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Abstract
Defining genetic networks underlying animal behavior in a high throughput manner is an
important but challenging task that has not yet been achieved for any organism. Using
Caenorhabditis elegans, we collected quantitative parametric data related to various aspects of
locomotion from wild type and thirty-one mutant worm strains with single mutations in genes
functioning in sensory reception, neurotransmission, G-protein signaling, neuromuscular control
or other facets of motor regulation. We applied unsupervised and constrained K-means clustering
algorithms to the data and found that the genes that clustered together due to the behavioral
similarity of their mutants encoded proteins in the same signaling networks. This approach
provides a framework to identify genes and genetic networks underlying worm neuromotor
function in a high-throughput manner. A publicly accessible database harboring the visual and
quantitative behavioral data collected in this study adds valuable information to the rapidly
growing C. elegans databanks that can be employed in a similar context.

1. Introduction
Human and animal behaviors are regulated by genes acting in coordinated, often complex,
networks. Delineation of these networks holds the key to understanding the genetic
mechanisms underlying different behaviors. This goal remains largely unmet, due at least in
part to the fact that genes have traditionally been studied individually for their roles in
behavioral regulation. Since the data generated by such isolated studies is scattered in
various resources, it has been difficult to systematically identify genetic networks regulating
animal behaviors with modern data pattern recognition algorithms. Such algorithms have
been successfully used to identify relationships between genes through systematic profiling
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of centralized and standardized data such as genomic sequences, gene expression levels,
protein-protein interactions and cellular metabolic activity (Inoue et al. 2005; Lee et al.
2002; Patil and Nielsen 2005; Ren et al. 2000; Sandmann et al. 2007; Shlomi et al. 2008;
Wikman et al. 2007). Therefore, the goal of the current study was to compile a behavioral
data set to which pattern recognition algorithms could be applied to reveal the relationships
between genes involved in regulating the behavior under study (in this case, locomotion).

The nematode C. elegans demonstrates a number of quantifiable behaviors, including
locomotion (Rankin 2002). Worm locomotion is directly regulated by the worm neuromotor
system and is closely associated with sensory input and experiences (de Bono and Maricq
2005; Giles and Rankin 2008). Aspects of worm locomotion are widely used to study
neuronal and genetic mechanisms involved in neurotransmission (Zheng et al. 1999),
sensory transduction (Ward et al. 2008), learning and memory (Rose and Rankin 2001), and
drug dependence (Feng et al. 2006; Ward et al. 2009), although the specifics of behavioral
measurement may differ for these different types of studies. Recently, a number of groups
independently developed automated worm behavioral analysis systems that are capable of
providing reliable and sensitive behavioral data (Baek et al. 2002; Cronin et al. 2006; Feng
et al. 2004; Fontaine et al. 2006; Pierce-Shimomura et al. 2005; Simonetta and Golombek
2007; Tsibidis and Tavernarakis 2007). However, these systems were not designed to reveal
the relationships among genes involved in regulation of a particular behavior or predict the
signaling pathway of an involved gene.

Here, we hypothesized that mutations in genes regulating worm behaviors that function
within the same genetic network would produce tractable behavioral signatures. Use of these
signatures to place the variants into clusters in behavioral parametric space would be
expected to unveil genetic pathways and functional partners of a given gene regulating the
tracked behavior. As ‘proof of principle’, we first developed a behavioral analysis system
that provided quantitative measurements of worm locomotion parameters. We then used this
system to collect parametric behavior data from ~2000 animals representing 32 different
worm genetic strains. The strains tested included wild type (WT) and 31 single gene mutants
in which the affected genes are known to function in sensory reception, neurotransmission,
G-protein signaling, neuromuscular junction signaling and/or have undefined roles in
regulating worm movement. We next applied one unsupervised and two constrained K-
means clustering algorithms on the resulting parametric behavioral data to observe natural
clustering of these worm variants according to their behavioral signatures. As predicted, we
found that genes that clustered together encoded proteins that function in the same signaling
pathway. Therefore, this work provides a framework to identify genes and genetic networks
underlying worm neuromotor function in a high-throughput manner. In addition, we have
placed the visual and parametric behavioral data collected and analyzed in this study in a
publicly accessible database which will serve as a useful research and educational resource.

2. Materials and Methods
2.1. Worm strains, culture and methods

Worm strains were cultured by standard methods. About 120 fourth-stage larvae were
scored to a Nematode Growth Media (NGM) plate (stock plate) one day before each
experiment and cultured overnight at 22°C. Forty young adults were randomly selected from
the stock plate and tracked the following morning at 22 °C. The animals were acclimated in
the tracking plates for 4 minutes before data acquisition. The tracking plates were prepared
and worm visual and motion data acquisition was conducted as previously described (Feng
et al. 2006).
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2.2. Implementation of constrained K-means clustering algorithms
Measurement of distance between two data points is the fundamental first step for all
clustering methods. Euclidean distance (ED) is commonly used in systematic biology
including the classification of worm motor behavioral phenotypes (Baek et al. 2002; Geng et
al. 2003; Geng et al. 2004). Therefore, we also chose ED. ED between two worm strains S1
and S2 is defined by Equation 1:

Equation 1

where any feature value S’i (k) in S’i is defined as the difference between the same entity
and that of the wild type strain (Equation 2):

Equation 2

where N2j(k) is the wild type strain feature values.

