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Abstract

Infections caused by the fungus Aspergillus are a major cause of morbidity and mortality in immunocompromised
populations. To identify genes required for virulence that could be used as targets for novel treatments, we mapped
quantitative trait loci (QTL) affecting virulence in the progeny of a cross between two strains of A. nidulans (FGSC strains A4
and A91). We genotyped 61 progeny at 739 single nucleotide polymorphisms (SNP) spread throughout the genome, and
constructed a linkage map that was largely consistent with the genomic sequence, with the exception of one potential
inversion of ,527 kb on Chromosome V. The estimated genome size was 3705 cM and the average intermarker spacing
was 5.0 cM. The average ratio of physical distance to genetic distance was 8.1 kb/cM, which is similar to previous estimates,
and variation in recombination rate was significantly positively correlated with GC content, a pattern seen in other taxa. To
map QTL affecting virulence, we measured the ability of each progeny strain to kill model hosts, larvae of the wax moth
Galleria mellonella. We detected three QTL affecting in vivo virulence that were distinct from QTL affecting in vitro growth,
and mapped the virulence QTL to regions containing 7–24 genes, excluding genes with no sequence variation between the
parental strains and genes with only synonymous SNPs. None of the genes in our QTL target regions have been previously
associated with virulence in Aspergillus, and almost half of these genes are currently annotated as ‘‘hypothetical’’. This study
is the first to map QTL affecting the virulence of a fungal pathogen in an animal host, and our results illustrate the power of
this approach to identify a short list of unknown genes for further investigation.
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Introduction

Aspergillus is a genus of ubiquitous fungi that typically grow on

decaying organic matter [1] but can also cause life-threatening

infections in immunocompromised patients. For example, Asper-

gillus infections are responsible for approximately 9–17% of deaths

in the first year following transplantation among liver, heart and

lung transplant recipients [2,3]. Even with treatment, systemic

infections are associated with mortality rates between 30–90%,

depending on the patient group [4,5], underlining the need for

new antifungal agents. Currently, most antimicrobial drugs block

basic functions of pathogens rather than targeting specific

virulence traits [6]; therefore, understanding the genes that

contribute to virulence could facilitate the identification and

targeting of pathogen-specific pathways.

The virulence of Aspergillus species is determined by multiple

factors that include the ability to acquire iron, grow at mammalian

body temperature, and adhere to the host respiratory epithelium,

as well as the ability to produce mycotoxins, conidial pigments and

melanin [4,5,7,8,9,10,11]. Given this trait complexity, and natural

variation in virulence-related traits within Aspergillus species

[12,13,14,15], it should be possible to identify virulence-related

genes using quantitative trait locus (QTL) mapping. QTL are

genomic regions that contribute to variation in complex traits such

as virulence and are identified through association between genetic

markers and phenotype. Because QTL mapping uses molecular

markers, this approach is unbiased and can identify genes and/or

regulatory regions that are either unknown or not expected to

contribute to a given phenotype. Despite an enormous number of

QTL studies of animals and plants, there has been relatively little

QTL work with fungi. The few studies that have mapped QTL

affecting virulence-related traits in fungi have been extremely

successful in terms of gene identification. For example, genes

contributing to variation in the ability to grow at elevated

temperatures among Saccharomyces cerevisiae isolates from human

patients have been mapped [16], as has a gene affecting virulence

traits in the pathogenic yeast, Cryptococcus neoformans [17].

Typically, the first step to mapping QTL is to cross two different

wild-type strains. Most systemic Aspergillus infections are caused by

A. fumigatus [1] but when we initiated this work a sexual cycle had

not yet been observed in this species (it has been demonstrated

since [18]). We therefore examined A. nidulans, a species that is also

responsible for some infections [1], and readily undergoes sexual

reproduction. Although responsible for fewer infections than A.
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fumigatus, A. nidulans is more resistant to certain antifungal drugs

[19,20], more resistant to human phagocytic defenses in vitro [21]

and more virulent in patients with chronic granulomatous disease

[22] than A. fumigatus. In addition to its clinical relevance, for

decades, A. nidulans has been a model organism for the study of a

variety of cellular processes [23].

The objective of the present study was to map QTL affecting

virulence in A. nidulans. Because Aspergillus virulence is determined

by multiple factors, we took an unbiased approach to detect

variation in virulence regardless of the underlying causes.

Specifically, we mapped QTL affecting the ability of A. nidulans to

kill an animal host. Although infection of immunosuppressed

rodents is the model that most closely approximates human disease,

QTL mapping requires testing many progeny in replicate, and

therefore we used a well-characterized insect host: larvae of the wax

moth, Galleria mellonella. Although there are major differences

between mammalian and insect immune systems, pathogenic fungi

often require the same traits for virulence in mammalian and non-

vertebrate hosts [24]. Furthermore, some signaling pathways

involved in the innate immune response are conserved among

insects and mammals, and there are also parallels between

phagocytosis by insect hemocytes and by human neutrophils [24].

Correlation between virulence in insect and mammalian models has

been observed in A. fumigatus [25,26,27], Candida albicans [28] and

Yersinia pseudotuberculosis [29]. In addition to our in vivo measure of

virulence, we also measured growth on solid medium so that we

could distinguish between QTL with specific effects on virulence

from QTL affecting growth both in vitro and in vivo. Because iron

acquisition and tolerance of low iron conditions are thought to be

important virulence factors [30,31], we measured growth on both

low iron and iron-supplemented media.

