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Abstract

Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content
in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR)
and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we
demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes
involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular
cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2
human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a
commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol
regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes
in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR
alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol
levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs,
indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative
splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol
depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol
homeostasis as well as plasma LDL levels.
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Introduction

Alternative splicing, the post-transcriptional editing process that

can generate multiple mRNAs from a single gene, was once

considered to be primarily a means of generating protein diversity

[1]. However, more recently its role as a mechanism of regulating

gene expression has been appreciated [2]. Functionally relevant

alternative splicing has been reported in several genes involved in

cellular cholesterol production and uptake [3,4,5,6,7,8]. The gene

encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase

(HMGCR), the enzyme that catalyzes the rate limiting step of

cholesterol biosynthesis, undergoes alternative splicing of exon 13.

Exon 13 skipping impairs enzymatic activity [3,4], and also results

in reduction of its sensitivity to inhibition by statins, a class of

cholesterol lowering drugs that act as competitive inhibitors of

HMGCR [4]. The LDL receptor (LDLR), which is primarily

responsible for cellular uptake of LDL from plasma, has several

splice variants, the two most common of which involve exon

skipping: LDLR4(-) and LDLR12(-), respectively. Both have been

shown to be associated with reduced LDLR cell surface protein

and LDL internalization, as well as hypercholesterolemia [6,8].

Proprotein convertase subtilisin/kexin type 9 (PCSK9), which

binds to the LDLR protein and induces its degradation, has a

minor splice variant lacking exon 8 (PCSK9 8(-)) that has no effect

on LDLR protein turnover [5]. HMG-CoA synthase (HMGCS1),

which catalyzes the reaction immediately before HMGCR, has a

highly complex 59 UTR that regulates translational efficiency and

undergoes exon 2 skipping [7]. Mevalonate kinase, encoded by

MVK, catalyzes the step immediately following HMGCR, and

undergoes alternative splicing of exon 4 and/or 5, both of which

disrupt the open reading frame [9]. Both HMGCR exon 13

skipping and LDLR exon 12 skipping are influenced by cis-acting

SNPs [3,4,6] that have been found in genome-wide association

analysis (GWAS) to contribute to inter-individual variation in

plasma LDL-cholesterol in multiple independent populations

[3,6,10,11]. These findings suggest that alternative splicing of

genes involved in cholesterol biosynthesis and receptor-mediated

uptake has physiologically relevant effects on plasma LDL-

cholesterol.

Polypyrimidine tract binding protein (PTBP1) antagonizes the

function of the essential splicing factor U2AF in the recognition of

the 39 splice site [12], and thus acts as a negative splicing regulator
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of numerous pre-mRNAs [13,14,15]. PTBP1 has been postulated

to modulate LDLR mRNA stability by binding to the 39 UTR [16],

and therefore it is possible that such an interaction may also

influence alternative splicing.

Since HMGCR, LDLR, HMGCS1, MVK and PCSK9 are among

the genes whose transcription is regulated in a coordinated fashion

by SREBP in response to sterols [17,18], we sought to determine if

the relative levels of the alternatively spliced versus full-length

transcripts are also subject to sterol regulation. Here we provide

evidence that the relative amounts of alternatively spliced

transcripts of HMGCR, LDLR, HMGCS1, MVK and PCSK9 in

hepatocytes (HepG2), human immortalized lymphoblast cell lines,

and livers from cholesterol-fed African Green monkeys, are

reduced under conditions of sterol depletion, and induced under

conditions of sterol loading. These results implicate alternative

splicing in the coordinated regulation of expression of genes

involved in cholesterol biosynthesis and uptake.

Results

The relative expression level of alternatively spliced to
full-length HMGCR is sterol regulated

To determine if the ratio of HMGCR alternatively spliced to

full-length transcripts is sterol regulated, both the full-length

transcript, HMGCR13(+), and the alternatively spliced form,

HMGCR13(2), were measured in HepG2 and IMR-90 cells

after sterol depletion by 24 hour incubation with varying

concentrations of simvastatin (0.1 to 50 mM), and 10%

lipoprotein deficient serum (LPDS). As shown in Figure 1A,

extreme cholesterol depletion (statin + LPDS) of IMR-90 cells

up-regulated both HMGCR13(+) and 13(2) transcripts, howev-

er, the relative induction of HMGCR13(2) was substantially

lower than the 13(+) transcript. Since quantitative real time

PCR has a much larger dynamic range for quantitation of

mRNA transcripts compared to measurements of band density,

all subsequent transcript quantification was performed by splice

variant-specific real time PCR as described in the Methods.