We first adopted a constrained K-means clustering algorithm for data pattern recognition
(Wagstaff et al. 2001), defined as CKMCA. In this algorithm, must-link constraints specify
that two instances have to be in the same cluster and cannot-link constraints specify that two
instances (worm strains) must not be placed in the same cluster. We implemented must-link
and cannot-link as the following. 1) For strain k and strain j, if the number of strains other
than k and j that was closer to k than j by their relative feature distance was no more than
three, we added a must-link between k and j. 2) We selected six strains as the seeds of
clusters (see main text for details) and stipulated that a cannot-link existed between any pair
of the seed strains. Such a rule was applied to any strain s1 that was in the same cluster as
seed Sa and strain s2 that was in the same cluster as seed Sb. Thus, any strain could not be
grouped into more than one cluster.

During clustering, conflicts of must-links might exist. Specifically, must-links may be found
between a non-seed strain si with multiple seeds, and thus require si to be grouped into more
than one cluster. We might use the expression pattern of the involved genes to clear the
conflicts. If the expression patterns of all involved genes were not available or were not
sufficient to clear the conflicts, we used the following rule (Rule of Proximity) to resolve
such a conflict.

For any non-seed strain si, si might connect with several seeds with different behavioral
similarities. For any pair of seeds Sa and Sb competing for s1, we calculated the distance
ranking between si and Sa (top 1 or top 2, etc.), defined as Ia, and the behavioral distance
between si and Sb, defined as Ib, in behavioral parametric space according to Equation 1. If
la < lb (top 1 < top 2, etc.), s1 was assigned to the cluster seeded with Sa, by reasoning that si
displayed more behavioral similarity with Sa than Sb. If this did not resolve the conflict, we
counted the number of must-links (Table 2) of si with all possible strain members seeded
with Sa (na) or Sb (nb). If na > nb, si was assigned to the cluster seeded with Sa. We reasoned
that the Rule of Proximity further measured and compared similarities between si and
clusters seeded with Sa or Sb. In the present study, application of the Rule of Proximity
resolved all conflicts.

Last, we applied CKMCA to cluster the strains, with the number of clusters set at six.

Alternatively, constraints were applied to a K-means clustering algorithm as described in the
following. We first selected seeds for the total K clusters, one seed per cluster, as the
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centroids (ci) of the clusters, where the values of each behavioral parameter of the seeds are
the coordinates of ci. Then, the K-mean algorithm was iteratively repeated to obtain and
refine the clustering results. At each iteration, we assigned a non-seed strain si, to a cluster
by must-link rules or the closest cluster by ranking its behavioral distances to the centroids
of all clusters. Next, we updated the coordinates of ci with the mean behavior parametric
values of all the current members in each cluster. The must-link rules were generated with
known gene expression and gene functional information for a small proportion of genes
(~1/3) (See details in the result section). The algorithm terminated when the clustering
results converged. We called this algorithm ACKMCA.

3. Results
3.1. Development of a System for Automated and Quantitative Analysis of Nematode
Behaviors

We previously developed a worm tracking system that quantifies various aspects of worm
locomotion. This system was used to identify critical genes for proprioception (Li et al.
2006), substance dependence (Feng et al. 2006; Ward et al. 2009), and photoreceptor neuron
identification (Ward et al. 2008) and resulted in identification of a behavioral predictor for
worm ageing (Hsu et al. 2008). The system was also used in a number of other biomedical
studies (Cao et al. 2010; Lee et al. 2005). We developed this system (named the Automated
and Quantitative Analysis of Behaviors of Nematode (AQUABN) system, Figure 1) further
by using 114 previously published worm behavioral or morphological parameters (Feng et
al. 2004) and adding 47 novel behavioral parameters (see Supplemental Materials and
Methods) mainly describing detailed aspects of worm reversal or directional changes. Thus,
the AQUABN system provides a total of 161 behavioral parameters for quantifying speed,
foraging, body waves, body posture, and four classes of worm locomotion behavior in
addition to four parameters that measure worm morphology (Table S1).

3.2. Collecting and processing quantitative parametric data for worm locomotory behavior
We selected 32 strains including WT and 31 single mutation genetic variants representing
mutations in 29 genes, most of which encode proteins from several well defined pathways
implicated in neurobiological aspects of animal behavioral regulation: sensory perception,
neuronal signal transduction and muscle contraction (Table 1).

We collected 1991 video clips of 1991 animals from these 32 strains with the AQUABN
Recorder. Each video clip provided visual and motion data from a four minute tracking
session of one animal at a 10 Hz frame rate. Each video clip was processed by the
AQUABN Transformer to obtain data for 161 behavioral parameters, which were then
exported to the AQUABN Behavioral Database as a single data entry (Figure 1) (available
online at http://beijing.case.edu/worm/).