Mapping QTL also requires a linkage map that describes the

distance between loci in terms of how frequently recombination

occurs (genetic distance), rather than the number of base pairs

(physical distance). Although there is already a linkage map for A.

nidulans, the existing map is based largely on phenotypic markers

[32] and so would not be suitable for mapping in progeny from

two wild-type strains. We therefore created a single nucleotide

polymorphism (SNP)-based linkage map by genotyping a panel of

progeny at SNP throughout the genome.

Results

Linkage map
Of the 768 SNPs genotyped, 29 were excluded because they

were not polymorphic, or had heterozygous or missing genotypes

for many samples, including parent strains (Fungal Genetics Stock

Centre A4 and A91), leaving a total of 739 markers. Several

progeny had near-identical genotypes (.700 genotypes in

common): 7 were identical to A4, 7 were identical to A91, while

there were 12 groups of identical progeny genotypes ranging in

size from 2–5 strains. There were 61 unique progeny genotypes

(not including parental genotypes), and only these genotypes were

included in linkage and QTL mapping.

Building linkage groups using all markers and requiring LOD

scores of 6 or more and a maximum recombination frequency of 0.2

to establish linkage yielded 30 linkage groups and 3 unlinked loci

(cntg-29-52692; cntg-43-189692; cntg-84-580184). Linkage groups

and the three unlinked markers were combined to correspond to A.

nidulans chromosomes on the basis of markers located on separate

linkage groups but known to be located on the same contig, and/or

contigs located on separate linkage groups known to be located on

the same chromosome [33,34]. In almost all cases where linkage

groups were combined in this way, the recombination frequency

between adjacent markers was 0.23 or lower, and the support for

linkage was a LOD score of 3.7 or higher. However, the

recombination frequency between markers cntg-55-265971 and

cntg-55-175295 was 0.29, for which the LOD score was 2.22.

Combining linkage groups in this way and using MapDisto to

order the markers, we obtained marker orders that were largely

consistent with the genome sequence. Where there were

discrepancies between the order calculated by MapDisto and that

based on the genome sequence, we calculated map length based

on the marker order from the genome sequence. In some cases,

the genome sequence yielded a shorter map length than the

MapDisto distance, and in 9 other cases the genome sequence

yielded a map length within 20% of the MapDisto order

(considering only the contentious markers and not the entire

chromosome), and we adopted the genome order for further

analyses. However, in one case the map length based on the

genome sequence was substantially longer than that using the

MapDisto order. On Chromosome V, the MapDisto order

between markers cntg-157-107424 and cntg-98-505170 (Table

S1) yielded a map length of 21.3 cM for this region, whereas the

marker order from the genome sequence yielded a length of

58.5 cM. This discrepancy was due to an inversion of all of the

markers from contigs 88 and 89, and no other markers. It is

therefore not clear whether this is an error in the genome assembly

in which the order of these two contigs was reversed. This region

has been suggested to contain the centromere and has been

difficult to map previously [35]. Four markers were on contigs not

placed on chromosomes in the current genome sequence: we

mapped cntg-185-3866 to Chromosome VII, cntg-202-4715 to

Chromosome I, and cntg-221-4469 and cntg-243-2551 to

Chromosome II.

We present the linkage map used in subsequent analyses in

Table S1, rather than as a figure because of the large number and

density of markers. Table 1 summarizes the results of linkage

mapping. Chromosomes ranged in size from 331.3 cM (Chromo-

some IV) to 577.2 cM (Chromosome VII), with an estimated

genome size of 3705 cM. The average intermarker spacing per

chromosome ranged from 3.8 cM (Chromosome I) to 6.3 cM

(Chromosome V).

Variation in recombination rate is correlated with GC
content

Our linkage map provided the genetic positions of the markers and

the A. nidulans genomic sequence [34,36] provided their physical

positions (included in Table S1). The average ratio of physical

distance to genetic distance per chromosome varied from 6.4 kb/cM

(Chromosome V) to 9.6 kb/cM (Chromosome I), with further

variation within chromosomes shown in Fig. 1A. Variation in

recombination rate (cM/kb) between intervals was significantly

positively correlated with GC content (Spearman rank r = 0.19;

N = 647; P,0.0001; Fig. 2); this relationship remained significant

when intervals with extreme GC content (,45% or .55%) were

removed (Spearman rank r = 0.17; N = 637; P,0.0001). We

analyzed the correlation between recombination rate and GC

content over different scales by averaging these parameters within

non-overlapping windows of various sizes. The relationship remained

significant up to a window size of 450 kb (Spearman rank r = 0.33;

N = 68; P,0.007), but was not significant at larger scales. We did not

include intervals located within the Chromosome V inversion in these

analyses in case the inversion affected recombination rates.

Many markers show skewed segregation ratios
We observed skewed segregation ratios throughout much of the

genome: Markers on most of Chromosomes I and VII and

QTL Affecting Virulence of A. nidulans
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approximately half of Chromosome III were significantly skewed

towards A91 alleles (not accounting for multiple tests), whereas

markers on most of Chromosome IV and part of Chromosome VI

were significantly skewed towards A4 alleles (Fig. 1B). Segregation

data for all markers are available in Table S1.

Growth is a quantitative trait
There was significant variation among strains in early growth

(colony diameter at day 3) and late growth (the difference in colony

diameter between days 3 and 6) on both iron-limited and iron-

supplemented medium (P,0.0001 in all cases). Differences

between the parental strains were also significant, with A91

showing more growth than A4 (P,0.0001 in all cases). The

distributions of all traits are approximately normal, with only two

strains showing very poor growth in vitro (Fig. 3). Furthermore, the

progeny are distributed asymmetrically around the parental strains

(Fig. 3), with few progeny showing higher growth than strain A91.

