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Abstract
Esophageal adenocarcinoma is a major cause of cancer 
death in men in the developed world. Continuing poor 
outcomes with conventional therapies that predomi-
nantly target apoptosis pathways have lead to increas-
ing interest in treatments that target the cell cycle. A 
large international effort has led to the development 
of a large number of inhibitors, which target cell cycle 
kinases, including cyclin-dependent kinases, Aurora ki-
nases and polo-like kinase. Initial phase Ⅰ/Ⅱ trials in 
solid tumors have often demonstrated only modest clini-
cal benefits of monotherapy. This may relate in part to 
a failure to identify the patient populations that will gain 
the most clinical benefit. Newer compounds lacking the 
side effect profile of first-generation compounds may 
show utility as adjunctive treatments targeted to an in-
dividual’s predicted response to treatment.
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INTRODUCTION
Esophageal cancer is a major cause of  cancer death world-
wide[1]. It was the fourth most common cause of  death 
from cancer in men in the United Kingdom between 
2004 and 2006[2]. Although in the developed world the 
incidence and mortality of  cancer in general has decreased 
with advances in diagnosis and treatment, the incidence 
and mortality of  esophageal carcinoma have increased[1].

Esophageal cancer carries a poor prognosis with a 
5-year survival rate of  < 10%[3]. This probably reflects 
the fact that the majority of  esophageal cancers pres-
ent late with symptoms after invasion of  the muscularis 
propria and lymph node metastasis have occurred[4]. Ex-
tensive disease means that few patients are suitable for 
definitive surgical therapy[4,5]. Poor outcomes from con-
ventional therapies including surgery and radiochemo-
therapy have led to increasing interest in understanding 
the molecular mechanisms that underpin the develop-
ment of  esophageal cancer. This may assist in develop-
ing new diagnostic techniques and identifying potential 
therapeutic targets. 

The mechanism by which cells reproduce has fasci-
nated biologists since Virchow’s 1855 observation that 
cells could only arise from pre-existing cells. By the 
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early 20th century, pathologists had recorded extensive 
descriptions of  the cytological events of  cell division, 
including division of  the nucleus and partitioning of  
the cytoplasm to the formation of  two daughter cells[6]. 
It has become increasingly clear since those early de-
scriptions of  the normal cell cycle that disorders in this 
process can lead to disease. It was not however until the 
1970s, that molecular biology allowed a deeper under-
standing of  the cell cycle and its role in health, disease 
and cancer development. The past three decades, in 
particular, have seen major advances in our understand-
ing of  the genetic and molecular mechanisms by which 
cells reproduce and how this process is regulated and 
controlled. It has also been aptly described that cell cycle 
deregulation, in the form of  growth self-sufficiency 
and insensitivity to growth inhibitory signals, have be-
come fundamental hallmarks of  cancer development[7-9]. 
Targeting these pathways in cancer development for 
diagnostic and therapeutic use has become increasingly 
important. We assess in this review the potential for tar-
geting the cell cycle to treat esophageal adenocarcinoma.

HALLMARKS OF CANCER
It is clear that cellular reproduction is carefully con-
trolled and regulated to prevent uncontrolled prolifera-
tion of  cells[10]. A number of  alterations in cell physiol-
ogy are required to lead to carcinogenesis[7]. First, a cell 
must become able to move from its dormant inactive 
state (known as quiescence) to enter the cell cycle with-
out stimulation from external growth factors. Second, 
the cell must lose response to growth-inhibitory signals. 
Cells must evade senescence and programmed cell death 
to gain limitless replicative potential. Finally, it must be 
able to develop and maintain an adequate blood supply 
(angiogenesis), which allows the cancer cell to invade 
and metastasize throughout the organism[11].

Many genes responsible for the carcinogenesis have 
been identified. Broadly, they fall into two categories: 
oncogenes and tumor suppressor genes. Oncogenes are 
created by mutations in genes that cause them to be-
come constitutively active, whereas in tumor suppressor 
genes, mutations reduce or inactive the gene product[12]. 
Oncogenes and tumor suppressor genes increase tumor 
cell number by stimulation of  cell division or prevention 
of  cell death. 

