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Abstract

The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial
progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that
deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic
epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis
associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population,
and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial
compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell
culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or
irradiation.
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Introduction

The thymus is an epithelial organ responsible for T cell survival,

maturation and selection [1]. It is formed by a cortex and medulla

containing epithelial cells that are morphologically and function-

ally distinct [1,2,3]. Cortical epithelial cells support positive

selection from immature CD4+/CD8+ thymocytes [4,5,6] while

medullary epithelial cells enable induction of tolerance [7,8]. A

putative embryonic epithelial progenitor exists that is defined by

cell surface expression of the glycoprotein MTS24 and EpCAM1

[9,10,11]. Transplantation experiments show that low numbers of

MTS24+ epithelial cells taken from embryonic thymus, between

gestational days 11.5–15.5, are capable of forming a fully func-

tioning thymus with all epithelial subtypes, attract lymphoid

progenitors and support CD4+/CD8+ lymphopoiesis [9,10]. The

use of MTS24 as a stem cell marker is however debated [12] but

further progress has been made by lineage tracing single

transplanted cells. Two studies using elegant lineage tracing

techniques have established two populations capable of self-

renewal and differentiation into medullary and cortical thymic

epithelial cells (TECs) [13,14]. One population is derived from

embryonic day 12 (E12) thymic epithelium expressing EpCAM1

(these cells also express MTS24 and cytokeratin 5 (K5)) [14]. A

second population capable of multipotent differentiation into both

medullary and cortical epithelium is derived from post-natal

medullary cells expressing cytokeratin 14 (K14), the K5 hetero-

dimer [13]. This was demonstrated using lineage tracing driven by

the Keratin 14 promotor. The thymic epithelial Keratin 14

expressing cells were typically thought confined to the thymic

medulla however lineage tracing demonstrated colonies that were

either medullary, cortical or mixed [13].

Several transcription factors required for thymic organogenesis have

been identified [15,16,17,18]. The best understood factor controlling

murine thymic epithelial differentiation is Foxn1. Foxn1 is thought to be

required at the onset of differentiation and Foxn12/2 mice develop

epithelial cysts without thymopoiesis [13,18,19]. Foxn12/2 epithelium

appears immature and it has been suggested that it is required for the

onset of normal thymic epithelial cell differentiation [18]. Replacement

of Foxn1 in single cells results in repopulation of small areas of thymic

tissue capable of thymopoiesis [13].

In contrast, very little is known regarding the factors that

maintain the thymic stem/progenitor cell compartment or

mediate differentiation into the major thymic epithelial subsets

of cortex and medulla. Recently it has been shown that p63 is
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dispensable for lineage commitment and differentiation during

thymic organogenesis, but is required to maintain the proliferative

potential of thymic epithelial progenitors [20,21]. Furthermore,

p63 appears to mediate survival of thymic epithelial stem cells in

vivo by providing protection from programmed cell death [21]. It

is predicted that the loss of stem cells would lead to the natural

history of thymic involution, but it remains to be determined how

the balance between proliferation and apoptosis is regulated

during the process of ageing.

Rac1 plays essential roles in T-cell development and homeo-

stasis [22]. For instance, pre-T cell differentiation and proliferation

upon T cell antigen receptor (TCR) beta selection is dependent on

Rac1 and its upstream activator Vav1 [23]. Interestingly,

activation of Rac1 efficiently diverts pre-T cells from positive

selection in the medulla into negative selection and subsequent

deletion [24]. It has been postulated that Rac1 signals downstream

of a6b4 integrin and p38MAPK in thymic epithelial cells to

promote secretion of IL6 upon thymocyte contact [25]. However,

the specific role of Rac1 in the epithelial compartment of the

thymus has not yet been defined.

We wished to determine whether Rac1 has a role in the

maintenance of the thymic epithelial cell compartment. We first

deleted Rac1 in post-natal K14 expressing epithelial cells. Upon

deletion these mice underwent a degree of thymic atrophy. We then

found in an engraftment model that the deletion of Rac1 in K14

positive embryonic cells resulted in a failure of thymic organogenesis.

