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Abstract
How type I skeletal muscle inherently maintains high oxidative and vascular capacity in absence
of exercise in unclear. We show that nuclear receptor ERRγ is highly expressed in type I muscle
and when transgenically expressed in anaerobic type II muscles (ERRGO mice), dually induces
metabolic and vascular transformation in absence of exercise. ERRGO mice show increased
expression of genes promoting fat metabolism, mitochondrial respiration and type I fiber
specification. Muscles in ERRGO mice also display an activated angiogenic program marked by
myofibrillar induction and secretion of pro-angiogenic factors, neo-vascularization and a 100%
increase in running endurance. Surprisingly, the induction of type I muscle properties by ERRγ
does not involve PGC1α. Instead, ERRγ genetically activates the energy sensor AMPK, in
mediating the metabo-vascular changes in the ERRGO mice. Therefore, ERRγ represents a
previously unrecognized determinant that specifies intrinsic vascular and oxidative metabolic
features that distinguish type I from type II muscle.
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INTRODUCTION
Tissue vascular supply is tightly coupled to its oxidative capacity. This is especially evident
in skeletal muscle beds, each enriched in either oxidative slow-twitch or glycolytic fast-
twitch myofibers (Fluck and Hoppeler, 2003; Pette and Staron, 2000). Slow-twitch muscles
are characterized by high mitochondrial content, fatigue resistant (type I) fibers and dense
vascularity to ensure a steady and prolonged supply of oxygen and nutrients (Annex et al.,
1998; Cherwek et al., 2000; Ripoll et al., 1979). Fast-twitch (type II) muscles generally have
lower oxidative capacity, a reduced blood supply and are fatigue sensitive. How the type I
vs. the type II muscle vasculature is specified to match oxidative capacity is unclear.
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Previous studies have established that nuclear receptors such as PPARα, PPARδ and ERRα
along with co-regulators PGC1α, PGC1β and Rip140 control diverse aspects of aerobic
respiration including fatty acid oxidation, oxidative phosphorylation and mitochondrial
biogenesis in skeletal muscle (Arany et al., 2007; Huss et al., 2004; Lin et al., 2002; Minnich
et al., 2001; Muoio et al., 2002; Seth et al., 2007; Wang et al., 2004). While signaling factors
such as TGFβ1, platelet-derived growth factor, fibroblast growth factor (FGF) 1 and 2, and
vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis (Carmeliet,
2000; Ferrara and Kerbel, 2005; Gustafsson and Kraus, 2001), whether and how these
factors orchestrate dense vascularization of aerobic muscles is unclear. One possibility is
vascular arborization by co-activator PGC1α that is induced by hypoxia and exercise (Arany
et al., 2008). However, PGC1α knockout mice are viable, still retain oxidative muscle, and
have normal vasculature (Arany et al., 2008; (Lin et al., 2004). Since the intrinsic
enrichment of blood flow to aerobic muscles in the absence of exercise is unlikely to depend
on PGC1α induction, we speculate the existence of a novel regulatory angiogenic pathway.

Estrogen receptor-related receptor γ (ERRγ), like other members of the ERR subfamily, is a
constitutively active orphan nuclear receptor, though unlike ERRα and β, it is more
selectively expressed in metabolically active and highly vascularized tissues such as heart,
kidney, brain and skeletal muscles (Giguere, 2008; Heard et al., 2000; Hong et al., 1999). In
vitro studies suggest that ERRγ activates genes such as PDK4 and MCAD that play a
regulatory role in oxidative fat metabolism (Huss et al., 2002; Zhang et al., 2006).
Furthermore, a comprehensive gene expression analysis identified ERRγ as a key regulator
of multiple genes linked to both fatty acid oxidation and mitochondrial biogenesis in cardiac
muscles (Alaynick et al., 2007; Dufour et al., 2007). Expression of ERRγ is also induced in
variety of tumors with hyper-metabolic demands and abundant vasculature (Ariazi et al.,
2002; Cheung et al., 2005; Gao et al., 2006). Therefore, we explored the potential of ERRγ
in controlling the intrinsic angiogenic pathway in oxidative slow-twitch muscles. We found
ERRγ to be exclusively and abundantly expressed in oxidative (type I) slow-twitch muscles.
Transgenic expression of ERRγ in fast-twitch type II muscle triggers aerobic transformation,
mitochondrial biogenesis, VEGF induction and robust myofibrillar vascularization, all in the
absence of exercise. These intrinsic effects of ERRγ do not depend on PGC1α induction, but
rather are linked to activation of the metabolic sensor AMPK. These findings reveal an
exercise-independent ERRγ pathway that promotes and coordinates vascular supply and
metabolic demand in oxidative slow-twitch muscles.