CELL CYCLE
Embyronic cells can undergo DNA replication and 
nuclear division at rapid rates. A full cycle of  embyronic 
cell division can last just 30 min[13]. Division of  adult stem 
cells requires more complex control (Figure 1). Gaps or 
pauses are inserted between the phases of  nuclear division 
(M phase) and DNA synthesis (S phase). These gaps are 
known as G1 (between M and S phases) and G2 (between 
S and M phases). 

Events in the cell cycle happen in a temporally orga-
nized sequence, with later events depending on success-
ful completion of  earlier events[14]. 

Control of  the cell cycle is driven by the cyclin-depen-
dent kinases (CDKs), a family of  serine/threonine kinas-
es. Cells cannot enter S phase, without CDK activation. In 
order to become catalytically active, CDKs need to bind 
to a cyclin subunit that acts as an activator. CDKs can also 
be modulated by inhibitors such as CDK inhibitor 1A 
(p21CIP1), CDK inhibitor 1B (p27KIP1) or CDK inhibitor 
2B (p15INK4B)[10]. It has previously been thought that mam-
malian cells require the sequential activation of  a number 
of  the CDKs to complete the cell cycle successfully[15]. 
Recent evidence from mouse models has suggested that 
CDK1 alone is sufficient to complete the cell cycle, al-
though other CDKs are required for normal development 
and cell type specialization[16]. Cell cycle defects can con-
tribute to esophageal cancer development in a number of  
different ways (Figure 2).

Mitosis itself  contains a series of  phases that lead to 
chromosome separation and cell division. Mitosis is a 
vital step in the cell cycle, which involves carefully regu-
lated interactions between multiple proteins. Abnormali-
ties throughout the cell cycle can lead to genomic insta-
bility through unrestrained proliferation or defects in the 
transmission of  genetic information to daughter cells. A 
number of  established chemotherapy agents, including 
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Figure 1  Cell cycle.

Figure 2  Compounds targeting the cell cycle.
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the vinca alkaloids and the taxanes work by targeting the 
mitotic phase of  the cell cycle. 

CELL CYCLE CHECKPOINTS
Cells need mechanisms that prevent progression of  the 
cell cycle if  there is significant genomic damage, until 
the damage is repaired or the cell undergoes apoptosis. 
These have become known as cell cycle checkpoints. 
There are two major checkpoints: the G1/S checkpoint 
and the G2/M checkpoint. Checkpoint kinases ATM 
and ATR mediate these checkpoints, through effector 
kinases such as CHK1 and CHK2, by preventing activa-
tion of  CDKs and progression through the cell cycle[17]. 
Double-stranded DNA breaks activate preferentially 
ATM, whereas UV light activates ATR kinase. Defects 
in this DNA damage response can contribute to cancer 
formation by allowing tumor cell survival despite ge-
nome instability and enhanced mutation rates[18,19]. The 
DNA damage response is commonly activated in early 
neoplastic lesions[20,21]. 

G1/S checkpoint
The G1/S checkpoint occurs towards the end of  the G1 
phase, prior to entry into G2. During G1, the cell remains 
responsive to external mitogenic and anti-mitogenic 
stimuli. These can either cause the cell to become quies-
cent (entering the GO phase) or allow re-entry to the cell 
cycle. This decision is controlled by the pocket protein 
RB. Immediately after mitosis, RB is dephosphorylated by 
protein phosphatase type 1. Whilst in this dephosphory-
lated state, RB binds to a group of  transcription factors 
called E2Fs and inhibits their activity. During G1, RB is 
hypophosphorylated by the complex of  CDK4 and cyclin 
D. CDK2 and cyclin E complexes then act to hyperphos-
phorylate RB, which causes dissociation from E2Fs. Free 
E2Fs trigger increased transcription of  CDK2 and cyclin 
E, which creates a positive feedback loop that drives the 
cell into DNA synthesis (S phase). CDC25 phosphatases 
act to regulate CDK and cyclin complexes by removing 
inhibitory phosphate groups thereby promoting cell cycle 
progression[13]. In genomic damage, CHK2 activates the 
p53 pathway, which stimulates production of  p21CIP1 as 
well as phosphorylation of  CDC25A. This prevents acti-
vation of  the CDK/cyclin complexes[13]. 