K5 and K14 are heterodimers and hence we then used a constitutive

model of K5 driven Rac1 deletion to confirm our results. The

embryonic thymus at E12 is made up of a homogenous population of

immature cells characterized by their expression of a series of proteins

including EPCAM1, MTS24 and K5 and K8 [14,26,27]. Here we

show embryonic deletion of Rac1 in K5 cells (which includes the

progenitor populations [14]) leads in most cases to athymia or

catastrophic thymic atrophy with loss of the medullary-cortical

architecture. This atrophy may be due to a Rac1 mediated up-

regulation of c-Myc leading to a global increase in apoptosis.

Materials and Methods

Ethics Statement and Experimental mice
All animal experiments were performed in compliance with Home

Office and institutional guidelines. To lineage trace the K14 promoter

K14CreER (kind gift from B. Stripp [28]) were crossed with CAG-

CAT-eGFP (kind gift from J. Miyazaki [29]). Homozygous floxed

Rac1 mice (Rac1flox/flox) and heterozygous for K14CreER

(K14CreERxRac1flox/flox) or K5Cre (K5CrexRac1flox/flox) were

generated as described previously [30,31]. Briefly embryonic deletion

of Rac1 was achieved by crossing Rac1flox/flox mice [32] together with

Keratin5-Cre (K5Cre) mice [33,34]. Specifically, we first crossed

K5Crehet to Rac1flox/flox to obtain K5CrehetxRac1flox/wt. We then

crossed K5CrehetxRac1flox/wt mice with Rac1flox/flox to obtain

K5CrehetxRac1flox/flox knock-out mice (K5CrexRac1flox/flox). Deletion

of Rac1 in adult thymus was obtained by crossing K14CreERhetx-

Rac1flox/wt mice with Rac1flox/flox mice (K14CreERxRac1flox/flox)

[28,30]. Cre-mediated deletion of Rac1 in K14CreERxRac1flox/flox

mice, and the stop signal in the K14CreER6CAG-CAT-eGFP

reporter mice, was induced by weekly administration of 5 mg of

intraperitoneal tamoxifen in 100 ml of peanut oil (Sigma) for three

weeks. Thymic grafts were placed in female ICRF nu/nu mice kept in

filtered sterile cages.

Foetal Thymic Organ Cultures
Thymic lobes were removed from E15.5 embryos and cultured in

complete medium (RPMI with 10% FCS, 2 mM glutamine, 10 mM

HEPES), with or without 100 nM 4-hydroxy-tamoxifen. Lobes were

then removed from culture and prepared for frozen sectioning.

Antibodies
Antibodies against Rac1 (Clone 23A8, Upstate Biotechnology,

1:100 dilution), Ki67 (Novacastra, 1:400 dilution), Keratin 14

(Babco, 1:1000), Keratin 5 (Abcam, 1:1000), Keratin 8 (Abcam,

1:1000), phospho-serine 20-PAK2 (US Biologicals, 1:100), GFP

(ab5450, Abcam, 1:500), c-Myc (N262, Santa Cruz, 1:100), anti-ER

(HL7, 1:100), and MTS24 (1:100) [9] were used for immunoflu-

orescence as previously described [28,30]. Secondary antibodies for

immunofluorescence conjugated to Alexa-488, Alexa-594 and

Alexa-633 were purchased from Molecular Probes and used at a

1:400 dilution. Nuclei were counter- stained with DAPI or To-Pro-3

(Invitrogen). APC conjugated anti-mouse CD8, FITC conjugated

anti-mouse CD3 and PE conjugated anti-mouse CD4 were used for

splenic and thymic cell flow cytometry (BD Pharminogen).

Primary Thymic Epithelial Cell Harvest and Kidney
Capsule Grafting

Primary thymic epithelial cells were harvested as described

elsewhere [35]. Cells were derived from E13.5 stage mouse embryos.

2000 MTS24+ and 25000 MTS242 cells were sorted by fluorescence

activated cell sorting. Cells were resuspended in a small volume of

RPMI and placed on a fragment of filter paper for 24 hours with or

without 100 nM 4-hydroxy-tamoxifen (Sigma). The paper and cells

were then implanted beneath the kidney capsule of ICRF nu/nu

mice and harvested after 8 weeks. The thymus was taken for

immunohistochemistry and the spleens for flow cytometry.

