and hormone
resistance whereas mutation of the inactive paternal allele has little effect on Gsα expression
or hormone sensitivity(Germain-Lee et al., 2002; Hayward et al., 2001; Liu et al., 2003;
Mantovani et al., 2002; Yu et al., 1998).

Albright hereditary osteodystrophy is also a monogenic obesity disorder, with early onset
obesity (within the first year) but only in patients with Gsα mutations on the maternal allele
(pseudohypoparathyroidism type 1A but not pseudopseudohypoparathyroidism) (Long et al.,
2007). Although adipocytes from pseudohypoparathyoidism type 1A patients have reduced
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lipolytic responses to epinephrine due to reduced Gsα levels (Carel et al., 1999), this is
unlikely to be the cause of obesity as there is no evidence for Gsα imprinting in adipose
tissue (Chen et al., 2005a; Germain-Lee et al., 2005; Mantovani et al., 2004). A more likely
explanation for obesity in pseudohypoparathyroidism type 1A is a defect in the central
nervous system leading to low sympathetic nerve activity and metabolic rate, as children
with pseudohypoparathyroidism type 1A were shown to have extremely low serum
norepinephrine levels when compared to controls or even similarly obese children without
pseudohypoparathyroidism type 1A (Carel et al., 1999). In one recent case report, severe
obesity developed in a pseudohypoparathyroidism type 1A patient during in the first year of
life even in the absence of hyperphagia, also consistent with obesity in this disorder being
primarily the result of low energy expenditure (Dekelbab et al., 2009). The incidence of
insulin resistance and diabetes in pseudohypoparathyroidism type 1A has not been
systematically examined, although severe insulin resistance in a young
pseudohypoparathyroidism type 1A patient has been recently reported (Nwosu and Lee,
2009).

Other studies have shown an association of Gsα single nucleotide polymorphisms with
obesity or weight loss. For example the silent T393C polymorphism was associated with
increased obesity and insulin resistance in German women with polycystic ovarian
syndrome, but not in a larger unselected population (Hahn et al., 2006). Another
polymorphism within the Gsα promoter was shown to affect binding of the transcriptional
factor upstream stimulatory factor 1, Gsα expression, lipolytic rates in adipocytes, and short-
term weight loss, but was not associated with differences in baseline obesity (Frey et al.,
2008a; Frey et al., 2008b).

4.2 Parent-of-origin metabolic effects of Gsα mutations in mice
Similar to what is observed in pseudohypoparathyroidism type 1A and
pseudopseudohypoparathyroidism patients (Long et al., 2007), mutation of the maternal but
not the paternal Gsα allele (deletion of Gsα exon 1) leads to severe obesity which is
associated with reduced sympathetic nerve activity and energy expenditure, with no primary
abnormality in food intake (Chen et al., 2005a; Germain-Lee et al., 2005; Xie et al., 2008).
In addition these mice also develop glucose intolerance, insulin resistance and
hyperlipidemia, a phenotype reminiscent of the metabolic syndrome (Chen et al., 2005a).
Other models with mutation of the maternal Gsα allele also develop obesity with reduced
energy expenditure as well (Kelly et al., 2009; Yu et al., 2000).

The similar parent-of-origin effects of Gsα mutations on energy balance in humans and mice
strongly suggests that obesity due to maternal Gsα mutations results from severe Gsα
deficiency in one or more tissues due to mutation of the active maternal Gsα allele and
suppressed Gsα expression from the inactive paternal allele due to tissue-specific imprinting.
Consistent with this hypothesis, reversal of imprinting due to the presence of the 1A imprint
control region deletion on the paternal allele led to complete reversal of the maternal Gsα
metabolic phenotype (Xie et al., 2008).