G2/M Checkpoint
The G2/M checkpoint acts as a final check to prevent 
mitosis occurring if  the genome is damaged. A complex 
of  cyclin B and CDK1 regulates this transition. Through-
out G2, the inhibitory kinases CHK1, WEE1 and MYT1 
phosphorylate CDK1, which prevents its activation and 
progression to mitosis. Polo-like kinase 1 (PLK1) protein 
levels begin to accumulate during S phase and G2/M 
phases, having been relatively low during G1[22,23]. PLK1 
transcription is most abundant in cells that are in G2/
M phase[24]. In the absence of  DNA damage, PLK1 is 
phosphorylated by Aurora A at its phosphorylation site 

at T210[25]. Phosphorylated PLK1 then activates CDC25 
phosphatases that remove inhibitory phosphates from the 
ATP-binding site located at Thr14 and Tyr15 in human 
CDK1. This causes the activation of  the CDK1/cyclin 
B complex and drives the cell into mitosis[26]. PLK1 also 
increases phosphorylation-dependent cyclin B import to 
the nucleus[27]. PLK1 phosphorylates WEE1 and MYT1, 
which leads to ubiquitination and degradation of  WEE1 
and inhibition of  MYT1[28,29]. PLK1 is then inactivated 
and degraded during anaphase by ubiquitin-dependent 
degradation mediated by the anaphase promoting com-
plex[30]. Cell cultures show severely impaired growth when 
PLK1 is either overexpressed or functionally depleted[31,32]. 

CELL CYCLE AS A TARGET FOR CANCER 
THERAPEUTICS
Many oncogenes and tumor suppressors have downstream 
effects on cellular functions involving cell cycle entry and 
exit. Healthy or normal cells have the ability to stop at pre-
determined checkpoints in the cell cycle in the presence of  
damage or unfavorable conditions. Cancer cells develop 
mechanisms that eliminate these checkpoints, which leads 
to uncontrolled proliferation. One example of  this is the 
INK4 family member p16. This occurs as a result of  epi-
genetic silencing by DNA hypermethylation at the p16 
promoter, which leads to reduced transcription and loss of  
gene expression. p16 is a CDK inhibitor and loss of  p16 
function leads to unrestrained cellular proliferation. This has 
been demonstrated to occur with a number of  different tu-
mors[33]. Abnormalities of  p16 function have been described 
in Barrett’s esophagus and esophageal adenocarcinoma[34]. 
DNA hypermethylation of  the p16 promoter has also been 
shown to be a strong predictor of  the progression to high-
grade dysplasia and esophageal adenocarcinoma[35]. 

CDK inhibitors
Abnormal expression of  CDKs and their partner cyclins 
has been noted in esophageal cancer[36-39]. Polymorphisms 
of  CCND1, which encodes cyclin D1 has been shown to 
be associated with an increased risk of  esophageal adeno-
carcinoma[40]. CCND1 amplification and nuclear staining 
of  cyclin D1 have been shown to correlate negatively with 
survival[41,42]. Abnormal activity of  the CDK/cyclin com-
plexes in esophageal adenocarcinoma has been shown to 
be a marker of  acquired chemoradioresistance[42,43]. The 
observation that inhibition of  CDKs leads to cell cycle 
arrest and apoptosis has lead to the development of  CDK 
inhibitors as antitumor drugs. There are a number of  
drugs that target these pathways. The pioneer compound 
for this group is flavopiridol, a semi-synthetic inhibitory 
flavonoid of  CDKs. Flavopiridol prevents the phos-
phorylation and activation of  CDK1, CDK2, CDK4 and 
CDK6, which leads to reduced expression of  cyclin D1, 
cell cycle arrest, and induction of  apoptosis[44]. 

In vitro, it has been demonstrated that even at nanomo-
lar doses, flavopiridol can enhance the antitumor activity 
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of  cytotoxic drugs by increasing apoptosis[45]. Phase Ⅰ and 
Ⅱ studies have been undertaken with various combina-
tions of  chemotherapeutic agents with variable results. 
Most promising is the combination with irinotecan and 
cisplatin. A phase I trial of  relapsed gastric and esophageal 
cancer patients showed that eight out 14 patients achieved 
a partial response[46]. Further clinical studies are awaited. 