3.3. Defining the distance between behavior parameters of different worm strains
We chose Euclidean distance (ED) to measure the effects of genetic mutations on various
parameters of worm locomotion. ED has been used in a number of systematic studies to
investigate the roles of genes in worm behavior regulation (Baek et al. 2002; Geng et al.
2003; Geng et al. 2004). We first standardized our behavioral parametric dataset to values
between 0 and 1 with the min-max method (Theodoridis and Koutroumbas 2009) to avoid
the bias in clustering generated by uneven scales of behavioral parameter quantification and
to suppress outliers introduced by noise and errors during behavioral parameter
quantification. It was previously shown that different standardization methods have little or
no effects on pattern recognition of worm behavioral data (Geng et al. 2003). We then
selected the median value (Fmedian) of a behavioral parameter (f) calculated by using all

Zhang et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2012 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://beijing.case.edu/worm/


animals from a given worm strain (s) to represent f of s in the distance computation. Each s
has m (161) Fmedian values: F1, F2, …, Fm. The ED between two worm strains (si and sj)

was defined as  where  is the kth Fmedian value of si. The distance matrix
of 31 strains is shown in Table S2.

3.4. Choosing a data mining algorithm
The AQUABN system was initially designed to quantify subtle modifications in worm
behavior elicited by various genetic or environmental means. To maximize its sensitivity
and reliability, we used several different computational algorithms combined with a
statistical approach to quantify the same or similar worm behavioral aspects (Feng et al.
2004). Therefore, a significant proportion of measured behavioral parameters provided by
the AQUABN system could be either completely redundant or correlated with other
parameters. Defining worm behavioral signatures with a K-means clustering algorithm
(Baek et al. 2002; Geng et al. 2004) or classifying worm locomotion phenotypes with
principle component analysis (PCA) (Geng et al. 2003), however, obtained similar if not the
same results when using the full or a subset of worm locomotion parameters where
redundant data was removed. These studies also demonstrated that the variability of worm
parametric locomotion data within the same genetic mutant is significantly smaller than that
of worms from different genetic background including unc mutants, and that the locomotion
difference among various worm strains is not dominated by one or a subgroup of behavioral
parameters. Using our dataset and PCA, we reached the same conclusions (data not shown).

We decided to use the K-means clustering algorithm, a useful general clustering method for
many applications (Han and Kamber 2006) including defining worm locomotion signature
(Baek et al. 2002). In addition, we reasoned that certain biological background information
would constitute a valuable input to facilitate or guide data pattern recognition in this study.
The recently developed CKMCA was adapted to incorporate such background information
into the clustering process. In CKMCA, domain background information undergoes two
kinds of restrictions, must-links and cannot-links, representing pairs of data entries that
should and should not be clustered together (Wagstaff et al. 2001).

CKMCA was implemented as follows. First, we arbitrarily selected six clusters, each
representing one of the six different means that regulate worm locomotion listed: dopamine
neurotransmission (cluster 1), Go signaling (cluster 2) and, Gq signaling (cluster 3), sensory
input (cluster 4), fundamental synaptic function (cluster 5), and “undefined” (cluster 6).
Except for the “undefined” cluster seeded with pde-4 (a gene that impacts locomotion, but
has little information available regarding its biological function), we could select a worm
strain from each cluster to form 1 set of seeds. One advantage of CKMCA is that it is
possible to use different numbers (k values) and/or sets of genes to serve as seeds in the
analysis. There are over hundreds of sets of possible seed combinations. We randomly, with
some biological input, chose 3 sets of seeds, set 1 (dop-1, dgk-1, egl-30 (md186), mec-3,
unc-13 and pde-4), set 2 (dop-2, goa-1, egl-30 (md186), mec-3, unc-18, pde-4) and set 3
(cat-2, dgk-1, egl-8, mec-4, unc-13, pde-4) (Table 1). We obtained a similar data pattern
with these different sets of seeds. Hence, only one set of results were presented below.

We further stipulated that no pair of seeds could be clustered together, the latter representing
the only cannot-link restriction. We next defined the must-link restrictions. For a strain k, if
the relative distance between k and another strain j ranked in the top-three of the shortest in
the distance matrix (Table S2), we reasoned that k and j shared sufficient similarity in their
behavioral signatures to cluster them together. Hence, we added a must-link between k and j
in the must-link table as an entry (Table 2). In the data set of 32 strains, defining must-link
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tables with top-one, top-two, or top-four ranking in behavioral similarity led to too low (top-
one and top-two) or too high (top-four) must-link restriction and a consequent failure of data
pattern recognition (data not shown).