5. Gsα imprinting in the central nervous system underlies the parent-of-
origin metabolic effects of Gsα mutations

Although Gsα is expressed in liver, adipose tissue, pancreatic islets and muscle, these tissues
are not involved in the parent-of-origins effects of Gsα mutations as Gsα expression is not
affected by imprinting in these tissues (Germain-Lee et al., 2005; Mantovani et al., 2004;
Weinstein et al., 2007; Yu et al., 2000; Yu et al., 1998) and Gsα knockouts in these tissues
due not produce a phenotype similar to the germline maternal Gsα knockout (Chen et al.,
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2010; Chen et al., 2009a; Chen et al., 2005b; Xie et al., 2010; Xie et al., 2007). However
studies of mice with disruption of either the maternal or paternal Gsα allele in the central
nervous system (mBrGsKO and pBrGsKO mice, respectively) that were generated by
reciprocal matings of Nestin-cre and Gsα-floxed mice indicate that Gsα imprinting in the
central nervous system underlies the parent-of-origin effects of Gsα mutations on energy and
glucose metabolism (Chen et al., 2009b). mBrGsKO mice develop severe obesity associated
with lower sympathetic nerve activity and energy expenditure and greater metabolic
efficiency (weight gain/calorie intake), but without hyperphagia. In addition, mBrGsKO
mice became glucose intolerant and insulin resistant even before the development of obesity,
indicating that Gsα deficiency in the central nervous system has a primary effect on
peripheral glucose metabolism. In contrast, pBrGsKO maintain a normal metabolic
phenotype.

Studies examining Gsα expression within the central nervous system in mice with maternal
and paternal Gsα mutations show that Gsα undergoes imprinting in the paraventricular
nucleus of the hypothalamus, but not in the nucleus of the solitary tract or hippocampus
(Chen et al., 2009b). As the paraventricular nucleus is a major site of metabolic regulation it
may at least account for some of the parent-of-origin effects of Gsα mutations on
metabolism. In fact, mice with maternal Gsα mutation restricted to the paraventricular
nucleus and a few other sites made using Single minded 1 (Sim1) promoter-cre recombinase
mice also develop mild obesity, glucose intolerance, insulin resistance, and reduced energy
expenditure, although the effects were more prominent in males than females and overall
much milder than in mBrGsKO mice (M.C., L.S.W., unpublished results). These findings
indicate that the paraventricular nucleus plays a role in the metabolic effects observed in
mice with maternal Gsα mutations, but that other brain regions are likely to be involved as
well. In contrast, mice with hetero- or homozygous Gsα mutation in the ventral medial
nucleus of the hypothalamus (made using steroidogenic factor 1 (Sf1) promoter-cre mice)
showed no abnormalities in energy or glucose metabolism (M.C., L.S.W., unpublished
results). Overall, our findings in mBrGsKO and pBrGsKO mice show that the metabolic
phenotype generated by germline maternal Gsα mutation is due to an effect of Gsα
imprinting in the central nervous system.

6. Gsα deficiency in the central nervous system impairs the stimulation of
energy expenditure by central melanocortins

The status of energy balance is communicated to the brain through various signals, including
hormones (e.g. leptin, ghrelin, insulin), nutrients (e.g. glucose, fatty acids) and afferent
neural inputs from the gut (Saper et al., 2002). The hypothalamus integrates these signals to
regulate food intake and energy expenditure, and the brainstem also receives signals to
primarily control hunger and satiety (Cone, 2005). Several hypothalamic nuclei are involved
in control of energy balance, including the arcuate, paraventricular, and ventromedial nuclei
and the lateral hypothalamic area. The arcuate nucleus, one of main targets of leptin and
insulin, contains neurons expressing orexigenic polypeptides (neuropeptide Y and agouti-
related protein), and others expressing anorexigenic polypeptides (proopiomelanocortin and
cocaine- and amphetamine-regulated transcript).