Aurora kinases inhibitors
The Aurora kinase family is an important family of  ser-
ine/threonine kinases that are evolutionarily conserved 
and act as mitotic regulators throughout the cell cycle. 
There are three mammalian aurora kinases, Aurora A, 
Aurora B, and Aurora C, which have differing roles 
throughout mitosis[47]. Aurora A is required for centro-
some maturation and spindle formation, in addition to its 
role at the G2/M checkpoint described above. Aurora B 
is required for chromosome segregation and cytokinesis. 
Small molecule inhibitors of  Aurora B lead to premature 
mitotic exit without successful chromosome separation. 
Continued inhibition of  Aurora B results in large mul-
tiploid cells that eventually undergo apoptosis[48]. This 
potentially has the advantage that Aurora B inhibitors 
could be combined with other agents that act during 
other phases of  the cell cycle. Aurora C is abundant in 
the testes. Its global functions are unclear, however, it has 
recently been shown to have some overlap with the func-
tions of  Aurora B during mitosis[49]. Aurora kinases have 
been shown to be overexpressed in a number of  different 
tumors. Aurora A has been shown to be overexpressed in 
Barrett’s esophagus and esophageal adenocarcinoma[50,51]. 
Cell line models suggest that Aurora A overexpression 
protects developing esophageal adenocarcinoma cells 
against drug-induced apoptosis[51]. In other forms of  
cancer, Aurora A expression has been shown to correlate 
with chromosomal instability[52]. A number of  Aurora ki-
nase inhibitors are undergoing phase Ⅰ and Ⅱ evaluation. 
Danusertib, a pan-Aurora kinase inhibitor has undergone 
phase I testing in patients with advanced solid tumors. 
Forty-six percent of  patients treated with danuserib had 
stable disease following treatment and a number of  pro-
longed objective responses were noted[53,54]. The major 
dose limiting effect of  these drugs is neutropenia.

PLK1 inhibitors
PLKs form a group of  prominent mitotic kinases. They 
were first described in mutants that failed to undergo a 
normal mitosis in Drosophilia melanogaster (polo)[55,56]. They 
are highly conserved from yeast to humans. There are four 
members of  the polo family in mammals (PLK1-4)[57,58]. 
They are involved in multiple functions throughout the 
cell cycle in mitosis and meiosis. PLK1 is the best charac-
terized of  the four known PLKs[58].

PLK1 is a candidate for development as a therapeu-
tic target because it contains two functionally relevant 
sites: a C-terminal regulatory region containing two polo 
box domains (PBDs) and an N-terminal catalytic kinase 
domain[59]. The highly conserved PBD has been identi-

fied as a phosphopeptide-binding motif[60]. The polo box 
motif  is only observed in the PLK family and contains 
a characteristic sequence. Drugs that target the PBD are 
specific to the human family of  PLKs.

PLK1 is overexpressed in a broad range of  primary 
gastrointestinal tumors, including gastric, colorectal and 
pancreatic carcinoma[61-63]. In contrast, one study has 
noted downregulation of  PLK1 within tumor cells[64]. 
There is now increasing evidence that PLK1 expres-
sion levels have prognostic significance within different 
cancers, including esophageal cancer[63]. Two separate re-
ports of  PLK1 overexpression in esophageal carcinoma 
primarily relate to squamous cell carcinoma (SCC) in 
the far east[63,65]. Given the high impact of  environmen-
tal factors (e.g. aflatoxin) on SCC development in these 
populations, it is unclear whether the findings can be di-
rectly applied to western populations. There are no data 
on PLK1 expression in adenocarcinoma patients. Some 
reports of  other cancers have suggested that PLK1 ex-
pression is a reliable marker of  metastasis[66]. PLK1 has 
also been used in the context of  larger arrays of  genes 
as a prognostic marker to predict metastasis in breast 
cancers[67]. Current cancer staging systems and histologi-
cal assessments often fail to predict individual outcomes 
reliably but correlation of  PLK1 protein and mRNA 
expression levels with clinical stage has the potential to 
improve clinical decision making in a number of  differ-
ent tumors[68]. 