RESULTS
Skeletal muscle ERRγ expression

Because skeletal muscle is a functionally heterogeneous tissue consisting of both aerobic
slow-twitch and glycolytic fast-twitch muscles, we re-evaluated ERRγ expression in the
context of different myofibrillar beds. We found that ERRγ transcript is highly expressed in
oxidative muscles such as soleus and red gastrocnemius, with minimal expression in
glycolytic quadriceps and white gastrocnemius (Figure 1A, lower panel). ERRγ protein is
undetectable in quadriceps, but highly expressed in soleus (Figure 1A, upper panel).

Previously, we described viable ERRγ +/− mice in which a β-galactosidase protein-coding
region without the promoter was introduced in-frame with the initiation site of the Esrrg
gene (Alaynick et al., 2007) such that the enzyme mimics the expression of endogenous
ERRγ. β-Galactosidase staining of different muscle beds from ERRγ +/− adult mice further
confirmed that the receptor is highly expressed in oxidative (e.g. soleus and red
gastrocnemius) compared to the minimal levels in glycolytic muscles (e.g. quadriceps, white
gastrocnemius) (Figure 1B).
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Transgenic muscle-specific ERRγ over-expression
The above expression pattern of ERRγ supports its presumptive role in oxidative and slow-
twitch muscle biology. To test this idea, we generated transgenic mice selectively expressing
ERRγ in skeletal muscles under the control of the human alpha-skeletal actin promoter
(Muscat and Kedes, 1987; Wang et al., 2004). Two ERRγ over-expressing (ERRGO)
transgenic lines were obtained (TG 421 and 425) showing both transcript (lower panel) and
protein (upper panel) in fast-twitch quadriceps (Figure 1C). Gross anatomical analysis of
hindlimb muscles (Figure1D) and dissection of individual muscle beds (Figure 1E) revealed
enhanced red coloration (characteristic of oxidative fibers) in transgenic compared to wild
type muscle. Importantly, slow-twitch (soleus) muscle, already high in ERRγ expression,
was not affected (Figure 1E), presumably because it is already fully oxidative. In addition,
oxidative biomarkers myoglobin and cytochrome c were induced in the quadriceps of both
the transgenic lines compared to wild type mice (Supplemental Figure S1). For subsequent
studies we focused on TG 421 due to slightly higher biomarker expression in this progeny.

Fast to slow-twitch transformation of skeletal muscle by ERRγ
To study the transcriptional effect of ERRγ, muscle gene expression was measured in
quadriceps from wild type and ERRGO mice. In gene array analysis, we found that ERRγ
regulated a total of 1123 genes in skeletal muscles, of which 623 genes were induced. Gene
ontology-based classification of these genes is presented in Figure 2A. The majority of the
up-regulated genes belong to either mitochondrial biology (90) or oxidative metabolism (43)
encoding various components of fatty acid oxidation pathway as well as the oxidative
respiratory chain reflective of aerobic adaptation (described in Supplementary Table 1).
Furthermore, contractile genes, especially ones associated with slow myofibers, were also
activated raising the possibility of fast-to-slow transformation linked to the metabolic switch
(Supplementary Table 2).

We confirmed that key biomarker genes associated with oxidative metabolism [Ucp3, Pdk4,
Cycs, Cox5a, Lpl] and oxidative myofibers [Mhc Ia, Mhc IIa], but not glycolytic myofibers
[Mhc IIb] were induced by ERRγ in quadriceps of transgenic mice (Figure 2B). Conversely,
many of the biomarker genes tested [Ucp3, Cycs, Acscl1, Cox6a2, Ppara] were found to be
down-regulated by siRNA-mediated ERRγ knockdown in primary cultured myotubes
(Supplementary Figure S2 A) isolated from oxidative muscles (soleus and red
gastrocnemius). Moreover, the oxidative changes were confirmed at the protein level as
exemplified by increased expression of myoglobin, cytochrome c and UCP3 in transgenic
relative to wild type muscle (Figure 2C). Furthermore, staining of gastrocnemius cryo-
sections for defining oxidative mitochondrial enzyme SDH activity revealed an increase in
oxidative myofibers in ERRGO compared to wild type mice (Figure 2D), which was
confirmed by electron microscopy (data not shown).