Immunofluorescence Staining
Thymus was embedded in OCT compound (Bayer) and 5 mm

frozen sections cut. Frozen sections for Rac1 staining were thawed

at room temperature, fixed in 4% paraformaldehyde/2% acetic

acid in PBS for 30 minutes followed by 2 minutes in ice cold

ethanol/acetic acid (95/5). All other sections were fixed in 4%

paraformaldehyde for 20 minutes at room temperature and

permeabilised for 5 minutes in 0.3% Triton X 100. Staining was

analysed using a Leica TCSNT confocal microscope. Proliferating

epithelial cells were only counted if the epithelial marker clearly

surrounded a Ki67 positive nucleus.

MTS24 FACS sorting
Thymic epithelial cell isolation was performed as described [9].

Briefly, five to eight small incisions were made in each isolated

thymic lobe. The tissue was then stirred for 1 h at 4uC in serum-

free RPMI-1640. Remaining tissue aggregates were digested to

single-cell suspension by incubation at 37uC with 0.01% DNase I

and 0.15% collagenase D. Cells from the suspension were washed

in cold FACS buffer and subsequently stained with anti-MTS24

antibody and sorted using a FACScalibur II sorter.

Statistics
Statistical analysis was performed with the one-tailed Mann-

Whitney U test using GraphPad Prism3.00 for Windows

(GraphPad Software). P,0.05 was interpreted as statistically

significant.

Results

Keratin and Rac1 expression in murine thymus
Medullary TECs express K14 and K5 throughout the thymic

medulla (Figure 1A–F and J–L) [10]. K14 and K5 expressing cells
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are not exclusive to the medulla however with positive cells

scattered throughout the cortex (Figure 1G–I). Rac1 staining

shows expression in the majority of cells within the thymus

(Figure 1M) but the immunofluorescence is brightest in epithelial

cells (Figure 1N and O). Therefore, Rac1 is widely expressed

throughout the thymus although brightest in the medullary

epithelia.

In the following experiments we wished to examine the effects of

deleting Rac1 in K14/K5 positive thymic epithelial cells. To this

end we used a Cre/loxP system targeted by the human K14 and

K5 promoters. To demonstrate the targeting using this system we

crossed K14CreER mice with the CAG-CAT-GFP reporter mice.

Hence on activation of the ER receptor the Cre-recombinase will

activate the expression of GFP. Mice received weekly injections of

Figure 1. Keratin and Rac1 expression in the thymus. (A–F and J–L) K14 and K5 largely co-localise in medullary epithelium; dotted lines in D–F
denote medullary-cortical boundary. (G–I) Thymic cortex with scattered K14 and K5 positive cells. (M–O) Rac1 staining is widespread in the thymus
(epithelial cells and thymocytes (M)) but the brightest Rac1 staining co-localises with K14 positive epithelial cells of the medulla, (N and O). (P and Q)
demonstrate K14 positive epithelial cells that are GFP positive in K14 lineage tracing analysis, but no GFP positive cells in the K8 stained cells (R). Scale
bars (A–C) 100 mm, (D–I, M and R) 50 mm, (J–L, N and O) 20 mm, (P–R) 5 mm.
doi:10.1371/journal.pone.0019292.g001
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5 mg tamoxifen for three weeks. Immunofluorescent staining of

thymi from four mice confirmed expression of GFP in K14

positive cells but not in K8 cells (Figure 1P–R). GFP was detected

in 22.2%64.5 (SD) of K14 positive cells with double immunoflu-

orescence (n = 4 mice).

Adult thymic Rac1 depletion results in loss of thymic
tissue

We wished to investigate whether Rac1 had a role in adult

thymic epithelial cell homeostasis. For these experiments we used

K14CreERxRac1flox/flox mice. We compared mice treated with

tamoxifen (activating Cre recombinase) to control mice consisting

of untreated K14CreERxRac1flox/flox mice or litter mates that

were Cre negative with and without tamoxifen.

After three weeks of tamoxifen treatment we observed a

significant decrease in thymic weight in 8 week old K14CreERx-

Rac1flox/flox mice (mean 6 SD; 14.3 mg67.8) compared to

untreated K14CreERxRac1flox/flox mice (27 mg62.7; (p,0.05)),

and tamoxifen treated and untreated Cre negative littermates

(27.0 mg63.6 (p,0.05), and 30.3 mg62.9 (p,0.05) respectively)

(n = 5 per group) (Figure 2A). Rac1 deletion was confirmed by

immunofluorescence (Figure 2B and C). Histological analysis of

tamoxifen treated K14CreERxRac1flox/flox mice revealed destruc-

tion of the medullary-cortical architecture with loss of medulla

compared to littermate controls (Figure 2D–G and Fig. S1 A–H).