The unique PLD of  PLK1 also makes it a good can-
didate for the development of  alternative cancer thera-
pies. Initial efforts have focused on specific phosphoro-
thioate antisense oligonucleotides that are able to block 
protein translation[69]. Use of  siRNAs, which cause de-
pletion of  PLK1, has also been considered. Whilst there 
are drawbacks of  siRNAs, including off-target effects 
and nuclease sensitivity, these hold promise in cancers 
such as bladder cancer in which they can act locally[70]. 
There are now a number of  small molecule inhibitors 
of  PLK1, which act either in an ATP-competitive or 
non-ATP-competitive manner[68]. The multiple actions 
of  PLK1 throughout the cell cycle mean that these new 
agents need to be carefully assessed for specificity and 
side effects. In particular, it is possible that anti-PLK1 
agents have similar toxicity to other microtubule inhibi-
tors. PLK1 inhibitors are now in early clinical testing 
(phase Ⅰ and Ⅱ). Early clinical experience suggests that 
neutropenia and thrombocytopenia are dose-related ef-
fects, although neuropathy has not been seen[71].

MPS1 inhibitors
Cell cycle translational research has focused on the de-
velopment of  inhibitors of  the major kinases discussed 
above. There are additional mitotic kinases that may have 
relevance for inhibiting tumor growth. Inhibitors of  
MPS1, a kinetochore-associated kinase that is involved in 
the spindle assembly checkpoint, have been shown to ar-
rest tumor cell proliferation in vitro[72,73]. This appears to 
be mediated at least in part by impaired Aurora B func-
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tion at centromeres, which leads to impaired alignment 
of  chromosomes[74]. Detailed information on MPS1 in 
esophageal cancer is lacking, however, MPS1 inhibition 
has been demonstrated as a chemotherapy sensitization 
strategy in vitro[75]. 

CONCLUSION
Established esophageal carcinoma chemotherapy regimes 
are relatively blunt tools that predominantly target apop-
tosis pathways and are often associated with significant 
side effects. This has led to a large international effort to 
develop targeted therapy.

Current therapies that target the cell cycle have largely 
disappointed with relatively modest effects seen in phase Ⅰ
/Ⅱ trials (Table 1). This may be in part related to failure 
to identify the patient populations that will gain the most 
clinical benefit. Few treatments are targeted towards spe-
cific pathways or personalized to the individual tumor pro-
teome or genomic signature. 

Efforts are now being made to assess gene expression 
profiles from histological specimens from solid tumors such 
as breast cancer in an attempt to predict response to che-
motherapy[76]. Initial steps in this direction have been taken 
by the UK Oesophageal Cancer Clinical and Molecular 
Stratification (OCCAMS) Study Group, which has demon-
strated a four-gene signature associated with poor prognosis 
in esophageal adenocarcinoma, as well as a larger group 
of  genes associated with lymph node metastasis[77]. Efforts 
have also been made to identify Barrett’s esophagus patients 
who are likely to progress to adenocarcinoma, however, little 
work has been undertaken on response to chemotherapy in 
the esophagus[78]. Careful studies are needed in esophageal 
adenocarcinoma to define patient populations that are likely 
to respond well to treatment with both established and novel 
chemotherapy regimes. Optimizing individual chemotherapy 
regimens for patients will assume greater significance as 
health economies demand most clinical benefit from limited 
resources. In this setting of  personalized targeted therapy, 
new cell cycle treatments may hold promise as carefully se-
lected adjuncts to existing chemotherapy regimes. 

Patients with esophageal adenocarcinoma unfortu-
nately often still present late with a large burden of  dis-

ease. Given the large number of  cells involved it is likely 
that some tumor cells will abrogate the inhibited path-
ways and escape from chemotherapy-induced apoptosis. 
Targeted cell cycle therapy in esophageal cancer presents 
an alternate strategy as cell cycle inhibitors affect mul-
tiple essential pathways involved in replication and DNA 
damage repair. They may provide a useful adjunct in pa-
tients with late presenting esophageal tumors who have 
failed standard chemotherapy regimens. 
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