Proopiomelanocortin neurons located in the arcuate nucleus are activated by leptin to inhibit
food intake and stimulate sympathetic nerve activity and energy expenditure, leading to
negative energy balance (Brito et al., 2007; Butler and Cone, 2002; Nogueiras et al., 2007).
These neurons project to the paraventricular and ventral medial nuclei of the hypothalamus
and other sites where they release α-melanocyte stimulating hormone, which activates
melanocortin MC3 and MC4 receptors in downstream neurons (Bagnol et al., 1999; Cowley
et al., 1999; Xu et al., 2003). Melanocortin MC4 and MC3 receptors are seven
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transmembrane receptors known to couple to Gsα. Most of the effects of central
melanocortins on energy balance are mediated via melanocortin MC4 receptors (Chen et al.,
2000b; Marsh et al., 1999). In addition to their locations in the hypothalamus, melanocortin
MC4receptors are also expressed in other locations of the central nervous system involved in
energy balance, including the hindbrain and the sympathetic preganglionic neurons in the
intermediolateral nucleus of the spinal cord, the latter of which also receive neural
projections from the paraventricular nucleus of the hypothalamus (Elias et al., 1998; Kishi et
al., 2003; Saper et al., 1976; Swanson and Kuypers, 1980).

Melanocortin MC4 receptor mutations are the most common cause of monogenic obesity in
humans (Farooqi et al., 2003; Krude et al., 1998; Vaisse et al., 1998; Yeo et al., 1998) and
also lead to severe obesity in mice (Huszar et al., 1997; Marsh et al., 1999), in both cases
being associated with both hyperphagia and reduced sympathetic nerve activity and energy
expenditure. In contrast, melanocortin MC3 receptor mutation in mice results in more subtle
changes in adiposity (Chen et al., 2000a). In addition to their effects on energy balance,
melanocortin MC4 receptor mutations also lead to increased linear growth and primary
effects on peripheral glucose metabolism (Fan et al., 2000; Nogueiras et al., 2007; Obici et
al., 2001).

Mice with central nervous system-specific (mBrGsKO) or germline disruption of the
maternal Gsα allele partially mimic melanocortin MC4 receptor null mice in that they
develop severe obesity with reduced sympathetic nerve activity and energy expenditure as
well as glucose intolerance and insulin resistance (Chen et al., 2005a; Chen et al., 2009b).
These effects on sympathetic nerve activity and energy expenditure are likely due to
impaired responsiveness of mBrGsKO mice to the effect of central melanocortins on energy
expenditure, as mBrGsKO mice have a reduced increase in energy expenditure in response
to a melanocortin agonist (Chen et al., 2009b). Consistent with this finding, mBrGsKO have
evidence of reduced sympathetic nerve activity (reduced norepinephrine content in brown
adipose tissue, heart rate, and diastolic blood pressure) and impaired diet-induced
thermogenesis, a process known to be dependent on melanocortin MC4 receptor signaling
(Butler et al., 2001; Voss-Andreae et al., 2007). This mechanism also likely underlies the
obesity in pseudohypoparathyroidism type 1A patients, as these patients have low
circulating norepinephrine levels (Carel et al., 1999).

However, mice with maternal Gsα mutations do not develop all the features seen with
melanocortin MC4 receptor mutations, such as hyperphagia or increased linear growth
(Chen et al., 2005a; Chen et al., 2009b). Consistent with the lack of hyperphagia, the ability
of a melanocortin agonist to acutely reduce food intake was unaffected in mBrGsKO mice
(Chen et al., 2009b). Early-onset obesity in the absence of hyperphagia has been well
documented in at least one child with pseudohypoparathyroidism type 1A (Dekelbab et al.,
2009). Sim1 is a transcription factor expressed almost exclusively in the paraventricular
nucleus that is upregulated by melanocortin MC4 receptor signaling and mediates some of
the effects of melanocortins (Kublaoui et al., 2006b). Sim1 mutations in humans and mice
also lead to obesity, but in contrast to mBrGsKO mice, this effect is associated with
hyperphagia and increased linear growth, with no primary effects on energy expenditure or
glucose metabolism (Faivre et al., 2002; Holder et al., 2000; Holder et al., 2004; Kublaoui et
al., 2008; Kublaoui et al., 2006a). Moreover, Sim1 haploinsufficient mice have the opposite
pattern of melanocortin responsiveness to that seen in mBrGsKO (normal increase in energy
expenditure and impaired ability to inhibit food intake) (Kublaoui et al., 2006a). Based upon
these observations, we propose the possibility that melanocortins mediate their actions
through independent signaling pathways downstream of melanocortin MC4 receptors, a Gsα-
dependent pathway involved in regulating sympathetic nerve activity, energy expenditure,
and glucose metabolism, and a Gsα-independent pathway working through Sim1 involved in
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food intake and linear growth. Further studies are required to determine whether is
hypothesis is correct, and if so, whether other G proteins are involved in the melanocortin
MC4 receptor/Sim1 pathway. We are also examining whether there is Gsα imprinting in
other regions of the central nervous system.