Cholesterol depletion of HepG2 cells induced HMGCR13(2)

16–31% (20% average) less than the 13(+) transcript, p = 0.036

(Figure 1B). In addition, provision of LDL-derived cholesterol

to HepG2 cells incubated with 0.5 mM simvastatin (Figure 1C)

resulted in 10–17% (12% average) greater suppression of the

HMGCR13(+) transcript in comparison to the HMGCR13(2)

transcript (p = 0.049), suggesting that sterol loading induced

HMGCR alternative splicing. These effects were confirmed in 26

immortalized lymphoblast cell lines incubated with either 10%

FBS, 10% LPDS, 0.5 mM simvastatin, 0.5 mM simvastatin +
10% LPDS, or 1 mg/ml 25-hydroxycholesterol + 10% LPDS. As

shown in Figure 1D, HMGCR13(2) was induced 15% less than

the HMGCR13(+) transcript in the simvastatin incubated cells

lines, and 25% less in the simvastatin + LPDS incubated cells,

while sterol loading with 25-hydroxycholesterol suppressed

HMGCR13(2) 34% less than the 13(+) transcript (p,0.0001

for each treatment). Suppression of HMGCR alternative splicing

with extreme sterol depletion (statin + LPDS) was also

confirmed in freshly isolated peripheral blood mononuclear

cells (n = 7, data not shown) demonstrating that this phenom-

enon is not unique to transformed cells.

Sterols regulate the relative ratio of alternatively spliced
to full-length transcripts in multiple genes involved in
cholesterol biosynthesis and uptake

Given the strong evidence for sterol regulation of HMGCR

splice variants, we tested whether there are also sterol-regulated

changes in the relative amounts of alternatively spliced to full-

length transcripts of other key regulatory genes involved in

cholesterol metabolism - LDLR, HMGCS1, MVK, and PCSK9.

HepG2 cells were incubated with 2.0 mM simvastatin + 10%

LPDS or sham buffer + 10% FBS for 24 hours, after which

either 50 mg/ml LDL-cholesterol or 1 mg/ml 25-HC were

added and incubated for an additional 24 hours. These genes

are known to be transcriptionally responsive to sterols [17], and

as expected, expression of each was up-regulated by statin

exposure, effects that were reversed by the addition of LDL-

cholesterol or 25-HC (data not shown). Similar to

HMGCR13(2), all splice variants of these genes -LDLR4(2),

LDLR12(2), MVK4(2), HMGCS1 2(2), and PCSK9 8(2) -

showed evidence of sterol regulation (Figure 2A). Sterol

depletion suppressed the relative amounts of alternatively

spliced to full-length transcripts by 8–50%, while addition of

either LDL-cholesterol or 25-hydroxycholesterol increased these

ratios by 16–124% in comparison to standard culture conditions

(10% FBS). These phenomena were confirmed in immortalized

lymphoblast cell lines (n = 6, data not shown).

Sterol regulation of mRNA stability does not differ
between full-length and alternative spliced transcripts

To determine if sterol-induced changes in the ratios of

alternative spliced to full-length transcripts were due to

transcript-specific differences in mRNA decay rates, HepG2

cells were pre-incubated with either 2.0 mM simvastatin + 10%

LPDS or sham buffer + 10% FBS for 24 hours, after which

1 mg/ml actinomycin D was added to the media (n = 12

experiments). Although statin treatment did not affect stability

of the HMGCR13(2) transcript, the half-life of the HMGCR

13(2) transcript was 53% lower than in the sham treated

sample (6.260.4 hr versus 11.860.6 hr respectively,

p,0.00001, Figure 2B). Sterol depletion also increased the

half-life of the LDLR4(+) transcript (1.160.1 hr sham versus

1.560.1 hr statin, p = 0.0007) but did not affect stability of the

LDLR4(2) transcript. These results indicate that differential

changes in message stability of LDLR4(2) and HMGCR13(2) in

comparison to their full length counterparts following statin

treatment may contribute to a relative reduction in their

cellular levels. In contrast, there were no changes in transcript

half-life of MVK4(+), MVK4(2), LDLR12(+) or LDLR12(2).