To access the metabolic effects of ERRγ at the cellular level, we measured the mitochondrial
bioenergetics in wild type and ERRγ over-expressing C2C12 cells using an extracellular
flux analyzer. Specifically, we determined the oxygen consumption rate (OCR) (an indicator
of mitochondrial respiration) along with the extracellular acidification rate (ECAR) (a
measure of glycolysis) in these cells (Supplemental Figure S2 B–C). ERRγ expression
significantly induced mitochondrial respiration (OCR), reduced cellular glycolysis (ECAR)
resulting in an 85% shift in the cellular energy production ratio towards oxidative
phosphorylation (Figure 2E).

The above observations show that ERRγ promotes an overt conversion of glycolytic fast-
twitch muscles such as quadriceps to an oxidative slow-twitch phenotype.
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ERRγ promotes skeletal muscle vascularization
Intrinsic vascularization of slow-twitch myofibers enables a baseline of exercise
independent fatigue resistance. We speculated that ERRγ, by virtue of its restricted
expression to type I fibers could, in addition to promoting oxidative metabolism,
simultaneously induce vessel formation to match the increased oxidative demand. To test
this we first stained muscle cryo-sections for PECAM 1 (CD31), an endothelial cell marker
that is routinely used to detect angiogenesis and changes in tissue vasculature. We found that
transgenic muscles showed increased PECAM 1 (Figure 3A) staining compared to wild
type. Similarly, transgenic muscle cryo-sections showed an increase in alkaline phosphatase
staining, an alternative marker for tissue endothelium (Figure 3B). These findings point
toward a possible induction of angiogenesis and muscle vascularization by ERRγ. To test
whether ERRγ supports formation of functional non-leaky blood vessels we used micro-
angiography following intra-ventricular perfusion of a fluorescent microspheres (0.1uM).
The impermeability of the microspheres allows their vascular retention, enabling confocal
angiographic “vascular mapping” of intact and mature blood vessels. Examination of
perfused microspheres in wild type and transgenic gastrocnemius revealed an increase in
muscle vascularity by ERRγ (Figure 3C) showing that ERRγ dually promotes oxidative fiber
specification and neo-vascularization.

Paracrine regulation of muscle vascularization of ERRγ
How might ERRγ expressed in myofibers regulate proximal vascular development? Gene
expression studies (Figure 2A and Supplementary Table 3) revealed increased expression of
25 angiogenic genes, including vascular endothelial growth factor A (Vegfa) in ERRGO
quadriceps. Real time PCR confirmed induction of two Vegfa isoforms (165 & 189) along
with Vegfb and Fgf1 in transgenic muscles (Figure 3D–H). Moreover, ERRγ as well as
ERRα & ERRβ increased the transcription of a Vegfa promoter-driven luciferase reporter in
AD 293 cells (Supplementary Figure S3). In addition, we confirmed that the protein levels
of Vegfa and Fgf1 were increased in the quadriceps of the transgenic mice (Figure 3H),
raising the specter that muscle ERRγ activates paracrine networks that are released into the
microenvironment to promote neo-vascularization.

To directly test whether ERRγ triggers paracrine angiogenesis we employed an SVEC4–10
(murine endothelial cells) tube formation assay. We reasoned that conditioned media from
ERRγ over-expressing muscle cells would contain the appropriate signals to induce tube
formation in endothelial cells. Indeed, treatment of SVEC4–10 cells with conditioned media
from ERRγ over-expressing C2C12 myotubes stimulated tube formation in 7–8 hr (Figure
4A). To confirm that the conditioned media contains angiogenic signals, we examined the
gene expression in cells and protein levels in the media (by ELISA) of a representative
angiokine, Vegfa. We found that over-expression of ERRγ in C2C12 myotubes increases
expression of Vegfa-121, 165 and 189 genes (Figure 4B–D) and increases total Vegfa
secretion (by 4-fold) in the media (Figure 4E). These results demonstrate that ERRγ can
induce angiogenic factors such as myocellular Vegfa to increase angiogenesis in a paracrine
fashion.