Surprisingly, early growth was significantly higher on iron-

limited (2.9760.03 cm standard error) compared to iron-supple-

mented medium (2.8560.03 cm; paired t92 = 25.04; P,0.0001),

whereas late growth showed the expected pattern (iron supple-

mented: 3.4860.03 cm; iron-limited: 3.3860.03 cm; paired

t92 = 4.02; P,0.0001). There was a significant correlation between

growth on iron-limited and iron-supplemented medium (early

Table 1. Summary of linkage mapping in cross between A. nidulans strains A4 and A91.

Chromosome No. of markers
Average marker
spacing (cM)

Genetic length
covered by
markers (cM)

Genetic length
including
chromosome ends (cM)

Physical length
covered by
markers (kb)

Ratio of physical
distance to genetic
distance (kb/cM)

1 101 3.8 383.2 390.9 3664 9.6

2 106 4.2 439.7 448.1 3986 9.1

3 82 5.3 425.5 436.0 3357 7.9

4 74 4.4 322.5 331.3 2732 8.5

5 77 6.3 480.3 492.9 3071 6.4

6 77 6.1 460.4 472.5 3313 7.2

7 110 5.2 566.8 577.2 4464 7.9

8 112 4.9 546.3 556.2 4825 8.8

Total 739 5.0 3624.7 3705.0 29412 Average 8.1

doi:10.1371/journal.pone.0019325.t001

Figure 1. Recombination rate and segregation ratios throughout the genome. (A) Variation in recombination rate averaged over non-
overlapping 200 kb windows across Chromosomes I–VIII. Recombination rate is not displayed for the potential inversion on Chromosome V, which is
denoted by the black rectangle. (B) Marker segregation ratios across Chromosomes I–VIII. The 95% confidence interval for a 1:1 ratio is indicated by
horizontal dashed lines at 0.375 and 0.625.
doi:10.1371/journal.pone.0019325.g001
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growth: Pearson r92 = 0.73, P,0.0001; late growth: Pearson

r92 = 0.62, P,0.0001).

In vivo virulence is a quantitative trait
None of the G. mellonella larvae from any of the negative controls

died. There was little mortality in the first 3 days after injection

with A. nidulans, therefore we limited analysis to G. mellonella

survival on days 4 through 8. Variation among strains in the

number of G. mellonella surviving was significant on days 7 and 8

post-injection (day 7: F94,270 = 1.77; P = 0.0002; day 8:

F94,270 = 1.98; P,0.0001), but not on the other days. However,

the difference between the two parental strains was significant on

days 4 and 5 (day 4: F1,270 = 6.47; P = 0.01; day 5: F1,269 = 8.32;

P = 0.004). Injection with strain A4 resulted in lower G. mellonella

survival, i.e., A4 had higher virulence compared to A91. We

therefore analyzed the results of survival on days 5 and 8 in further

analyses; the distributions of these traits are shown in Fig. 3.

QTL mapping reveals loci affecting virulence are distinct
from those affecting growth

We performed composite interval mapping with various

window sizes (5 cM, 10 cM and 20 cM) and regression models

(forward, backward, or forward and backward), which yielded

similar results. However, increasing the number of background

markers increased the statistical support for QTL, and therefore

resulted in the identification of a greater number of significant

QTL. Because the number of significant QTL was sensitive to the

number of background markers, we report results from the

forward and backward regression model (probability into, 0.05;

probability out, 0.1), in which the number of background markers

was determined automatically rather than by user input.

Significance thresholds were calculated by permutation and did

not make any assumptions about trait distribution.

We identified QTL affecting all traits (Table 2). The proximal

region of Chromosome IV was associated with variation in all

growth traits as well as the number of G. mellonella larvae alive at 5

days post-injection (Fig. 4). However, the growth QTL appeared

to be distinct from the virulence QTL; there was no overlap in the

2-LOD support interval (Table 2), which is a conservative estimate

of the 95% confidence interval [37]. Markers in this region showed

extremely skewed segregation ratios with an excess of A4 alleles

(Fig. 1B). At the estimated location of the growth QTL, only 2–4

strains carry the A91 allele, making the support for this QTL

somewhat suspect. However, the estimated effects of the QTL are

consistent with effects of selection on this locus; the A4 allele

increases growth, and so the growth QTL may have caused the

skewed marker ratio.

Elsewhere in the genome, QTL affecting virulence were distinct

from QTL affecting growth. In addition to the Chromosome IV

QTL, two other QTL affecting the number of G. mellonella larvae

alive at 5 days post-injection were detected on Chromosomes VI

and VII, and one QTL affecting the number of larvae alive at 8

days post-injection was detected on Chromosome II.

Virulence QTL regions contain no known candidate
genes

The markers flanking the 2-LOD support intervals of the

virulence QTL on Chromosomes II, VI, VII span regions of 93.9,

117.9 and 180.6 kb, respectively (Table 2). However, we were able

to exclude large parts of these regions where parental strains A4

and A91 share identical sequence since regions without sequence

variation cannot be responsible for the effects of QTL; a gene may

be important for virulence, but if there is no sequence variation in

that gene between the parental strains, it will not contribute to

quantitative variation among progeny strains. Excluding genes

that are not within 100 bp of a SNP or other sequence variation,

or which harbor synonymous SNP only, the QTL on Chromo-

somes II, VI, VII contain 7, 16 and 24 genes, respectively [38],

which are listed in Table 3. Almost half (20/47) of these genes are

annotated as ‘‘conserved hypothetical protein’’, and to our

knowledge none have previously been associated with virulence.