3.5. Data pattern recognition
Next, we applied CMKCA, with the six cluster seeds and the restrictions described above, to
our standardized behavior parametric dataset. 18 of the 26 non-seed strains unambiguously
segregated into one of the six seeded clusters (Figure 2), demonstrating that most strains
formed natural clusters according to their behavioral similarities. Each of the remaining 7
non-seed strains could be segregated into two different clusters. In this situation, the
expression pattern of representative genes was the first input to guide clustering. If such
information was not available or inadequate, we applied the Rule of Proximity (see
Supplemental Materials and Methods for details), generated to further measure behavioral
similarity. For supervised algorithms of data pattern recognition, human input is essential to
facilitate data pattern recognition and generate more accurate and meaningful results
(Mitchell 1997).

The first cluster, seeded with the dopamine receptor gene dop-1, contained two genes
encoding dopamine synthases (bas-1 and cat-4) and two other dopamine receptor genes
(dop-2 and dop-3). The loss-of-function mutant of cat-2, encoding another dopamine
synthase, shared behavioral similarity with both dop-1- and dgk-1-seeded clusters. We
grouped cat-2 into the cluster seeded with dop-1, because it has a lock-and-key relationship
with dop-1 in its protein expression pattern (functional partner pair expressed in pre-/post
synaptic neurons) (Baruch et al. 2008). The close behavioral similarity between the cat-2
mutant and G-protein signaling mutants (in the dgk-1-seeded cluster) is consistent with the
observation that dopamine regulates worm locomotion by activating antagonistic Gq/Go
signaling via D1- and D2-like receptors (Chase et al. 2004).

The second cluster, seeded with dgk-1, contained eat-16, which encodes a regulator of G-
protein signaling (RGS) that affects locomotion through both Go and Gq signaling, gpb-2,
which encodes a G-protein beta-subunit that may interact with both Go and Gq signaling,
and a gain-of-function mutant of egl-30, which encodes the alpha-subunit of Gq. It was
previously reported that both Go and Gq regulate worm locomotion in a coordinated
network (Bastiani and Mendel 2006). The dgk-1-seeded cluster also included eat-4, which
encodes a vesicular glutamate transporter (Lee et al. 1999). This suggests that some aspects
of worm locomotion regulated by glutamate neurotransmission are performed through the
Go/Gq signaling network.

The third cluster, seeded with egl-30 (lf), included egl-10, egl-8 and goa-1. The egl-10 gene
encodes an RGS protein that interacts with both Go and Gq signaling to regulate
locomotion. Loss-of-function mutants of goa-1 and egl-8 fell into two clusters, dop-1- and
egl-30 (md186)-seeded. This is consistent with the observation that goa-1 and elg-8 are
involved in behavioral regulation of dopamine neurotransmission (Chase et al. 2004).
Because of the Rule of Proximity, goa-1 and egl-8 were placed in the cluster seeded with
egl-30 (md186). Segregation of goa-1 into the cluster seeded with egl-30 is consistent with
the notion that Go and Gq regulate many aspects of worm locomotion in a highly
coordinated genetic network (Bastiani and Mendel 2006) and that the ED algorithm that we
used to generate our distance matrix (Table S2) does not consider whether mutations
regulate such behavioral parameters negatively or positively (see Supplemental Material and
Method for details).

The fourth cluster, seeded with mec-3, included mec-4, mod-1 and mod-5, indicating that
mutation of these genes produced similar changes in locomotory behavior. Similar to mec-3,
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the loss-of-function mutant of mec-4, which encodes an amiloride-sensitive sodium channel
protein, exhibits degenerated touch sensory neurons causing defective mechanosensory
perception (Bianchi et al. 2004; Way and Chalfie 1988). On the other hand, mod-1 and
mod-5 encode a serotonin-gated chloride channel and a Na+, Cl−-dependent serotonin
transporter, which is required for serotonin uptake, respectively. Although interaction
between serotonin and mechanosensory perception has not been established in worms,
serotonin has been reported to suppress the release of neurotransmitters from
mechanosensory neurons and modify mechanosensory-related behaviors of medicinal
leeches (Gaudry and Kristan 2009). Our data suggests that modulation of mechanosensory
neuron output by serotonin neurotransmission might be conserved in C. elegans.

The fifth cluster, seeded with pde-4, contained tbh-1, tdc-1 and tph-1. Since these genes all
encode neurotransmitter synthases, this finding suggests that pde-4 plays a role in synaptic
function, possibly through affecting neurotransmitter synthesis or packing. This is consistent
with a previous report showing that PDE-4 is located in an inactive zone of synapses
throughout the worm nervous system (Charlie et al. 2006). Interestingly, unc-43, which
encodes the type II calcium/calmodulin-dependent protein kinase (CaMKII) that regulates
synaptic strength and maturation (Rongo and Kaplan 1999), also clustered with pde-4.
Mutants of tdc-1, tph-1 and unc-43 also shared behavioral similarity with the unc-13-seeded
cluster. They were supervised into the pde-4-seeded cluster because of the Rule of
Proximity.