Physiological effects of ERRγ remodeled muscle
Aerobic exercise-induced remodeling of skeletal muscles depends on both an increase in
oxidative capacity and new blood vessel formation; changes that are a critical part of the
physiologic adaptation to training (Bloor, 2005; Egginton, 2008; Gavin et al., 2007;
Gustafsson and Kraus, 2001; Jensen et al., 2004; Waters et al., 2004). Therefore, we
investigated the potential of ERRγ to promote physiological re-modeling. First, in metabolic
cage oxymetric studies, we found that the transgenic mice exhibited an increase in oxygen
consumption (during both the light and dark cycles) in concert with the observed increased
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oxidative metabolism and blood supply to skeletal muscles (Figure 5A). Second, the
ERGGO mice have a lower Respiratory Exchange Ratio (RER) compared to the wild type
mice indicative of a tendency to preferentially oxidize fat over carbohydrate in the
transgenic skeletal muscles (Figure 5B). The ambulatory activities of wild type and
transgenic mice were comparable, and therefore unlikely to contribute to changes in
oxymetric parameters (Supplemental Figure S4 A). These combined changes led us to
explore whether ERRGO mice acquired enhanced running endurance. ERRγ transgenic mice
were able to run longer and further compared to the wild type littermates (Figure 5C).
Finally, the ERRGO mice were subjected to a high fat-high carbohydrate diet to establish
whether the induction of endurance muscle and oxidative RER affected global metabolic
balance. As expected ERRGO mice gained 35% less weight than wild type controls on a
high fat diet (Supplemental Figure S4 B). These findings demonstrate that targeting of ERRγ
increases oxidative metabolism and blood supply to skeletal muscle leading to increased
oxygen consumption, better endurance and resistance to weight gain.

PGC1α-independent regulation of aerobic muscle by ERRγ
PGC1α is induced by hypoxia and exercise to promote HIF1α-independent vascularization
of type II muscle (Arany et al., 2008) and further activated by post-translational
modifications such as deacetylation (Jager et al., 2007; Puigserver et al., 2001; Rodgers et
al., 2005). Therefore, we asked whether the ERRγ-induced changes in the muscle were due
to the induction and/or activation of PGC1α. The levels of PGC1α mRNA, protein and
acetylation remained unchanged in the ERRγ-transformed skeletal muscle (Figure 6A and
Supplemental Figure S5 A). Interestingly, of the two additional ERR isoforms that can
mediate PGC1α signaling, ERRβ but not ERRα was also significantly induced in transgenic
muscle (Mootha et al., 2004; Schreiber et al., 2003; Huss et al., 2002)

How might ERRγ control metabolism, VEGF induction and vasculature remodeling in
ERRGO mice in absence of enhanced PGC1α signaling? We focused on the alternative
aerobic master-regulator–AMPK–because of its known role in metabolic (Fujii et al., 2008;
Fujii et al., 2007) and vascular adaptation (Zwetsloot et al., 2008). While AMPK is normally
induced by exercise or hypoxia, surprisingly we found it to be constitutively activated in
ERRGO muscle (Figure 6B and C). The AMPK activation was further validated by
measuring phospho-ACC levels (an AMPK target and a bio-marker of AMPK activity),
which we found to be higher in the transgenic compared to the wild type muscles
(Supplemental Figure S5 B). ATP consumption is critical to AMPK activation as AMP
stimulates and ATP inhibits the enzyme (Xiao et al., 2007). Indeed, we found that ATP
levels were lower in ERRγ over-expressing compared to control C2C12 muscle cells,
providing a biochemical basis for the observed AMPK activation (Supplemental Figure S5
C). (Note that we use cultured muscle cells for measuring ATP levels because ERRγ over-
expression promotes both angiogenic gene expression as well as oxidative respiration in a
fashion similar to transgenic muscle). Interestingly, in wild type mice, we found that AMPK
is more active in predominantly oxidative slow-twitch compared to predominantly
glycolytic fast-twitch muscle, in resting state (Figure 6B and C). Indeed, a synthetic
activator AICAR, at a dose (500mg/kg/day) previously shown to stimulate AMPK in
anaerobic muscle and improve aerobic performance (Narkar et al., 2008), was able to direct
aspects of skeletal muscle transformation in a fashion similar to ERRγ (Figure 6D). These
observations suggest a convergence between ERRγ and AMPK pathways that comprise an
exercise-independent mechanism to direct intrinsic vascularization and oxidative
metabolism in type I muscle, as depicted in Figure 6E.
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DISCUSSION
Oxidative slow-twitch muscle beds are highly vascularized, pointing to an underlying
regulatory network that integrates blood flow to myocellular metabolism. A transcriptional
pathway specifying intrinsic differences between type I and II muscles has not previously
been identified. Discovery of the components of this network has implications in treating
cardiovascular diseases commonly linked to peripheral vascular degeneration due to
ischemia. Here we show that in the skeletal muscle, ERRγ is exclusively expressed in highly
vascularized aerobic muscles. Transgenic over-expression of ERRγ is sufficient to enable
anaerobic muscles to acquire enhanced oxidative capacity and dense vasculature. The
observed morphological remodeling is linked to induction by ERRγ of genes controlling
oxidative phosphorylation, fatty acid oxidation and oxidative slow-twitch myofibers as well
as a parallel induction of pro-angiogenic genes involved in paracrine regulation of
vasculature. At a functional level, these genetic changes impart high oxygen consuming and
exercising capacity as well as resistance to diet-induced obesity to the ERRGO mice.
Surprisingly, these effects are independent of PGC1α, but instead are associated with ERRγ-
directed AMPK activation in the muscle. Therefore, ERRγ regulates blood supply to aerobic
muscles, and perhaps is a transcriptional gauge of myo-cellular supply and demand.