Early and late growth share one QTL but are also affected
by distinct QTL

In addition to the Chromosome IV QTL, we observed QTL

affecting iron-supplemented growth on Chromosomes I, II, VI

with one QTL affecting both early and late growth, one affecting

early but not late growth, and two affecting late but not early

growth (Table 2). Apart from the Chromosome IV QTL, no QTL

affecting iron-limited growth were detected.

Variation in spore colour is associated with the wA gene
The parental strains used in this study differed in spore colour,

and among the unique progeny genotypes, 32 had the wild-type

green colour of strain A4, and 28 had the beige colour of strain

A91 (spore colour was not recorded for one strain), a ratio that

was not significantly different from 50:50 (x2 = 0.27, P = 0.61).

Single marker analysis revealed almost perfect correspondence

between the Chromosome II markers cntg-142-37489and cntg-

143-2465 and spore colour, with only one unique genotype

having the A4 green colour but carrying the A91 allele. At

flanking markers cntg-142-11335 and cntg-143-25286, there were

two progeny for which spore colour did not match genotype,

indicating that the mutation affecting spore colour is located

between these two markers that are located 57.8 kb apart. There

are 17 genes within this region including the wA gene, in which

mutations are known to cause white conidia [39,40]. The flanking

markers cntg-142-11335 and cntg-143-25286 are at 165 cM and

168 cM, respectively, indicating that the colour locus does not

overlap with the virulence and growth QTL detected on

Chromosome II (Table 2).

Figure 2. Correlation between the recombination rate (cM/kb)
and GC content of 647 intermarker intervals. The number of
intermarker intervals is smaller than the number of markers because
intervals within the potential inversion on Chromosome V are not
included, and four markers are not placed in the current genome
assembly.
doi:10.1371/journal.pone.0019325.g002
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Discussion

QTL mapping has potential to identify novel virulence
genes in Aspergillus

Our study is the first to map QTL affecting the virulence of a

fungal pathogen in an animal host. We identified separate QTL

affecting different measures of virulence: the number of G.

mellonella larvae alive at 5 days and 8 days post-inoculation, which

may reflect virulence factors that act at different stages of infection.

Importantly, we identified QTL that affected virulence but not

growth, indicating that the underlying genes are true virulence

factors as opposed to genes affecting general vigour.

The three virulence QTL regions contain 7–24 genes, many of

which are hypothetical genes that were identified using compu-

tational methods but have received no study. A. fumigatus

orthologues have been identified for many of these genes,

suggesting that A. nidulans may be a useful model for identifying

A. fumigatus virulence genes.

To our knowledge, none of the genes in our QTL target regions

have been previously associated with virulence in Aspergillus.

Nevertheless, some are stronger candidates than others. b-glucans

of the cell wall are involved in triggering innate immune responses

against A. fumigatus [41,42] and deletion of a b-1,3-glucanosyltrans-

ferase, GEL2, reduced virulence of A. fumigatus in a murine model

Figure 3. Phenotypic distributions of traits measured in 61 unique progeny genotypes. (A) early iron-supplemented growth, (B) late iron-
supplemented growth, (C) early iron-limited growth, (D) late iron-limited growth, and number of G.mellonella alive at (E) 5-days post injection and at
(F) 8-days post injection.
doi:10.1371/journal.pone.0019325.g003
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[43]. However, GEL2 is not orthologous to the b-1,3-glucanosyl-

transferase in the Chromosome VII QTL region. Deletion of

CaCWH41 or CaROT2, encoding a-glucosidase I, and a-glucosidase

II catalytic subunit, respectively, attenuated the virulence of the

pathogenic yeast, Candida albicans in a murine model [44]. However,

deletion of a-glucosidase I did not affect the virulence of A. fumigatus

[45] and none of these genes are orthologous to the a-glucosidase B

within the Chromosome VII QTL region.

Four of the candidate genes in our QTL regions are members of

the ATP-binding cassette (ABC) and major facilitator superfamily

(MFS) families of transporters. The high representation of these

families within our target regions is not surprising given that these

genes are very common in fungal genomes; there are 45 ABC

transporters and 356 MFS transporters in the A. nidulans genome

[46]. ABC and MFS transporters are thought to contribute to

virulence by facilitating the export of mycotoxins from fungal cells,

and by removing host defence compounds [46]. Although a

number of genes from these families have been implicated in plant

pathogenesis, only one ABC transporter has been shown to

contribute to fungal virulence in a mammalian host [47]. This C.

albicans gene, MLT1, is not orthologous to either of the ABC

transporters in the Chromosome VII QTL region. The lack of

obvious candidates and the large proportion of hypothetical genes

within our QTL regions illustrate the power of QTL mapping to

identify a short list of unknown genes for further investigation.

Our study demonstrates that the effects of some virulence QTL

are sufficiently large, and that quantitative variation in virulence

can be measured with sufficient precision, that it is possible to map

QTL affecting in vivo virulence in fungal pathogens. Although we

phenotyped and genotyped 94 progeny, genotyping revealed only

61 unique genotypes; the presence of clones among progeny has

been previously reported in Cryptococcus neoformans [48,49]. Despite

this substantial reduction in sample size, we were still able to map

QTL to relatively small regions. A larger sample size would allow

still greater resolution, i.e., fewer genes per QTL.