The last cluster, seeded with unc-13, which encodes a protein that regulates the release of
neurotransmitters at the synapse, contained unc-18, unc-38, unc-63, unc-29, unc-36, unc-2
and unc-73, loss-of-function mutants of which demonstrated severe locomotion defects.
These genes encode homologs of mammalian MUNC18 (unc-18), a syntaxin binding protein
that enables vesicle docking in synaptic regions (Hata et al. 1993), nicotinic receptor genes
(unc-38, unc-29, and unc-63) (Culetto et al. 2004), which are required at neuromuscular
junctions (NMJ) for muscle contraction, and excitatory neuronal N-type calcium channels
(unc-2 and unc-36) that regulate muscle activity at NMJs (Schafer and Kenyon 1995;
Schafer et al. 1996). The unc gene group also included unc-73, which encodes a nucleotide
exchange factor with an undefined role in behavioral regulation (Steven et al. 1998). These
genes likely clustered together due to their diverse roles in regulating muscle activity as
indicated by the sluggish locomotion of their mutants (See Discussion for details).

3.6. Data pattern validation
To validate the performance of CMKCA, we first used the unsupervised K-means clustering
method that succeeded in defining the worm locomotion phenotype (Geng et al. 2003)
(Figure 3). We found that thirty-one strains self-aggregated into 7 clusters according to their
locomotion signature: one cluster mainly containing genes of G protein pathways, one
cluster consisting of genes related to dopamine/serotonin neurotransmission and touch
sensory, a group of pde-4 and two genes encoding neurotransmitters, a group of 3 genes that
primarily function at neuromuscular junctions (NMJ) to regulate muscle contraction
(unc-63, unc-36, unc-2), a cluster of unc-38 and an allele of unc-29, two genes encoding
nAChR receptor subunits, and isolated eat-4 and another allele of unc-29 (Figure S1).
Although there is no available “golden rule” to quantify the difference between clustering
results generated with the unsupervised method and CMKCA, the latter clearly provides
more biologically meaningful data pattern recognition. Specifically, genes regulating worm
locomotion through sensory input and several types of neurotransmission were
indistinguishable in data pattern recognition with the unsupervised method. Although genes
of the Go and Gq pathways were consistently grouped together, unc-13 and unc-18, two
genes required to release neurotransmitters at synapses were separated. Moreover, two loss-
of-function alleles of unc-29 were not clustered together. However, the unsupervised K-
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means algorithm grouped unc-43, unc-18 and unc-73 with genes of G protein signaling
pathways, consistent with several reports that the G protein signaling pathway interacts with
unc-43 (Robatzek and Thomas 2000), unc-18 (Johnson et al. 2009) and unc-73 (Williams et
al. 2007) to regulate synaptic transmission in locomotion regulation. This observation
indicates that an unsupervised algorithm has some strength over a supervised method,
possibly resulting from the fact that no assumption on the number and members of clusters
that were made. With an unsupervised clique-based clustering algorithm (Edachery et al.
1999) that was demonstrated to discover intrinsic data patterns in high dimensional data sets
with redundant and correlated features (Pei et al. 2005; Yan et al. 2005), we obtained a
similar data pattern as the one presented in Figure 3 (data not shown) and reached the same
conclusions.

We next used ACKMCA to cross validate the results obtained with CKMCA. First, we
reasoned that gene expression patterns and functional data of a proportion of strains could be
used to supervise clustering, this generated two rules. 1) Strains representing genes that have
a lock-and-key relationship (Baruch et al. 2008) (for example, cat-2 and dop-1) or encoding
subunits of the same receptor (for example, unc-63, unc-38 and unc-29) must be grouped
together. 2). Strains representing genes that have clear functional relationship in behavioral
regulation (for example, mec-3 and mec-4) should also be grouped together. We further
reasoned that the expression and functional information of a small portion of strains is
sufficient to guide the clustering of a larger population of strains based on their behavioral
similarity. We thus defined a must-link table (Table 3) to define 1) the lock-and-key
relationship of cat-2, a dopamine-specific synthase, and three dopamine receptors; 2) three
genes encoding subunits of the same acetylcholine receptor (unc-63, unc-38 and unc-29); 3)
two genes related to touch sensory (mec-3 and mec-4) and 4) two strains related to Gq
signaling (egl-30 (lf) and egl-8). We chose the same number of clusters (six) but a different
set of seeds (dop-1, dgk-1, egl-10, pde-4 and unc-63) to keep the biological significance
consistent with the result of Figure 2. We found that the data pattern recognized by CKMCA
is largely conserved with the clustering results produced with ACKMCA (Figure 4). The
few differences are listed below. 1) bas-1, a gene required for the synthesis of both
dopamine and serotonin was grouped with eat-4, encoding a vesicular glutamate transporter,
and three neurotransmitter sythases (tbh-1, tdc-1 and tph-1). 2) unc-43, encoding CaMKII,
was grouped into the cluster seeded with mec-3, suggesting that unc-43 may regulate some
aspects of mechanosensory- or serotonin-regulated locomotion (Donohoe et al. 2008;
Robatzek and Thomas 2000). 3) tph-1 was surprisingly grouped together with unc mutants,
possibly due to the variety of strains in the unc group.