Although skeletal muscle adapts to exercise by increasing oxidative metabolism and
vascular supply via induction of transcriptional regulators such as PGC1α (Arany et al.,
2008; Baar et al., 2002; Huss et al., 2002; Pilegaard et al., 2003; Russell et al., 2003; Russell
et al., 2005), how type I fibers achieve intrinsic vascularization even in absence of exercise
is poorly understood. We show here that one such molecular pathway involves nuclear
receptor ERRγ–highly expressed in oxidative slow-twitch muscles. Targeted expression of
ERRγ to quadriceps and white gastrocnemius, where the receptor is typically not expressed,
morphologically endows these muscles with dense vascular supply and numerous slow-
twitch characteristics. Recently, it was reported that muscle-specific over-expression of a
constitutively active ERRγ (VP16-ERRγ) imparts an oxidative metabolic phenotype to the
skeletal muscle (Rangwala et al., 2010). However, the effect of VP16-ERRγ on muscle
vascularization was not evaluated in these mice.

Genome-wide expression analysis revealed that ERRγ acts by coordinately inducing gene
networks promoting mitochondrial biogenesis, oxidative transformation and angiogeneis.
The ERRγ program includes mobilization and oxidation of fat [e.g. Acadl, Acadm, Cpt1b,
Cpt2, Lpl], electron transport [e.g. Atp5h, Cox6a2, Ndufab1, Ndufb2m Ndufv1, Sdhb],
mitochondrial biogenesis [e.g. Mfn1], and formation of energy efficient slow-contractile
muscle [e.g. Tnnc1, Tnni1, Tnnt1]. The observed changes constituting transformation of the
contractile apparatus to a slow phenotype and increase in oxidative metabolic genes
reflected in profound increase in mitochondrial (SDH) staining represents a fiber type
switch. Notably, ERRγ also induces key transcriptional inducers of oxidative metabolism
including Esrrb, Ppara, Ppard and Ppargc1b (Supplemental Table 4) (Lin et al., 2002;
Minnich et al., 2001; Muoio et al., 2002; Wang et al., 2004). Therefore, it is likely that
ERRγ is a critical upstream genetic switch that may determine metabolic fate by presiding
over the expression of multiple aerobic regulators.

We hypothesize that the vascular program triggered by myocellular ERRγ activates a
transcriptional program that directs secretion of paracrine signals into skeletal muscle
microenvironment to induce angiogenesis. This model is strongly supported by our
observation that conditioned media from ERRγ over-expressing C2C12 myotubules is able
to induce endothelial cell tube formation in culture. Indeed, ERRγ transcriptionally induced
all isoforms of angiokine Vegfa in C2C12 myotubes, resulting in increased Vegfa secretion
into the media. Vegfa is a key regulator of angiogenesis critical for guiding endothelial cells
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to their targets (Grunewald et al., 2006; Springer et al., 1998). Furthermore, ERRγ stimulates
the Vegfa promoter containing putative ERR binding sites that is known to transcribe all
Vegfa isoforms (Arany et al., 2008). Vegfa mRNA and protein expression is also induced in
ERRGO muscle. These findings collectively raise the possibility of direct transcriptional
activation of angiogenic genes by ERRγ. However, it is important to note that the
angiogenic effects of ERRγ cannot be solely attributed to Vegfa induction and secretion. For
example ERRγ additionally activates the expression of Fgf1 and Cxcl12, known to regulate
endothelial cell proliferation and migration (Forough et al., 2006; Gupta et al., 1998;
Partridge et al., 2000; Shao et al., 2008; Zheng et al., 2007), along with ephrin B2 proposed
to recruit mural cells that are required for vessel maturation (Foo et al., 2006). Additionally,
up-regulated factors such as Notch4 as well as SOX17 are transcriptional regulators of
vasculogenesis (Hainaud et al., 2006; Leong et al., 2002; Matsui et al., 2006). In this aspect,
ERRγ seems to serve a function similar to HIF1α, a known master regulator of angiogenesis
during hypoxia (Pajusola et al., 2005). Interestingly, it was recently demonstrated that ERRs
might physically interact with HIF1α in regulating its transcriptional activity (Ao et al.,
2008). Whether such a mechanism is relevant to our model remains to be determined. Along
these lines, HIF1α mRNA levels–a marker for chronic hypoxia–did not change in ERRGO
compared to wild type muscles (data not shown) indicating an absence of hypoxia or its
involvement in the vascular effects of ERRγ (Hoppeler and Vogt, 2001a, b). Furthermore,
HIF1α is known to negatively regulate oxidative metabolism (Mason et al., 2004; Mason et
al., 2007) and is therefore unlikely to contribute to ERRγ-mediated remodeling of skeletal
muscles.