We found QTL affecting virulence even though the difference

in this trait between parental strains was very modest. This is not

unexpected, since one strain may harbour some alleles that

increase virulence, and others that decrease virulence compared

with the other strain. We selected these parental strains because

they differed in spore colour, which was necessary to identify an

outcrossed cleistothecium. Had we used parental strains with a

greater difference in virulence, we expect that we would have

identified more and/or larger QTL. A. fumigatus is heterothallic

and shows quantitative variation in virulence related traits

[12,13,14,15], including virulence in G. mellonella [50], and thus

it will be possible to cross strains differing in virulence in this

species.

This is the first study to use infection of G. mellonella with A.

nidulans as a model of Aspergillus virulence. A previous study

Table 2. Summary of QTL positions and effects.

Trait Chromosome

Estimated
position
(cM)

Estimated
effect sizea

LOD score
at peak

% variance
explained
by QTL

2-LOD
support
interval
(cM)

Proximal marker
flanking 2-LOD
interval
(position in kb)

Distal marker
flanking 2-LOD
interval (position
in kb)

G.mellonella survival

Day 5 IV 47 20.55 4.32 19 43–51 cntg-126-39521
(420.7)

cntg-124-54688
(492.1)

VI 207 0.40 4.10 18 201–221 cntg-53-38593
(1416.8)

cntg-52-2303
(1534.7)

VII 19 0.35 3.65 17 14–32 cntg-167-30076
(253.1)

cntg-165-13625
(433.7)

Day 8 II 262 0.70 4.82 20 255–271 cntg-65-149896
(2291.3)

cntg-65-55949
(2385.3)

Growth

Early, iron-supplemented II 65 0.12 3.70 12 56–71 cntg-135-275672
(354.4)

cntg-138-30822
(484.5)

IV 35 0.45 5.45 26 34–37 cntg-127-64936
(354.4)

cntg-127-8816
(410.5)

VI 296 0.13 4.32 14 286–301 cntg-51-684909
(1966.4)

cntg-51-460598
(2190.8)

Late, iron-supplemented I 329 -0.11 3.51 11 319–341 cntg-112-222346
(3030.3)

cntg-113-57473
(3219.3)

IV 35 0.44 6.92 30 34–37 cntg-127-64936
(354.4)

cntg-127-8816
(410.5)

VI 293 0.14 5.31 19 288–313 cntg-51-684909
(1966.4)

cntg-51-372274
(2279.1)

VII 390 -0.14 5.77 20 383–396 cntg-36-61980
(3247.2)

cntg-38-171201
(3530.6)

Early, iron-limited IV 35 0.59 13.72 44 34–37 cntg-127-64936
(354.4)

cntg-127-8816
(410.5)

Late, iron-limited IV 35 0.46 9.39 38 34–37 cntg-127-64936
(354.4)

cntg-127-8816
(410.5)

aA positive effect size indicates that the A4 allele increases the value of the trait compared to the A91 allele and vice versa. Effect sizes are in the units of the trait (i.e.,
number of G. mellonella larvae in the case of virulence and cm in the case of growth).

doi:10.1371/journal.pone.0019325.t002
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injected a much lower inoculum of A. nidulans (3000 conidia

compared with over 10000 in the present study) into G. mellonella

but observed no mortality, whereas A. flavus was found to be

virulent [51]. Although there are parallels between insect and

mammalian immune responses [24] and correlation between

virulence in insect and mammalian models has been observed

[25,26,27], there are obviously limitations in extrapolating results

from our G. mellonella model to human disease due to the adaptive

immune response of vertebrates, among other factors. For

instance, while some conidial colour mutants of A. fumigatus show

Figure 4. LOD plots from composite interval mapping of growth and virulence for Chromosomes I, II, IV, VI, and VII. Horizontal lines
show the genome-wide significance thresholds obtained by permutation. For LOD plots and thresholds, dashed lines denote growth traits and solid
lines denote virulence traits. For clarity, we have omitted plots for early and late iron-supplemented growth and early iron-limited growth on
Chromosome IV and plots for early iron-supplemented growth on Chromosome VI.
doi:10.1371/journal.pone.0019325.g004
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Table 3. Genes within virulence QTL regions, excluding genes with no sequence variation or with synonymous SNP only. No
sequence variation other than SNP (e.g., indels) was detected in these genes.

Locus Gene description
Number of non-
synonymous SNP a Other SNP b

Chromosome II

ANID_03982 conserved hypothetical protein (calcineurin-like phosphoesterase)c 2 conservative 0

ANID_03985 MFS transporter 2 radicald 0

ANID_03988 conserved hypothetical protein 2 conservative, 3 radical 1 intronic

ANID_03995 delta-aminolevulinic acid dehydratase 0 1 intronic

ANID_03998 conserved hypothetical protein 2 conservative, 2 radical 1 upstream, 3 downstream

ANID_04005 conserved hypothetical protein 4 conservative, 2 radical 2 intronic, 3 downstream

ANID_04006 conserved hypothetical protein (GMC oxidoreductase)c 6 conservative 1 upstream, 4 intronic

Chromosome VI

ANID_03176 ATP-dependent rRNA helicase spb4 0 1 intronic

ANID_03178 deacetylase complex subunit Sds3 1 conservative 0

ANID_03179 conserved hypothetical protein 1 radical 0

ANID_03184 aldose 1-epimerase 0 1 downstream

ANID_03186 conserved hypothetical protein (XPG-I and XPG-N terminal domains)c 1 conservative 0