Previously, it was reported that redundant or correlated behavioral features have little effect
on the results of defining worm behavioral signatures (Baek et al. 2002; Geng et al. 2004) or
classifying worm locomotion phenotypes (Geng et al. 2003) with data mining algorithms.
To explore whether redundant or correlated behavioral features distort recognized gene
relationship in behavioral space, we removed features 148-158 (Table S1) containing many
missing values, and features 48-50, 54, 57, 109, 110, 112-114, which had more than 0.9
Pearson product-moment correlation coefficient with other features (Rodgers and
Nicewander 1988). We obtained the same data pattern except that eat-16 was clustered into
the dopamine neurotransmission group (Figure 5). This observation is consistent with the
report that an eat-16 mutation suppressed dopamine-mediated paralysis (Chase et al. 2004).
Therefore, our results further confirmed that redundant/correlated behavioral features have
little effect on the result of data mining algorithms.

To analyze the effects of the ACKMCA algorithm on various data set size (number of
behavioral parameters and genes), we generated a new reduced data set by removing
redundant/correlated behavioral parameters, as we did above, and unc strains. Next, we
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applied the ACKMCA algorithm to this data set. By comparing the results on the full data
set and the reduced data set, we could gain insights on how the results of the supervised
clustering algorithm change with various data set sizes (Figure 6). We found that tph-1 was
clustered together with two serotonin receptors (mod-1 and mod-5), supporting that tph-1
was clustered into the unc group, in results shown in Figure 4 and Figure 5, due to the
variety of strains in the unc group.

To further address how data size affects clustering result, we used the dataset with
redundant/correlated data removed, but all the strains were kept. We randomly selected
behavioral data from 50, 40, 30, 20 and 10 animals per strain and applied ACKMCA. We
found that the data pattern was largely conserved even when we reduced the number of
animals per strain to 30 (Figure S1-S3). Further reduction of sample size did not change
aggregation results. This observation indicates that AQUABN reliably quantifies many
worm behavioral aspects and that the variation of individuals in a strain is significantly
smaller than variation among strains. A similar conclusion was previously reached (Geng et
al. 2003; Geng et al. 2004).

4. Discussion
Our results demonstrate that quantitative worm behavioral parameter data provided by an
automated system such as AQUABN can be paired with a supervised data pattern
recognition algorithm to identify genetic networks regulating worm behavior. We found that
a specific set of seeds did not significantly affect data pattern recognition of worm
locomotion parameters but biological background knowledge is a critical input to achieve
better results. In life science research, it is common that profiling of the relationship of
genes/proteins in certain phenotypes is conducted under the scenario where the sequences,
gene expression patterns, or protein function/homology of full or a proportion of the genetic
or proteomic groups is known. Such domain-specific knowledge was utilized before and/or
after running the data mining algorithm to facilitate data analysis or prune data patterns
(Nierman et al. 2005; Ross-Macdonald et al. 1999), although this pre-knowledge was not
necessarily utilized as an integral part of the data mining algorithms. Albeit supervised
clustering methods were demonstrated to provide more meaningful data pattern recognition
than traditional unsupervised algorithms (Eric et al. 2004) and could be valuable to
biomedical research as this is, to the best of our knowledge, the first time CMKCA has been
applied to life science.

The connectivity pattern of all 302 worm neurons has been well characterized at the electron
microscopic (EM) level. Moreover, the expression patterns of hundreds of worm neuronal
genes have already been identified and efforts are ongoing to provide expression patterns for
the whole worm genome in the near future. In addition, knockout mutants of the entire worm
genome should be available within the next several years. These advances, together with the
collection of a neuromotor behavioral parametric dataset that covers most of the worm
genome, will allow systematic analysis of the relationship between genes and neuromotor
behavior on a genome-wide scale by applying supervised data mining algorithms to these
databanks.

Although human supervision was helpful in recognizing a meaningful data pattern for the
dataset presented in this study, where the biological function of most of the genes was
partially studied, whether a supervised algorithm is a better method over the unsupervised
method is still an open question when the number of mutant strains is increased to cover a
significant proportion of the worm genome. In the latter case, little information is known
regarding the function of most genes in behavioral regulation. Here, we found that some
biological information of a small group of strains can be used to quickly and consistently
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identify interesting data patterns to unveil the relationship among genes in regulating worm
locomotion behaviors. In contrast, an unsupervised data mining algorithm may identify
novel relationship which may be missed by supervised methods. This is because
unsupervised algorithms do not assume any existing functional relationships among genes,
and may be useful in addressing some aspects of behavioral regulation, especially in cases
where genes are involved in multiple signaling pathways. It is probably wise to use both
methods and explain data patterns as a whole.

In this study, we also found that sample size (the number of animals per strain) has a minor
effect on clustering results. This may reflect that the AQUABN system provides reliable
worm locomotion quantification and that the behavioral data variation within stains is
significantly smaller than the behavioral variation among strains in this particular study. In
general, the larger the sample size, the more reliable and consistent the recognized data
pattern will be with data mining algorithms.