ERRGO mice exhibited increased oxygen consumption, decreased respiratory exchange
ratio, high running endurance and resistance to diet-induced weight gain. These changes are
physiological hallmarks of increased aerobic capacity in mice, and are a direct consequence
of engineering highly oxidative and vascularized muscle by ERRγ. While similar
remodeling of skeletal muscle and aerobic physiology are triggered by exercise, our data
prove that generation of a fully functional “endurance vasculature” is not exercise dependent
(Bloor, 2005; Egginton, 2008; Gavin et al., 2007; Gustafsson and Kraus, 2001; Jensen et al.,
2004; Waters et al., 2004). Reciprocally, the extent to which ERRγ signaling in skeletal
muscle contributes to exercise adaptation remains to be determined.

A surprising finding of our study was lack of change in the expression of PGC1α, a known
and inducible regulator of aerobic muscles, in the ERRγ-transformed muscle. One
alternative possibility is post-translational activation of PGC1α without change in its
expression (Jager et al., 2007; Puigserver et al., 2001; Rodgers et al., 2005). De-acetylation
of PGC1α is critical for its activation in the skeletal muscle (Canto et al., 2010; Gerhart-
Hines et al., 2007; Lagouge et al., 2006). However, ERRγ over-expression did not lead to
de-acetylation of PGC1α, which remained comparably acetylated in both the wild type and
ERRGO muscles. The lack of post-translational activation of the co-factor in ERRGO mice
is further underscored by a previous report that non-genomic activation of PGC1α typically
leads to its transcriptional induction, which we did not observe in these studies (Jäger et al.,
2007). Along the same lines, it was recently shown that both PGC1α and β are dispensable
for fiber type specification in the skeletal muscle (Zechner et al., 2010). In contrast, we find
that an alternative aerobic master regulator, AMPK, is activated by ERRγ in the skeletal
muscles. AMPK is typically activated by exercise (Fujii et al., 2000; Winder and Hardie,
1996; Wojtaszewski et al., 2000) and is essential for exercise-mediated switch to aerobic
myofibers in the skeletal muscle (Rockl et al., 2007). Indeed, transgenic activation of AMPK
in the skeletal muscle increases the proportions of oxidative myofibers in absence of any
exercise (Rockl et al., 2007). Similarly we found that chemical activation of AMPK by
AICAR triggers aerobic transformation of type II muscle. However, AMPK alone is
unlikely to mediate all the ERRγ effects, and contribution by additional metabolic regulators
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(e.g. calcineurin, SIRT1, etc) in ERRGO mice cannot be ruled out. This is possible because,
unlike ERRγ, AMPK activation apparently does not lead to a complete transformation to a
type I phenotype, but to a more intermediate type IIa and IIx oxidative myofibers (Rockl et
al., 2007). In this context, it is peculiar that we found AMPK to be naturally and selectively
active in soleus (pre-dominantly type I myofibers) compared to quadriceps (predominantly
type II myofibers). Previous studies have suggested AMPK activity to be similar between
soleus and EDL (also pre-dominantly made up of type II myofibers) (Dzamko et al., 2008;
Jensen et al., 2007; Jorgensen et al., 2004). Speculatively, this discrepancy may have
technical attributes or may even be linked to possible differences in recruitment of EDL and
quadriceps for postural activity that might affect basal AMPK activation. Nevertheless, our
results demonstrate that in the context of over-expression, ERRγ is sufficient to initiate both
metabolic and vascular pathways to drive aerobic remodeling of sedentary muscle
independent of PGC1α by recruiting alternative regulators such as AMPK (see Figure 6E).