Paradoxically, both the full length HMGCS1 and PCSK9

transcripts had significantly reduced transcript half-lives after

sterol depletion while there was no change in mRNA stability of

their respective alternatively spliced variants. These results

strongly suggest that the sterol-induced changes in the ratio of

alternative spliced to full-length HMGCS, MVK, LDLR12, and

PCSK9 are not due to splice variant specific differences in

transcript stability.

LDLR alternative splicing is induced in cholesterol fed
African Green monkeys

To determine if the splice variants of interest were expressed in

liver from the African Green monkey, we used RT-PCR with

primers spanning the alternatively spliced exons of interest, and

DNA sequencing, to identify and confirm expression of HMGCS1

2(2), MVK4(2), LDLR4(2), LDLR12(2), and PCSK9 8(2),

(Figure 3a). HMGCR13(2) was not detected. The splice variants

were quantified along with the HMGCS1 2(+), MVK4(+),

LDLR4(+), LDLR12(+) and PCSK9 8(+) transcripts in liver biopsies

of monkeys fed either a cholesterol-supplemented or control diet.

As expected, all transcripts were down-regulated by cholesterol
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feeding, but MVK4(2), LDLR4(2) and PCSK9 8(2) transcripts

were suppressed less than their full-length counterparts (p,0.05,

n = 28, Figure 3b). Although HMGCS1 2(2) and LDLR12(2)

also appeared to be suppressed less than HMGCS1 2(+) and

LDLR12(+), these differences did not achieve statistical signifi-

cance. Additional analyses suggested a correlation of change in

hepatic total cholesterol and cholesterol ester content with the

magnitude of change in alternative splicing, in that animals with

greater increases in hepatic total cholesterol and cholesterol ester

also had greater increases in % LDLR12(2) (Figure S1).

Alternative splicing is not regulated by non-sterol end-
products of the mevalonate pathway

Since statin treatment blocks production of both cholesterol and

other non-sterol end-products of the mevalonate pathway such as

isoprenoids, we sought to determine if changes in alternative

splicing are mediated primarily by one or more of these end-

products. Because non-sterol regulation of HMGCR has tradi-

tionally been studied in fibroblasts [19], we incubated early

passage normal human diploid fibroblasts (IMR-90) for 24 hours

with 2.0 mM simvastatin + 10% LPDS in duplicate, after which

Figure 1. HMGCR alternative splicing is sterol regulated. A) Fold change in HMGCR13(+) and 13(2) transcripts with conditions of sterol
depletion. IMR-90 cells were incubated with varying concentrations of activated simvastatin in the absence of exogenous cholesterol for 24 hours.
RT-PCR with primers spanning exons 12 to 14 was used to amplify both the HMGCR13(+) and 13(2) transcripts, and band density was quantified. One
representative sample is shown. B) Fold change in HMGCR transcript with conditions of sterol depletion. HepG2 cells were incubated with varying
concentrations of activated simvastatin in the absence of exogenous cholesterol for 24 hours, and changes in transcript levels were quantified by real
time PCR using splice variant specific assays, n = 8. C) Fold change in HMGCR transcript with condition of sterol loading. HepG2 cells were incubated
with 0.5 mM simvastatin with varying concentrations of LDL-cholesterol for 24 hours and changes in transcript levels were quantified by real time
PCR, n = 8. D) Fold change in HMGCR transcript with varying conditions of sterol depletion and loading. Immortalized lymphoblast cell lines were
incubated with either 10% FBS (control), 10% LPDS, 0.5 mM simvastatin + 10% FBS, 0.5 mM simvastatin + 10% LPDS or 1 mg/ml 25-hydroxycholesterol
+ 10% LPDS for 24 hours, n = 26. HMGCR transcripts were quantified by real time PCR and fold change was calculated from the 10% FBS incubated
samples. Repeated measures MANOVA was used to identify statistical significance in the difference in fold changes between the 13(+) and 13(2)
transcripts across the different incubation conditions (A) and (B), and paired t-tests were used to identify statistically significant differences in fold
changes of HMGCR13(+) versus 13(2) per incubation condition (C). Values plotted are mean 6 s.e.m.
doi:10.1371/journal.pone.0019420.g001
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LDL-C (50 mg/ml) was added to the media. After 24 hours,