However, even the approach used here to explore the relationship between genes and
neuromotor behavior has some limitations. For example, unc mutant worms are extremely
sluggish and frequently coil themselves without demonstrating obvious locomotion.
Notably, all of the unc mutants, with the exception of unc-43, clustered together in this
study. Thus, quantifying the unc behavioral phenotype represents a challenge (Baek et al.
2002; Geng et al. 2003; Geng et al. 2004; Huang et al. 2006). Previously, behavioral
parameters were used to separate some unc phenotypes (Geng et al. 2003), suggesting that it
is possible to develop more sophisticated computational and data mining algorithms for
more accurate phenotype quantification and better data pattern recognition. It is also worth
emphasizing that profiling quantifiable behavioral phenotypes only supplements traditional
approaches focused on elucidating genetic mechanisms underlying worm behaviors. This is
because experimental conditions in our study were optimized to provide standardized data
for data mining algorithms, not to study the genetic mechanism involved in a specific
behavior.

Online nematode research databases such as Wormbase (Harris et al. 2010) provide useful
research and educational resources. However, these databanks often contain only descriptive
information on behavioral phenotypes of worm genetic mutants. Sharing of visual and
quantitative parametric worm neuromotor behavior data, as was done in the present study
will provide the scientific community with a novel and useful research and educational
resource. For instance, clustering methods based on ED computation evaluate the dataset as
a whole. It is difficult, if not impossible, to explore which specific behavioral parameter(s)
were commonly altered by a specific subgroup of mutants. Our publicly accessible data
allows researchers to use other data analysis tools to explore these questions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic representation of the AQUABN system.
Left panel: hardware and software of the AQUABN system. Right panel: workflow chart of
the AQUABN software.
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Figure 2.
Clustering of genes according to the behavioral signature of their genetic mutants.
The selected genes segregated into six clusters according to the behavioral signature of their
mutants. Seed worm strains are indicated in bold font. While eighteen variants
unambiguously fell into a single cluster without supervision, seven variants could fit into
two clusters. In these cases, the two involved clusters are connected with lines and the
variants are labeled with asterisks. The area of each section and the spatial position of each
circular diagram are only for presenting purpose without biological meaning. egl-30 (lf) and
egl-30 (gf) are a loss-of-function (md186) or a gain-of-function (js126) allele of egl-30,
respectively. We also used two loss-of-function mutations of unc-29 (x29 and e193).
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Figure 3.
Self-aggregation of worm strains according to the behavioral signature of their genetic
mutants using an unsupervised K-means clustering algorithm.
The selected genes self-aggregated into five clusters and two isolated genes according to the
behavioral signature of their mutants. The area of each section and the spatial position of
each circular diagram are only for presenting purposes without biological meaning.
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Figure 4.
Clustering of genes according to the behavioral signature of their genetic mutants with
ACKMCA.
The selected genes segregated into six clusters with ACKMCA according to the behavioral
signature of their mutants. Seed worm strains are indicated in bold font. The area of each
section and the spatial position of each circular diagram are only for presenting purposes
without biological meaning.

Zhang et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2012 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Effect of redundant/correlated data on supervised clustering genes according to the
behavioral signature of their genetic mutants.
The selected genes segregated into six clusters with ACKMCA according to the behavioral
signature of their mutants. Seed worm strains are indicated in bold font. The area of each
section and the spatial position of each circular diagram are only for presenting purposes
without biological meaning.
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Figure 6.
Effect of data size on supervised clustering genes according to the behavioral signature of
their genetic mutants.
The selected genes segregated into five clusters with ACKMCA according to the behavioral
signature of their mutants. Seed worm strains are indicated in bold font. The area of each
section and the spatial position of each circular diagram are only for presenting purposes
without biological meaning.
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Table 1

Molecular identities of selected strains

Gene Allele Molecular Identity

bas-1 ad446 Aromatic amino acid decarboxylase Dopamine neurotransmission

cat-2 e1112 Tyrosine hydroxylase Dopamine neurotransmission

cat-4 ok-342 GTP cyclohydrolase Dopamine and serotonin neurotransmission

dgk-1 sy428 Diacylglycerol kinase Go signaling

dop-1 ok398 D1-like dopamine receptor Dopamine neurotransmission

dop-2 vs105 D2-like dopamine receptor Dopamine neurotransmission

dop-3 vs106 D2-line dopamine receptor Dopamine neurotransmission

eat-16 sa609 A Regulator of G-protein signaling G protein signaling

eat-4 ad572 Glutamate transporter Glutamate neurotransmission

egl-10 md176 Regulator of G protein Signaling G protein signaling

egl-30 js126, md186 Heterotrimeric G-protein (Gq) alpha subunit Gq signaling

egl-8 md1971 Phospholipase C beta Gq signaling

goa-1 m1134 Heterotrimeric G-protein (Go) alpha subunit Go signaling

gpb-2 sa603 Heterotrimeric G protein beta subunit G protein signaling

mec-3 e1338 Transcriptional regulator required for mechanosensory neuron Mechanosensory