FACS analysis of peripheral T cells from spleens showed normal

distribution of CD4+ and CD8+ T cells in tamoxifen treated

K14CreERxRac1flox/flox mice (data not shown), however there was

a block in thymic T cell maturation with an increase in the number

of CD42/CD82 premature T cells (Figure S1 M–O and Table S1).

Rac1 is required for thymic organogenesis
The thymic atrophy induced by Rac1 deletion in adult K14

positive cells led us to predict that we could block thymic

organogenesis by embryonic deletion of Rac1. To do this we

initially used MTS24 expression to fluorescence activated cell sort

for embryonic (E13.5) thymic epithelial cells from wild-type and

K14CreERxRac1flox/flox mice. A majority of epithelial cells are

MTS24 positive in the E13.5 thymus [36]. Purified MTS24+ and

MTS242 cells were incubated for 24 hours with or without 4-

hydroxy-tamoxifen (4OHT) (or vehicle) and underwent hetero-

topic transplantation under the kidney capsule of athymic ICRF

nude mice. 4OHT treated wild-type MTS24+ (4 of 6 mice, not

shown) and non-treated K14CreERxRac1flox/flox MTS24+ cells (5

of 6, Figure 3A) regenerated a functional thymic microenviron-

ment as shown by K5 and K14 expression (Figure 3C–E), the

generation of CD4+ (Figure 3F) and CD8+ cells (Figure 3G) and

flow cytometry of the spleen showing mature T cells (CD3+CD4+

and CD3+CD8+ T cells) derived from the engrafted thymus in the

these nude mice (Figure 3H). However, 4OHT treated, and

therefore Rac1 depleted K14CreERxRac1flox/flox cells were

incapable of thymic organogenisis (0 of 6, Figure 3B) and had

no evidence of mature T cells (Figure 3I) comparable to NOD/

SCID untransplanted controls (Figure 3J) and Table 1. MTS242

cells were also not able to regenerate a thymic microenvironment

(0 of 6, not shown). This experiment confirms that deletion of

Rac1 from embyronic thymic epithelia leads to failure of thymic

organogenesis.

Embryonic Rac1 depletion results in catastrophic loss of
thymic tissue

In order to confirm the importance of Rac1 in the epithelial

homeostasis of the thymus, we next deleted Rac1 in embryonic

thymic epithelial cells using a constitutive model. In these

experiments K5CrexRac1flox/flox mice (K5 is the K14 heterodi-

mer) were compared to their Cre negative littermates. Of 21

K5CrexRac1flox/flox mice born, 16 were completely athymic and 5

had thymic remnants. The weight of K5CrexRac1flox/flox thymus

was 1.04 mg 63.28 (mean 6 SD) (all mice, athymic included)

Figure 2. Effects of adult epithelial Rac1 deletion on thymus
homeostasis and architecture. (A) Reduced weight of tamoxifen-
treated K14CreERxRac1flox/flox (K14+Tam) compared to controls: no
tamoxifen treated K14CreERxRac1flox/flox (K142Tam), tamoxifen treated
and untreated no Cre litter mates (wt+Tam and wt2Tam respectively);
p,0.05). (B and C) Rac1 immunofluorescence demonstrating Rac1 deletion
in the K14+Tam (C) compared to untreated control (B). (D and E) Normal
medullary-cortical architecture of untreated K14CreERxRac1flox/flox mice
(K142Tam). (F and G) Loss of distinct medullary/cortical boundaries after
three weeks in tamoxifen treated K14CreERxRac1flox/flox mice (K14+Tam).
(B and D 64 and C and E 610).
doi:10.1371/journal.pone.0019292.g002
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Figure 3. Rac1 deletion results in the inhibition of thymic ontogeny. 4-hydroxy-tamoxifen treatment of K14CreERxRac1flox/flox MTS24+ E13.5
thymic epithelial cells (Rac1KO/4OHT+) blocks the generation of a thymic microenvironment after heterotopic transplantation under the kidney
capsule (B) compared to untreated controls (Rac1KO/4OHT2 shown) (A). (C–E) K5 and K14 staining confirming the presence of thymic medullary
epithelial cells in control cells (shown are untreated MTS24+ K14CreERxRac1flox/flox (Rac1KO/4OHT2))which were capable of generating a functional
thymic microenvironment as indicated by the presence of CD4+ (C) and CD8+ cells. (A and B 620); Scale bars (C and D) 20 mm. FACS analysis of
splenocytes derived from nude mice grafted with K14CreERxRac1flox/flox MTS24+cells in absence of Tamoxifen showed peripheral CD4 and CD8
positive populations confirming the function of the thymic grafts (H) while with tamoxifen treated mice (I) showed no maturation of peripheral
lymphocytes consistent with untansplanted nude mice (J). The dot plots show cells labelled with anti-CD4 and anti-CD8 antibodies gated on a CD3+