7. Divergent metabolic effects of Gsα deficiency in different peripheral
tissues

In addition to its effects in the central nervous system, Gsα plays important roles in
peripheral tissues that also are involved in energy and glucose metabolism. We have
generated several tissue-specific Gsα knockouts (in each case homozygous null) to examine
these effects in other metabolically active tissues. Liver-specific Gsα knockout mice have
increased insulin sensitivity and fasting hypoglycemia, associated with hepatic glucagon
resistance and islet cell hyperplasia (Chen et al., 2005b). Skeletal-muscle Gsα specific have
impaired glucose tolerance in the absence of insulin deficiency and resistance, most likely as
the result of reduced skeletal muscle mass. In addition, there appears to be a switch of the
muscle fiber type towards aerobic, slow twitch (red) fibers even though the muscles have
metabolic characteristics more typical of anaerobic, fast-twitch (white) fibers (Chen et al.,
2009a). Adipose tissue-specific Gsα knockout mice have markedly impaired adipogenesis
(Chen et al., 2010). While these mice have reduced cold-induced thermogenesis due to
resistance of brown adipose tissue to sympathetic stimulation, diet-induced thermogenesis is
maintained indicating that these two forms of adaptive thermogenesis may occur in separate
tissues. Finally, studies in pancreas-specific Gsα knockout models (Xie et al., 2010; Xie et
al., 2007) indicate that Gsα signaling is required for normal β cell proliferation and
maintanence of β cell mass and that Gsα may have opposite effects on proliferation of
pancreatic α and β cells.

8. Conclusion
One widely accepted hypothesis underlying the imprinting process is the parental conflict
hypothesis which predicts that paternally transmitted alleles promote fetal growth as the
father wants to maximize survival of his offspring while maternally transmitted alleles
inhibit fetal growth so the mother can reserve resources for multiple litters (Moor, T 1991,
Haig D 2004). Imprinted genes also appear to be involved in postnatal energy metabolism as
several diseases caused by mutations in imprinted genes lead to obesity (e.g. Prader-Willi
syndrome, pseudohypoparathyroidism type 1A) and population studies have identified a
number of chromosomal regions associated with parent-of-origin effects on energy balance
in humans (Dong et al., 2005; Gorlova et al., 2003; Lindsay et al., 2001; Rance et al., 2005).
The effect of GNAS imprinting on energy balance is consistent with the parental conflict
hypothesis, a loss of the paternally expressed XLαs leads to a lean phenotype with increased
sympathetic nerve activity and energy expenditure while the oppositely imprinted GNAS
gene product Gsα leads to obesity due to opposite effects on sympathetic nerve activity and
energy expenditure.
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Fig. 1.
Organization and imprinting of the GNAS gene. The maternal and paternal alleles of the
GNAS gene are depicted showing four alternative first exons for NESP55 (NESP), XLαs, 1A
mRNA transcripts, and Gsα (exon 1) splicing onto common exons 2 through 13 (shown as a
single box). Regions of differential methylation (METH) are shown above and splicing
patterns are shown below each allele. Active promoters are shown in white with horizontal
arrows while inactive promoters are shown in gray. The thin and dashed arrow for the
paternal Gsα promoter indicates that this promoter is suppressed in a tissue-specific manner
due to genomic imprinting.
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