mec-4 e1611 Amiloride sodium channel required for mechanosensory function Mechanosensory

mod-1 ok103 Serotonin-gated chloride channel Serotonin neurotransmission

mod-5 n822 Serotonin transporter Serotonin neurotransmission

pde-4 ce268 Cyclic nucleotide phosphodiesterase Unknown function

tbh-1 n3247 Dopamine beta-hydroxylase Octopamine neurotransmission

tdc-1 ok914 Aromatic-L-amino acid decarboxylase Octopamine neurotransmission

tph-1 mg280 Tryptophan hydroxylase Serotonin neurotransmission

unc-18 n2813 Homolog of MUNC-18, regulating synaptic vehicle docking Synaptic regulation

unc-2 e55 Homolog of human CACNA1A, a calcium alpha subunit Voltage-gated calcium channel

unc-29 x29, e193 Nicotinic acetylcholine receptor non-alpha subunit Neuromuscular junction

unc-36 ad698 L-type Calcium channel alpha subunit Voltage-gated calcium channel

unc-38 x20 Nicotinic acetylcholine receptor alpha subunit Neuromuscular junction

unc-43 sa200 Calcium/calmodulin-dependent protein kinase Synaptic regulation

unc-63 x13 Nicotinic acetylcholine receptor alpha subunit Neuromuscular junction

unc-73 gm33 Guanine nucleotide exchange factor Unknown function

Additional information regarding the roles of these genes in worm locomotion regulation is available in Supplemental Materials.
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Table 2

List of Must-links for CKMCA

Gene 1 Gene 2 Gene 1 Gene 2

bas-1 dop-2 mec-4 dop-2

bas-1 mod-1 mec-4 mod-1

bas-1 mod-5 mec-4 mod-5

cat-2 cat-4 mod-1 dop-1

cat-2 dop-3 mod-1 mec-3

cat-2 eat-16 mod-1 mod-5

cat-4 dop-1 mod-5 mec-3

cat-4 eat-16 mod-5 mec-4

cat-4 mod-1 mod-5 mod-1

dgk-1 eat-16 pde-4 tdc-1

dgk-1 eat-4 pde-4 tph-1

dgk-1 gpb-2 pde-4 tbh-1

dop-1 mec-3 tdc-1 tbh-1

dop-1 mod-1 tdc-1 unc-13

dop-1 mod-5 tdc-1 unc-29(x29)

dop-2 bas-1 tph-1 pde-4

dop-2 mec-4 tph-1 tdc-1

dop-2 mod-5 tph-1 unc-13

dop-3 bas-1 tbh-1 pde-4

dop-3 cat-2 tbh-1 tdc-1

dop-3 cat-4 tbh-1 unc-13

eat-16 cat-4 unc-13 tdc-1

eat-16 eat-4 unc-13 tph-1

eat-16 gpb-2 unc-13 tbh-1

eat-4 cat-4 unc-18 unc-29(e193)

eat-4 dgk-1 unc-18 unc-73

eat-4 eat-16 unc-18 unc-2

egl-10 egl-8 unc-29(x29) tdc-1

egl-10 egl-30(md) unc-29(x29) tbh-1

egl-10 goa-1 unc-29(x29) unc-13

egl-8 goa-1 unc-29(e193) tbh-1

egl-8 mec-3 unc-29(e193) unc-36

egl-8 mod-5 unc-29(e193) unc-63

egl-30(js) eat-16 unc-36 tbh-1

egl-30(js) goa-1 unc-36 unc-29e

egl-30(js) gpb-2 unc-36 unc-63

egl-30(md) egl-10 unc-38 tph-1
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Gene 1 Gene 2 Gene 1 Gene 2

egl-30(md)) egl-8 unc-38 unc-13

egl-30(md) goa-1 unc-38 unc-63

goa-1 bas-1 unc-43 tdc-1

goa-1 mec-4 unc-43 tbh-1

goa-1 mod-5 unc-43 unc-29(x29)

gpb-2 dgk-1 unc-63 unc-13

gpb-2 eat-16 unc-63 unc-29(e193)

gpb-2 eat-4 unc-63 unc-36

mec-3 dop-1 unc-73 unc-29(e193)

mec-3 mod-1 unc-73 unc-36

mec-3 mod-5 unc-73 unc-63

unc-2 unc-18

unc-2 unc-29(e193)

unc-2 unc-36
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Table 3

List of Must-links for ACKMCA.

Gene 1 Gene 2 Biological reason

cat-2 dop-1 lock-and-key expression

cat-2 dop-2 lock-and-key expression

cat-3 dop-3 lock-and-key expression

mec-3 mec-4 regulating mechanosensory

egl-30 (gf) egl-8 components of Gq signaling

unc-63 unc-29 (e193) subunits of the same acetylcholine receptor

unc-63 unc-29 (x29) subunits of the same acetylcholine receptor

unc-63 unc-38 subunits of the same acetylcholine recptor

J Neurosci Methods. Author manuscript; available in PMC 2012 April 30.