population.
doi:10.1371/journal.pone.0019292.g003
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compared to 41.8 mg67.3 of the litter mate controls (p,0.01)

(Figure 4A). Histological analysis of the five K5CrexRac1flox/flox

mice with thymic tissue at 6 weeks revealed complete loss of the

medulla compared to littermate controls (Figure 4B and 4C).

Immunofluorescence demonstrated a loss in K5 expressing thymic

epithelial cells with a correspondingly depleted Rac1 compared to

litter mate controls (Figure 4D–I and Figure S1 I–L). Immature

thymocytes similar to the K14CreERxRac1flox/flox tamoxifen

treated mice were again demonstrated (Supplementary Figure

S1M–O).

These results show that Rac1 depletion in both mouse models

leads to the loss of thymic epithelial cells and destruction of the

normal thymic architecture.

Rac1 depletion leads to a loss of epithelial proliferation,
increased apoptosis and high c-Myc
immunofluorescence

Rac1 deletion led to a clear reduction in the proportion of Ki67

positive cells across the thymus, including epithelial cells, in tamoxifen-

treated K14CreERxRac1flox/flox mice compared to controls (total

proliferating cells (thymocytes and epithelial cells) 7.0%65.0 compared

to 18.5%62.0 (p,0.05); and proliferating epithelial cells 0% compared

to 11%63.6 (p,0.05) (Figure 5A and 5B). Loss of proliferation was

accompanied by an induction of apoptosis, measured by TUNEL

assay, in both epithelial and non-epithelial cells (probably precursor T

cells). In littermate controls 6.5%62.4 of total cells were TUNEL

positive (Figure 5C) compared to K14CreERxRac1flox/flox mice

tamoxifen-treated for 12 days (63.8%68.3; p,0.05, Figure 5D) and

20 days (70.5%67.8; p,0.05, Figure 5E).

Deletion of Rac1 in keratin-14 or keratin-5 positive epidermal

basal cells results in progressive loss of the entire epidermal

compartment [30,31]. Rac1 null keratinocyte stem cells irreversibly

commit to terminal differentiation (a process with strong similarities

to apoptosis [37]) in a PAK2- and c-Myc-dependent manner [30].

We hypothesised this was also the case in the thymus. Very few c-

Myc positive cells could be detected in the thymus by immunoflu-

orescent staining of wild type 6 week old litter mate mice however

the remnants of thymic epithelium of K5CrexRac1flox/flox mice

showed a marked increase (Supplementary Figure S2A–D).

Similarly, un-treated fetal thymic organ cultures (FTOC) of

K14CreERxRac1flox/flox mice showed low expression of c-Myc

(17.9%67.3; Supplementary Figure S2E), however K14CreERx-

Rac1flox/flox derived FTOC in the presence of 4OHT resulted in up-

regulation of c-Myc immunofluorescent nuclei (51.1%68.4;

p,0.05; Figure S2F). These data suggest the possibility that the

thymic epithelium may have similar homeostatic mechanisms to the

epidermis and is an avenue we are further investigating.

Discussion

Using two different transgenic mice we provide evidence that

Rac1 is important in thymic epithelial cell homeostasis. To

determine whether Rac1 is required for adult thymus homeostasis

we used a model of conditional deletion of Rac1 in post-natal

mice. Here we targeted K14 expressing cells. K14 is expressed in

medullary epithelial cells which include a population shown to

include adult thymic progenitor cells [13]. After Rac1 deletion we

saw a reduction in thymic size and destruction of the medullary-

cortical architecture. In the K5CrexRac1flox/flox transgenic mouse

(K5 is the K14 heterodimer), where Rac1 is deleted after

embryonic expression of K5 (E12.5), 16 of 21 mice were athymic

and the remaining 5 showed a greatly reduced thymic size. In the

5 mice that had a remnant thymus there was gross destruction of

the normal medullary-cortical architecture with loss of the

medulla.