Multiple diseases including obesity and diabetes are commonly linked to deregulation of
both oxidative metabolism and vascularity. A shared therapeutic approach to these
conditions includes exercise that activates a plethora of transcriptional pathways to increase
aerobic metabolism and vascularization to ultimately enhance performance (Bloor, 2005;
Egginton, 2008; Gavin et al., 2007; Gustafsson and Kraus, 2001; Jensen et al., 2004; Waters
et al., 2004). Our findings present a possibility of therapeutically exploiting ERRγ to
simultaneously regulate oxidative capacity and vascularity. High expression levels of this
receptor in tissues most prone to metabolic and vascular diseases (e.g. heart, skeletal muscle,
brain and kidney) further potentiates its value as a potential pharmacologic target (Ariazi et
al., 2002; Cheung et al., 2005; Gao et al., 2006; Giguere, 2008; Heard et al., 2000; Hong et
al., 1999). In summary, our studies show that ERRγ controls mitochondrial function and
metabolism, together with angiogenesis that anatomically synchronizes vascular arborization
to oxidative metabolism.

Experimental Procedures
Animals—Mouse ERRγ cDNA was placed downstream to the human α-skeletal actin
promoter and upstream of the SV40 intron/poly (A) sequence. The purified transgene was
injected into C57BL/6J x CBA F1 zygotes. Two transgenic founders (TG 425 and 421) were
obtained that were backcrossed for 5 generations with C57BL/6J. All experiments used age
(2–3 months) and sex (male) matched transgenic and wild type (WT) littermates. Mice were
maintained on a normal chow diet. ERRγ +/− mice and tissue β-galactosidase staining has
been described previously (Alaynick et al., 2007).

Drug treatment—Male C57Bl/6J mice (8 weeks old) were intra-peritoneally injected with
vehicle or AICAR (500mg/kg/day), as previously described (Narkar et al., 2008).

Gene and protein expression analysis—RNA was extracted using Trizol extraction
method from quadriceps or soleus isolated from WT and transgenic mice. Additionally,
protein lysates were prepared from quadriceps and analyzed by western blotting with
myoglobin (Dako), CYCS (Santacruz), UCP3 (Affinity Bioreagents), phospho-AMPK alpha
(Cell Signaling, Cat no # 2535) and total-AMPK alpha (Cell Signaling, Cat no # 2532)
antibodies. Note that the AMPK antibodies detect both the alpha 1 and 2 catalytic subunits
of AMPK (Narkar et al., 2008).

Microarray Analysis—Global gene expression analysis was performed in quadriceps
from WT and transgenic mice, as previously described (Narkar et al., 2008).
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Muscle Staining and Immunohistochemistry—SDH, PECAM/CD31 and alkaline
phosphates staining are described in the Supplemental Methods.

Fluorescence Micro-angiography—Blood vessel mapping was performed as
previously described (Johnson et al., 2004; Springer et al., 2000). Briefly, a red fluorescent
microsphere (0.1μM) suspension was intra-ventricularly perfused (10 ml, 1ml/min) followed
by euthanasia and tissue collection. Longitudinal cryo-sections (10μM) of frozen
gastrocnemius were processed and subjected to confocal microscopy to image skeletal
muscle vasculature.

Cell culture, in vitro angiogenesis and Vegfa ELISA—See Supplemental Methods.

Oxymetery and treadmill assays—Oxygen consumption, respiratory exchange ratio
and ambulatory activity were measured in 3 month old, WT and transgenic male mice
(N=6–7/group) of comparable weight using Comprehensive Lab Animal Monitoring System
to obtain oxymetric measurements (Columbus Instruments). These mice were first
acclimated in the monitoring system for 1 day, followed by data collection for 24 hr to
include a 12 hr light and dark cycle. For each animal, the average of all the data points
within the light or dark phase was used as a representative value of the respective cycle.
Diurnal differences between the light and dark cycles were detectable in all animals,
validating the method of data collection.

Endurance was determined in WT and transgenic (N=6 mice/group), as previously described
(Narkar et al., 2008). Treadmill protocol is described in Supplemental Methods.

Data Analysis—Data was analyzed using either one way ANOVA with an appropriate
post hoc test, or unpaired student’s t-test, as indicated.