ANID_03193 conserved hypothetical protein 0 1 UTR

ANID_03196 glycosyl hydrolase family 88 protein 0 1 downstream

ANID_03200 glycoside hydrolase family 2 protein 1 conservative, 1 radical 1 upstream,
1 intronic, 3 UTR, 1
downstream

ANID_03201 beta-galactosidase 3 conservative, 1 radical 2 upstream, 2 downstream

ANID_03204 MFS alpha-glucoside transporter 1 radical 0

ANID_03205 aldehyde dehydrogenase 3 conservative 1 upstream, 2 intronic,
1 downstream

ANID_03209 high affinity copper transporter 1 conservative 0

ANID_10380 dicer-like protein 2 1 radical 0

ANID_10383 conserved hypothetical protein (glycosyl hydrolase family 2, sugar binding domain)c 0 1 upstream

ANID_10384 C6 transcription factor 0 1 downstream

ANID_12377 conserved hypothetical protein 1 radical 0

Chromosome VII

ANID_08919 cytochrome P450 monooxygenase 1 conservative, 1 radical 1 intronic

ANID_08920 cytochrome b5 0 1 downstream

ANID_08921 Dehydrogenase 0 1 intronic, 1 downstream

ANID_08923 conserved hypothetical protein (heterokaryon incompatibility protein)c 0 1 intronic

ANID_08925 conserved hypothetical protein 1 radical 1 upstream

ANID_08926 conserved hypothetical protein 0 2 intronic

ANID_08928 ABC multidrug transporter 1 radical 0

ANID_08931 conserved hypothetical protein 0 1 upstream

ANID_08932 TIM-barrel enzyme family protein 0 1 upstream, 2 downstream

ANID_08933 conserved hypothetical protein 0 1 intronic

ANID_08937 3-oxoacyl-(acyl-carrier-protein) reductase 2 1 conservative 0

ANID_08940 conserved hypothetical protein 1 radical 0

ANID_08941 Na/K ATPase alpha 1 isoform 0 1 intronic

ANID_08945 TAM domain methyltransferase 0 1 intronic

ANID_08951 conserved hypothetical protein 0 ?e

ANID_08953 alpha-glucosidase B 1 conservative 0

ANID_08957 multidrug resistance-associated protein 2 conservative, 1 radical 0

ANID_08958 conserved hypothetical protein 1 radicalf 0

ANID_08962 conserved hypothetical protein ?e 0

ANID_08968 isoflavone reductase 1 conservative 0
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reduced virulence in mammalian models, colour mutants were

found to have increased virulence in G. mellonella [52]. Ultimately,

virulence genes that we identify through subsequent work must be

tested in immunocompromised rodents.

We observed significant variation in virulence between the

parental strains and among the progeny, but this variation was

subtle. Accurate measurement of small differences in virulence

required taking many steps to reduce experimental error:

suspensions were based on the number of viable conidia and

were double checked for accuracy, the weight and age of larvae

were kept within a narrow range, and three replicates were

performed. Quantitative genetic variation in radial growth and the

production of cleistothecia has previously been documented in a

cross between two wild-type isolates of A. nidulans [53], but this

early work did not examine traits related to virulence.

QTL affecting growth
Several studies have suggested that A. fumigatus is the most

common pathogen among Aspergillus species because of its rapid

growth rate. However, the identification of distinct QTL affecting

radial growth and virulence results suggest that loci contributing to

variation in growth do not contribute to variation in virulence.

Although different QTL would likely be found in A. fumigatus or

different crosses of A. nidulans, our results do not support the

hypothesis that growth rate is an important virulence factor.

Distinct QTL affecting early and late growth were detected.

Surprisingly, we detected QTL affecting iron-supplemented

growth and not iron-limited growth, but not vice-versa. However,

given the small number of QTL identified, it is not clear whether

this reflects a real difference in genetic architecture between iron-

supplemented and iron-limited growth. Although we did not

expect early radial growth to be lower on iron-supplemented than

iron-limited medium, similar results have been observed in A.

fumigatus [54], perhaps due to low-level iron toxicity to germinating

conidia [55]. Alternatively, iron-limitation may have led to longer

but thinner hyphae, such that radial growth but not biomass was

increased.

A. nidulans has low ratio of physical distance to genetic
distance, which is correlated with GC content over large
scales

Despite the widespread use of A. nidulans as a genetic model, this

is the first SNP-based linkage map for this species. We estimated

the size of the genome to be 3705 cM. Our estimate of the average

ratio of physical distance to genetic distance across the genome is

8.1 kb/cM, similar to previous estimates for A. nidulans [56], and

slightly lower than for a number of other fungi [49]. We observed

a positive correlation between recombination rate and GC

content. While this pattern is widespread in a variety of taxa, we

know of no related studies in fungal species other than in

Saccharomyces cerevisiae [57]. We observed this relationship at a range

of scales from the intervals between markers up to windows of

450 kb. In contrast, in S. cerevisiae, Marsolier-Kergoat and

Yeramian found that the strength of this relationship decreased

substantially between windows of 5 kb and 100 kb [58].

Many markers showed skewed segregation ratios in our cross,

with an excess of A4 alleles in some regions and an excess of A91

alleles in others. A number of other fungal linkage mapping studies

have also found large proportions of markers with skewed ratios

[48]. We suspect that at least some of the skew was due to

selection, whereby one allele conferred more rapid growth and/or

germination of ascospores, making progeny carrying this allele

more likely to be isolated. In particular, there is a substantial skew

towards A4 alleles at the proximal end of Chromosome IV, and in

this region there is a QTL of which the A4 allele enhances growth.