EpCAM1 and MTS24 are expressed by embryonic day 12

(E12) and the K5/K14 heterodimer around E12.5 [9]. In the

embryo, MTS24+K5+ cells are believed to be progenitors of both

cortical and medullary thymic epithelial cells. In our experiments

not all K5CrexRac1flox/flox were however athymic. Due to the

slightly delayed expression of K5, and the presence of a population

that is MTS24+/K8+/K52, it is possible that a delayed or

inefficient deletion of Rac1 in thymic stem cells led to the

generation of a small thymus, or the expansion of the MTS24+/

K8+/K52 population. In the majority of mice however, it appears

that the deletion of Rac1 induces global epithelial cell differen-

tiation or apoptosis.

We used two models of Rac1 deletion to underline the

importance of Rac1 in thymic epithelial cell homeostasis. The

K14 promotor driven system is conditionally active allowing us to

target K14 positive cells in the adult thymus with the majority of

K14 positive cells in the medulla. Recently it has been

demonstrated that a population of postnatal K14 expressing cells

can act as adult progenitors and form medullary, cortical or mixed

cell daughters [13]. While our experiment may target this small

population of adult progenitors of the medulla and cortex, the

activation of Cre after tamoxifen administration in our system of

Rac1 deletion activated Cre in a large number of K14 expressing

cells resulting in the rapid phenotype demonstrated on Cre

activation.

The K5 transgenic system is constitutive and will be activated in

the embryonic thymus. It has been demonstrated that K5 co-

localises with K8 and the putative thymic progenitor marker

MTS24 at E12.5. In the adult, K5 positive cells are largely located

within the medulla. However a significant population of adult K5

positive cells lie within the cortex [26]. These adult cortical thymic

K8+K5+ cells contain precursors that give rise to the major

cortical K8+K52 subset. We therefore anticipate that the

constitutive deletion of Rac1 in K5 expressing cells from E12.5

will target a wide selection of thymic epithelial cells including both

embryonic thymic progenitors, differentiated medullary cells and

adult cortical precursors.

Additional evidence lending support to Rac1 deletion causing

failure of thymic ontogeny seen in the K5CrexRac1flox/flox mice

Table 1. Proportions of CD3 and CD4 positive cells in the spleens of transplanted NOD/SCID mice.

CD4/CD8 status ICRF nu/nu+K14 no tamoxifen ICRF nu/nu+K14+tamoxifen ICRF nu/nu untreated

CD3+CD4+CD8+ 0.72%+/20.14 0.12%+/20.1 0.3%+/20.2

CD3+CD4+CD82 67.9%+/22.2 5.8%+/23.8 5.1%+/22.7

CD3+CD42CD8+ 24.9%+/20.1 5.7%+/22.7 12.8%+/25.0

CD3+CD42CD82 6.5%+/22.1 88.5%+/25.6 81.9%+/27.3

doi:10.1371/journal.pone.0019292.t001

Rac1 Deletion Causes Thymic Atrophy

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e19292



was gained by using heterotopic transplantation of embryonic

thymic cells from the K14CreERxRac1flox/flox mice. We used

MTS24 expression to sort epithelial cells and deletion of Rac1

blocked the regeneration of a new thymic microenvironment when

transplanted under the kidney capsule. Importantly the MTS24

negative cell population used in our controls includes non-

epithelial cells and hence differs from that previously used by

Rossi and colleagues where a second epithelial marker was used

(Epcam1) to ensure MTS24- epithelial cells were used [12]. These

experiments combined with the K14 litter mates controls supplied

important controls for Cre expression and tamoxifen treatment.

A recent paper has questioned whether the MTS24 marker

uniquely identifies a thymic progenitor subpopulation with the

ability to repopulate functional thymic epithelium [12]. These

differences from previous reports [9,10] are likely due to different

sorting strategies and differing numbers of cells implanted.