10 mM mevalonate was added to one set of cell lines, while the

other received an additional dose of cholesterol, and aliquots were

removed over the course of 6 hours. As expected, HMGCR13(+)

transcript levels did not differ between the cell lines treated with

LDL-C alone versus those treated with LDL-C plus mevalonate

(Figure 4), consistent with previous reports that HMGCR tran-

scriptional regulation is mediated by sterols and not by non-sterol

products of the mevalonate pathway [20]. HMGCR13(2) transcript

levels were also unchanged by the addition of mevalonate,

indicating that statin suppression of HMGCR alternative splicing is

regulated by changes in sterol production. Furthermore, there was

no evidence for non-sterol regulation of amounts of either

LDLR4(2) or 12(2) (data not shown), suggesting that sterols are

responsible for coordinated changes in alternative splicing of genes

involved in cholesterol metabolism.

Figure 2. Multiple genes involved in regulating cholesterol homeostasis are subject to sterol regulated alternative splicing. A)
HepG2 cells were incubated with either 2.0 mM simvastatin +10% LPDS or sham buffer with 10% FBS. After 24 hours, either 50 mg/ml LDL-cholesterol
or 1 mg/ml 25-HC were added to the statin treated sample and incubated for an additional 24 hours, n = 6. Fold changes were calculated from the
cells incubated with 10% FBS only. B) Splice variant specific changes in transcript half-life in response to sterol depletion. HepG2 cells were incubated
with either 2.0 mM simvastatin + 10% LPDS or sham buffer with 10% FBS in replicate 6-well plates. After 24 hours, 1 mg/ml Actinomycin D was added,
and individual wells were collected after 0, 0.5, 1, 2, 4, 6, 24 and 48 hours, n = 12. mRNA quantity values were log transformed and plotted versus
time. Linear regression was used to calculate the slope of the resulting line, and mRNA half-life was calculated as: t1/2 (h) = ln2/(22.3036 slope).
P-values were calculated as paired two tailed t-tests. Values plotted are mean 6 s.e.m.
doi:10.1371/journal.pone.0019420.g002
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Sterol regulation of splicing occurs prior to
transcriptional response

Although pre-mRNA spicing and transcription are related

processes, we sought to determine if there was evidence for

regulation of alternative splicing prior to a detectable change in

overall transcription. HMGCR13(+) and 13(2) transcripts were

quantified in HepG2 incubated with either 2.0 mM simvastatin +
10% LPDS or sham buffer + 10% FBS over the course of 6 hours

(n = 5) (Figure 5). Decreased %HMGCR13(2) occurred within

30–45 minutes as a result of up-regulation (1.360.16 fold) of the

HMGCR13(+) transcript with a corresponding down-regulation

(0.960.05 fold) of the HMGCR13(2) transcript. This effect

subsided within 2 hours post-exposure and was followed by a

second phase of transcriptional up-regulation of both

HMGCR13(+) and 13(2). Similar results were obtained with

immortalized lymphoblast cell lines (n = 6, data not shown). This

early change in alternative splicing was not seen for LDLR exon 4

or 12 skipping, or for MVK exon 4 skipping (data not shown).

Sterol regulated alternative splicing varies in a
coordinated fashion among individuals

In 24 immortalized lymphoblast cell lines incubated with either

2.0 mM simvastatin or sham buffer there was a positive correlation

between magnitude of change in %HMGCR13(2) and

%LDLR12(2) (p = 0.02, r2 = 0.21) and a weaker although non-

significant (p = 0.19) relationship between %HMGCR13(2) and

Figure 3. Validation of sterol-induced changes in alternative splicing in cholesterol fed African Green monkeys. A) RT-PCR was
performed with primers spanning alternatively spliced exons in HMGCS1, HMGCR, MVK, LDLR and PCSK9 with cDNA derived the liver of an African
Green monkey or HepG2 cell line (human control). *The PSCK9 8(2) and MVK4(2) transcripts are minor species in humans and monkeys respectively
and difficult to visualize via RT-PCR, thus PCR was performed using primers that specifically amplify the alternatively spliced transcripts. B) Full length
and alternative spliced HMGCS1, MVK, LDLR and PCSK9 transcripts were quantified in liver biopsies obtained from monkeys with (n = 28) and without
(n = 23) cholesterol supplementation. Fold changes were calculated for each cholesterol fed animal as the transcript quantity value divided by the
average of all control diet fed animals. Paired t-tests were used to identify statistically significant differences in the magnitude of fold change of the
full-length versus alternatively spliced transcripts. **Indicates p,0.05. Values plotted are mean 6 s.e.m.
doi:10.1371/journal.pone.0019420.g003
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%LDLR4(2). There was no evidence for a correlation between

%HMGCR13(2) fold change and either LDLR12(+) or 4(+) fold

change (data not shown).