Although the A91 parental strain showed a higher growth rate

than A4, other loci may have compensated for the Chromosome

IV locus. Furthermore, the distribution of growth among the

progeny (Fig. 3) suggests there was epistasis among loci affecting

growth. If all the QTL affecting growth acted in an additive

manner, we would expect the distribution of progeny values to be

symmetrical around the parents.

Mapping further traits
Our genotyped panel of progeny represents a resource for the

entire Aspergillus research community, since it is now possible to

map QTL on any trait that varies among the strains, without the

need for further genotyping. These progeny will be analogous to

‘‘recombinant inbred lines’’ which in other taxa have been

recognized as powerful tools for QTL mapping, particularly for

the study of genotype by environment interactions [37,59].

Materials and Methods

Mapping population
A. nidulans strains A4 and A91 were obtained from the Fungal

Genetics Stock Center [60]. A4 is the wild-type strain that has

been sequenced [23], while A91 is a spore-colour mutant obtained

by ultraviolet irradiation of a different wild-type environmental

isolate [61]. It was necessary to use a spore-colour mutant to

Locus Gene description
Number of non-
synonymous SNP a Other SNP b

ANID_08970 conserved hypothetical protein 1 conservative 0

ANID_08971 integral membrane protein 0 2 intronic

ANID_11152 1,3-beta-glucanosyltransferase 1 conservative 0

ANID_12385 hypothetical protein 0 1 upstream, 2 intronic

aNon-synonymous SNP were classified as conservative if the BLOSUM80 score was 0 or higher for the substitution, or radical if the BLOSUM80 score was negative [74].
bOther SNP include SNP in introns, untranslated regions (UTR) and within 100 bp upstream or downstream of the transcript. Synonymous SNP in coding regions are not

included.
cProtein domains for conserved hypothetical proteins were identified by a BLAST search of the Broad Institute database [38].
dThere are 3 SNP, but 2 affect the same codon.
eNo clear polymorphism, but ambiguity due to low sequence coverage for strain A91.
fPremature stop codon.
doi:10.1371/journal.pone.0019325.t003
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identify a cleistothecium produced by crossing the two strains; A.

nidulans is homothallic, and genetically distinct strains are much

more likely to self than to cross fertilize [62,63]. Crosses were

conducted between A4 and A91 on MYPD agar (3 g malt extract,

3 g yeast extract, 5 g peptone, 10 g glucose and 18 g agar in 1L) at

30uC and cleistothecia were screened for out-crossing by plating

ascospores from a single cleistothecium on Neiland’s agar plates

(described below) and looking for colonies with different

pigmentation. Over 100 cleistothecia were screened, but only

one was found to be out-crossed, which provided the ascospores

for the mapping population described below.

Marker discovery and genotyping
Mycelia grown on half-strength liquid MYPD medium for 24 to

30 hours at 37uC were harvested by filtration and DNA was

extracted using an Epicentre MasterPureTM Yeast DNA Purifica-

tion Kit [64]. A91 DNA was sent to the Genome Sciences Centre

at the British Columbia Cancer Agency (Vancouver, Canada) for

library construction and paired-end tag sequencing on the

Illumina Genome Analyzer.

A91 sequences were aligned against the reference A. nidulans

genome sequence [23,65], obtained from the Broad Institute [38]

using MAQ v 0.7.1 [66] with default parameters, except for the

maximum outer distance for a correct pair (-a, set to 1500) and the

maximum number of mismatched that can always be found (-n, set

to 3). Pairs with identical outer coordinates were removed using

rmdup, following the suggestion in the MAQ manual for accurate

SNP calling. The published genome sequence is based on strain

A4, and so differences between the A91 and reference sequences

allowed us to identify SNP markers for our population. We

selected 768 SNPs spread across the genome for which we had at

least 20 times coverage for A91, and at least 90% of the A91

sequence reads supported the presence of a SNP (Table S2). DNA

samples from 94 progeny strains, as well as A4 and A91 were sent

to the Centre for Applied Genomics at The Hospital for Sick

Children (Toronto, Canada) for genotyping of SNPs using the

Illumina GoldenGateH Assay.

Linkage map construction
The construction of a genetic map, which describes the distance

between loci in terms of how frequently recombination occurs, was

performed using MapDisto version 1.7.0 [67] considering our

population to be doubled haploid. We used the Haldane mapping

function to translate recombination frequency into map distance

(centimorgans, cM), since there is no evidence of crossover

interference in A. nidulans [68]. We initially required LOD

(logarithm of odds) scores of 6 or more and a maximum

recombination frequency of 0.2 to establish linkage, but subse-

quently relaxed the criteria to combine linkage groups known to be

on the same chromosome (described in Results section). To

calculate the total length of each chromosome, we added two times

the average intermarker distance for that chromosome to account

for chromosome ends [69].

Growth media
Strains were grown on Neiland’s agar at 37uC (18 g of agar,

20 g of sucrose, 1 g of K2SO4, 3 g of (NH4)2SO4, 1 g of citric acid,

3 g of K2HPO4, 3 g of K2HPO4, 810 mg of MgSO4?7H2O, 2 mg

of thiamine hydro-chloride, 962 mg of MnSO4, 20 mg of CuSO4,

5.5 mg of ZnSO4, per liter of solution with pH adjusted to 6.8–7.0)

[70]. For measurement of iron-limited growth, traces of iron were

removed from glassware by overnight treatment with 5% HCl and

thorough rinsing with deionised water prior to media preparation.