Importantly, in our studies we implanted a low number of cells

that were confirmed simply as epithelial based on MTS24

expression. We have demonstrated that Rac1 expression is

required for this subset of epithelial cells to regenerate the thymic

microenvironment.

It has been proposed that Rac and Myc represent a global stem

cell regulatory axis [30]. In the epidermis Rac1 deletion leads to

loss of stem cells while acute Myc over-expression promotes

epidermal and hematopoietic differentiation, possibly through

disruption of cellular adhesion [30,38,39,40,41]. Conversely, in

the gut Myc determines self renewal while loss of Rac1 triggers

differentiation [42]. In other models sustained induction of Myc

Figure 4. Effects of embryonic Rac1 deletion on thymus ontogeny. (A) Reduced weight of K5CrexRac1flox/flox (K5 KO) thymus compared to
Cre negative litter mate controls (ctrl) (error bars are Standard Errors). (B and C) Destruction of distinct medullary/cortical boundaries in
K5CrexRac1flox/flox mice (K5-KO) (B) leaving predominantly K8 positive cortex (C). (D–I) Cre negative littermates (ctrl, D–F) have normal Rac1 and K5
expression compared to reduced expression in K5CrexRac1flox/flox (K5-KO) mice (G–I). (B) 610 and (C) 620. Scale bars 50 mm.
doi:10.1371/journal.pone.0019292.g004
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leads to tumor development [43]. Hence it is known from other

epithelial systems that Myc regulation is tightly controlled to avoid

differentiation of stem cells or tumorigenesis. To determine

whether a Rac1-Myc axis may be involved in thymic epithelial

homeostasis, we showed in Fetal Thymic Organ Cultures derived

from K14CreERxRac1flox/flox mice and six week old K5Crex-

Rac1flox/flox thymus that Rac1 deletion leads to an increase in c-

Myc expression. While this is not conclusive evidence that the

same regulatory pathways are operational in the thymus as the

skin we believe this will be an interesting line of future

investigation.

In conclusion deletion of Rac1 results in the failure of thymic

ontogeny in embryos and thymic atrophy in adults. Understanding

mechanisms of thymic stem cell maintenance may help the

development of therapies for patients with thymic developmental

defects, or reverse damage from aging, chemo or radiotherapies.

Further, maintenance of thymic epithelium ex vivo may allow in

vitro generation of differentiated T cells.

Supporting Information

Figure S1 Distribution of keratins in vivo after Rac1 dele-

tion. (A–D) K8, K5 and K14 localisation in wild type

thymus compared to K14CreERxRac1flox/flox (E–H) and

K5CrexRac1flox/flox (I–L). Scale bars 50 mm. (M–O) Impaired

thymic selection with increase of the CD4/CD8 double negative

population in tamoxifen treated K14CreERxRac1flox/flox mice

(N) and K5CrexRac1flox/flox (O) compared with tamoxifen

treated wild type mice (M).

(TIF)

Figure S2 Loss of Rac1 results in up-regulation of c-Myc. (A–D)

Tamoxifen treatment of K5CrexRac1flox/flox results in increase

immunofluorescence staining of c-myc in 6 week old remnant

thymi (A–D). Addition of tamoxifen to K14CreERxRac1flox/flox

(K14+Tam) derived Fetal Thymic Organ Cultures causes

increased c-Myc expression (E and F) compared to controls

(K14 no Tam) (B and C). Scale bars 50 mm.

(TIF)

Table S1 Proportions of CD3 and CD8 positive peripheral T

cells from spleens tamoxifen treated wild type, tamoxifen treated

K14KO and K5KO mice.

(DOCX)
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Figure 5. Rac1 deletion results in decreased proliferation and increased apoptosis. (A and B) Tamoxifen treatment results in reduced Ki67
positive epithelial and non-epithelial cells in K14CreERxRac1flox/flox mice (K142KO) compared to litter mate controls (Control Tam). Representative
immunofluorescence pictures with arrows indicating co-localization between Keratin-8 (green) and Ki67 (red) in litter mate controls only.
(C–E) Increased apoptosis in both K14+ (red) and K142 cells in tamoxifen-treated K14CreERxRac1flox/flox mice (medulla: day 12 (D), day 20 (E)
compared to tamoxifen treated Cre negative litter mates (C). Scale bars 50 mm.
doi:10.1371/journal.pone.0019292.g005
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