The global gene expression data has been deposited in the NCBI Gene Expression Omnibus
under the GEO series accession number (pending).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Skeletal muscle ERRγ expression
(A) ERRγ gene (lower panel) and/or protein (upper panel) expression in quadriceps
(QUADS), white gastrocnemius (WG), red gastrocnemius (RG) and soleus (SOL) isolated
from C57Bl/6J mice (N=4). (B) Representative images of β-galactosidase stained muscles.
(C) Expression of transgene transcript (lower panel) and protein (upper panel) in quadriceps
of wild type (WT), founder TG 425 and 421. (D) Representative hindlimbs from WT and
transgenic mice. (E) Dissected hindlimb muscle beds [adductor (ADDT), quadriceps,
gastrocnemius (GASTROC) and soleus]. In (A) and (C) data are presented as mean ± SD
(N=4). See Supplemental Figure S1.
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Figure 2. ERRγ promotes oxidative muscle transformation
(A) Gene ontology classification of positively regulated genes. Gene selection was based on
p<0.05 on Bonferroni’s multiple comparison test for fold change (N=3). (B) ERRγ increases
expression of oxidative metabolism (Ucp3, Pdk4, Cycs, Cox5a, Lpl), oxidative muscle
(Mhc1a, Mhc2a) but not glycolytic muscle (Mhc2b) biomarker genes. Data are presented as
mean ± SD from N=6 samples. (C) ERRγ increases protein expression of myoglobin,
cytochrome c and uncoupling protein 3 (N=3). (D) Representative images of SDH stained
WT and transgenic gastrocnemius cryo-sections. Similar results were obtained from N=4
mice. (E) OCAR/ECAR ratio representing a shift in cellular energy production to oxidative
phosphorylation. Data is presented as mean ± SD. * represents statistically significant
difference between WT and transgenic mice or between WT and ERRγ over-expressing
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C2C12 cells (p<0.05, unpaired Student’s t-test). See Supplemental Figure S2, Table S1, S2
and S4.
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Figure 3. ERRγ increases muscle vascularization
(A) Increased PECAM 1 staining in transgenic compared to WT gastrocnemius. (B)
Increased alkaline phosphatase staining in transgenic compared to WT tibialis muscles. (C)
Confocal images of microsphere perfused WT and transgenic quadriceps. Similar results
were obtained from N=4 experiments in (A–C). (D–H) Expression of Vegfa-121, Vegfa-165,
Vegfa-189, Vegfb and Fgf1 transcript levels in WT and transgenic quadriceps. Data are
presented as mean ± SD from N=6 samples. (I) ERRγ increases VEGFa and FGF1 protein
expression (N=4). * represents significant difference between WT and transgenic mice
(p<0.05, unpaired Student’s t-test).
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Figure 4. Paracrine stimulation of angiogenesis by ERRγ
(A) Tube formation in SVEC4–10 cells treated for 7–8 hr with conditioned media from WT
and ERRγ over-expressing C2C12 myotubes. Similar results were obtained from 4–6
experiments. (B–D) Expression of Vegfa isoforms in WT and ERRγ over-expressing C2C12
myotubes (N=6). (E) Vegfa concentrations (pg/ml) in conditioned media from 2 day
differentiated WT and ERRγ over-expressing C2C12 myotubes (N=3). Data in (B–E) are
presented as mean ± SD. * represents significant difference between WT and transgenic
mice (p<0.05, unpaired Student’s t-test). See Supplemental Figure S3 and Table S3.
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Figure 5. Physiological effect of ERRγ over-expression
(A) Average oxygen consumption (N=6–7) and (B) average RER (N=6–7) during the light
and the dark cycle over a period of 24 hr in WT and transgenic mice. (C) Running
endurance as a function of time and distance (N=6). Data are presented as mean ± SEM in
(A) and (B) and as mean ± SD in (C). * indicates statistically significant difference between
the two groups. (p<0.05, unpaired Student’s t-test). See Supplemental Figure S4.
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Figure 6. PGC1α-independent regulation by ERRγ
(A) Relative expression of Pgc1a, Erra and Errb genes in WT and transgenic muscle (N=6).
Data are presented as mean ± SD. * represents significant difference between WT and
transgenic mice (p<0.05, unpaired Student’s t-test). (B) Phospho (upper panel) and total
(lower panel) AMPK in soleus (SOL) and quadriceps (QUAD) of WT and transgenic mice
(N=3). (C) Quantification of AMPK activation (phospho to total AMPK ratio) by
densitometric analysis, presented as fold of WT soleus (N=3). Data is presented as mean ±
SD. (D) Representative images of SDH staining of muscle cryo-sections from vehicle and
AICAR (500mg/kg/day for 4 weeks) treated mice. Similar results were obtained from N=3
mice. (E) Synchronization of metabolism and vasculature by ERRγ in aerobic muscle. See
Supplemental Figure S5.
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