A similar correlation in the degree of induction of HMGCR and

LDLR alternative splicing was seen after sterol loading in 31

lymphoblast cell lines incubated with 1 mg/ml 25-hydroxycholes-

terol. As expected, %HMGCR13(2), %LDLR12(2) and

%LDLR4(2) were up-regulated by sterol loading (1.560.1 fold,

1.560.1 and 1.260.1 fold respectively). The changes in

%HMGCR13(2) and %LDLR4(2) were correlated (p = 0.036,

Figure 6) with a weaker and non-significant (p = 0.17) relation-

ship between %HMGCR13(2) and %LDLR12(2). Again, there

was no relationship between %HMGCR13(2) fold change and

either LDLR4(+) or 12(+) fold change.

PTBP1 mediates sterol regulated changes in alternatively
spliced transcripts

PTBP1 is a splicing regulator that promotes alternative splicing

[13,14,15] and has been previously shown to bind the LDLR

transcript [16]. Since changes in alternative splicing appear to be

coordinately regulated, we tested if PTBP1 influences alternative

splicing of LDLR as well as other genes involved in cholesterol

biosynthesis and uptake, HepG2 cells were transfected with a

Silence Select siRNA specific for PTBP1 or a non-targeting

negative control, and splice variants were quantified by qPCR

(n = 24). Transfection with the PTBP1 specific siRNA reduced

PTBP1 gene expression by 68.060.03%, and protein expression

by 66% (Figure 7A). PTBP1 knock-down resulted in reduction of

the relative levels of LDLR4(2), LDLR12(2), HMGCS1 2(2),

MVK4(2), and PCSK9 8(2) by 9–23%, (p,0.05, Figure 7B). The

non-targeting siRNA did not affect PTBP1 gene expression or

alternative splicing of any of the genes tested (data not shown).

Interestingly, HMGCR13(2) was unchanged by PTBP1 knock-

down, indicating that this splicing event is regulated by other

mechanisms.

Since PTBP1 binding to the LDLR 39 UTR has been shown to

regulate the half-life of several transcripts [16], we sought to

determine if the changes in the relative abundance of alternatively

spliced transcripts after PTBP1 knock-down were due to transcript

Figure 4. Statin induced changes in HMGCR alternative splicing
are sterol mediated. IMR-90 cells were incubated with 10% LPDS for
24 hours in duplicate, after which 2.5 mM simvastatin was added to the
media. After 24 hours, 50 mg/ml LDL-cholesterol was added and
incubated for an additional 24 hours. 10 mM mevalonate was added
to one set of cells, while 50 mg/ml LDL-cholesterol was added to the
second set of cells. Aliquot were removed after 1, 2, 4 and 6 hours, and
HMGCR13(+) and 13(2) was quantified by qPCR. The entire experiment
was performed in triplicate. Values plotted are mean 6 s.e.m.
doi:10.1371/journal.pone.0019420.g004

Figure 5. Transcriptional versus splicing regulation in HepG2
cells. Time course analysis of HMGCR gene expression in HepG2 cells
incubated with 2.0 uM simvastatin +10% LPDS, or placebo + 10% FBS,
n = 5. Change in HMGCR alternative splicing occurs within 30 min
minutes post-treatment as indicated by an immediate down-regulation
of HMGCR13(2), open circles, and corresponding up-regulation of
HMGCR13(+), solid circles. Data were calculated as the ratios of the fold
changes of the statin versus placebo treated sample at each individual
time point in comparison to 0 minutes. Values plotted are mean 6
s.e.m.
doi:10.1371/journal.pone.0019420.g005

Figure 6. Sterol induced changes in HMGCR and LDLR alterna-
tive splicing are correlated. Immortalized lymphoblast cell lines
were incubated for 24 hours with either 1 mg/ml 25-hydroxycholesterol
+ 10% LPDS or standard culture conditions (10% FBS), n = 31. Fold
changes were calculated as percent alternative spliced in the 25-HC
treated sample divided by the 10% FBS treated sample, and statistical
significance was calculated using linear regression.
doi:10.1371/journal.pone.0019420.g006
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specific differences in mRNA half-life. HepG2 cells were

transfected with either the non-targeting control or PTBP1-

specific siRNA for 18 hrs, and subsequently treated with

actinomycin D (n = 12). There were no splice variant-specific

differences in transcript stability with PTBP1 knock-down (Figure
S2), indicating that the changes in the relative ratios of

alternatively spliced to full-length transcripts were most likely

due to direct effects on alternative splicing of these genes.