For measurement of iron-supplemented growth, 1 mg of FeCl3 per

litre (3.7 mM) was added to the medium.

Conidia harvesting and preparation
Conidia from 7-day cultures on iron-limited medium were

harvested with 0.05% (v/v) Tween 20 (Sigma Chemica Co., St.

Louis, USA) in phosphate buffered saline (pH. 7.4) (PBST), and

filtered through Miracloth (Calbiochem) to remove hyphae.

Harvested conidia were centrifuged, resuspended in PBST,

centrifuged again and resuspended in fresh PBST. The concen-

tration of conidia was determined using a haemocytometer

(Hausser Scientific, Horsham, PA).

Radial growth measurements
To obtain isolated colonies, dilute conidial suspensions were

inoculated onto either iron-limited or iron-supplemented Neiland’s

agar. After approximately 24 hours, mats from single germinated

conidia were isolated and transferred to the centre of 10 cm Petri

dishes, and at least two germinated conidia of each strain were

transferred to two different Petri dishes. Plates with isolated

colonies were incubated at 37uC and colony diameter was

measured every 24 hours from 3 to 6 days after transfer. Three

experiments with at least two replicates per experiment were

performed for recombinant strains, and conidia were grown and

harvested independently for each experiment. Because the

parental strains (A4 and A91) were included with each group of

strains measured, there are 34 and 21 replicates of each of the

parental strains on iron-limited and iron-supplemented growth,

respectively. Early growth was defined as colony diameter at day 3

and late growth was defined as the difference in colony diameter

between days 3 and 6.

We initially attempted to measure growth in terms of mass in

liquid medium, but switched to measuring radial growth because

of large variation between replicates. These initial measures of

mass showed the same pattern as subsequent measures of radial

growth (i.e., A91.A4; data not shown).

Virulence in G. mellonella larvae
G. mellonella larvae were reared on baby mixed cereal (1200 ml)

(H.J. Heinz Company, Canada) supplemented with glycerol

(119 ml), water (98 ml), sucrose (100 ml) and multi-vitamins

(Enfamil, Poly-vi-sol) (1 ml) at 28–30uC with 50–60% relative

humidity and a 12L:12D light cycle as described previously [71].

G. mellonella larvae 40 to 50 days of age (in their final instar stage)

weighing 0.25–0.30 g were selected for injection.

The goal of this study was to examine variation in virulence

among strains, and therefore we needed an inoculum that was not

so high that all of the larvae died rapidly, but not so low that none

of the larvae died. Preliminary work established that injection of

5 ml of 2080 colony forming units (CFU)/ml yielded intermediate

mortality rates, and therefore this was used as the inoculum. To

determine the concentration of CFU, conidial suspensions were

diluted and inoculated on Neiland’s solid agar medium plates (5

plates/strain), which were counted after 36 hours. Suspensions

containing 2080 CFU/ml were prepared and used for injection.

The concentration of viable conidia was re-confirmed by plate

counts of the suspensions used for injection.

Conidial suspensions (5 ml of 2080 CFU/ml) were injected into

the hemocoel via the last left proleg using a 25 ml Hamilton syringe

(part # 7636 – 01 702RN, Hamilton) with an inner barrel

diameter of 0.72 mm and 33 gauge removable needle (part #
7762-06, Hamilton). For each strain and each replicate, one strain

was injected into 10 larvae. In addition to all of the strains injected

on a given day, the two parental strains, A4 and A91, and two
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negative controls were included: 10 larvae received 5 ml of PBST,

and another 10 larvae received no injection. Between injections,

the syringe was washed once with 70% ethanol and twice with

PBST to avoid cross contamination. Injected larvae were placed in

Petri dishes containing pine wood chips, and dishes were left at

37uC in the dark. Mortality was monitored once a day for 8 days.

We performed three replicates for each strain and for each

replicate, conidia were grown, harvested, and counted indepen-

dently, and all replicates were injected on different days. Because

the parental strains were always included with the strains injected

on a given day, there are 32 replicates of A4 and A91.

Conidia of A. nidulans killed by heating at 100uC for 1 hour were

also injected into wax moth larvae to see if non-viable conidia

contributed to virulence. Lack of viability of heat killed conidia

was confirmed by plating on solid medium. This negative control

was repeated three times.

QTL mapping
We mapped QTL by testing the association between phenotype

(growth or virulence) and the genotypes of SNPs located

throughout the genome. We used composite interval mapping,

which scans the genome for QTL while using additional markers

as cofactors to account for effects of QTL outside the focal

interval, increasing the power to detect QTL and the precision

with which positions are estimated [37]. Composite interval

mapping was performed using Windows QTL Cartographer

Version 2.5 [72], with a walk speed of 1 cM. Genome-wide

significance thresholds were determined empirically by permuting

the marker data [73], using 1000 permutations. Because the

significance thresholds are calculated from an empirical distribu-

tion of the test statistic under the null hypothesis that there is no

QTL, the analysis does not make any assumptions about the

distribution of the phenotypic traits (i.e., traits do not have to be

normally distributed).

Supporting Information

Table S1 Aspergillus nidulans linkage map, including
genetic and physical positions and segregation data for
each marker.
(XLS)

Table S2 Sequence flanking SNP markers.
(XLS)
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