Sterol regulation of PTBP1 was assessed in HepG2 cells exposed

to sterol depletion for 24 hours after which either LDL-cholesterol

or 25-hydroxycholesterol was added (conditions described in

Figure 2). PTBP1 mRNA expression was reduced to 0.660.2 fold

of control by sterol depletion (statin + LPDS), while incubation

with sterols reversed this effect by up-regulating PTBP1 4.160.1

fold (Figure 7C), demonstrating that PTBP1 is transcriptionally

responsive to sterols.

Figure 7. PTBP1 mediates sterol regulation of alternative splicing of genes involved in cholesterol biosynthesis and uptake. A)
Representative western blot of HepG2 cells before and after 18 hr transfection with PTBP1 Silence Select siRNA. B) Effect of PTBP1 knock-down on the
relative ratios of full-length to alternatively spliced transcripts. HepG2 cells were transfected with either PTBP1 Silence Select siRNA or a non-targeting
siRNA control for 18 hours, n = 12 Fold changes were calculated as percent alternatively spliced in the cells transfected with the PTBP1 specific siRNA
divided by the percent alternatively spliced in cells transfected with the non-targeting negative control. C) HepG2 cells were treated as described in
Figure 3. Fold change in PTBP1 gene expression was calculated from cells incubated with sham buffer + 10% LPDS. Statistically significant differences
were calculated using two-tailed paired t-tests, n = 6. D) HepG2 cells were transfected with either a siRNA targeted to PTBP1 or a non-targeting
negative control in duplicate. After 18 hours, incubation media was refreshed to include either 2.0 mM simvastatin + 10% LPDS or sham buffer + 10%
FBS and cells were incubated for an additional 24 hours, n = 6. Statin induced fold changes in percent alternatively spliced were calculated
independently in the PTBP1 siRNA versus non-targeting negative control samples as the value measured in the statin incubated sample divided by
the value measured in the sham incubated sample. All values shown are mean 6 s.e.m. FL = full length.
doi:10.1371/journal.pone.0019420.g007
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To determine if PTBP1 mediates sterol-regulated changes in

alternative splicing, HepG2 cells were incubated with either a

siRNA specific for PTBP1 or a non-targeting negative control for

18 hours, after which either 2.0 mM simvastatin or placebo was

added for an additional 6 hours (n = 9). PTBP1 knock-down

attenuated the suppression of alternative splicing with sterol

depletion (Figure 7D). The ratios of alternatively spliced to full-

length transcripts of HMGCS1, LDLR and MVK were reduced in

the cells transfected with the non-targeting siRNA after sterol

depletion, but not after PTBP1 knock-down. Notably, sterol

induced changes in HMGCR13(2)/13(+) or PCSK9 8(2)/8(+)

were not affected by PTBP1 knock-down. PTBP1 knock-down

also attenuated statin-induced transcriptional up-regulation of

HMGCS, MVK and LDLR12(+), but had no effect on LDLR4(+)

(Figure S3). Taken together, these results demonstrate that sterol

induced changes in the relative levels of alternatively spliced to full

length transcripts in multiple genes is mediated in part by down-

regulation of PTBP1.

Sterol depletion and loading blunts genetic regulation of
HMGCR and LDLR alternative splicing

Although statin treatment suppresses both HMGCR13(2) and

LDLR12(2) alternative splicing, the absolute amount of these

transcripts expressed after statin incubation vs. baseline remains

tightly and positively correlated among immortalized lymphoblast

cell lines (p,0.0001, r2 = 0.70, n = 173 and p,0.0001, r2 = 0.63,

n = 251 respectively). This suggests intrinsic differences in factors

regulating alternative splicing of these genes among the cell lines.

Since both HMGCR13(2) and LDLR12(2) are genetically

regulated by cis-acting SNPs (rs3846662 and rs688 respectively

[3,4,6]), we tested for interactions between genetic and non-

genetic regulation of alternative splicing. Interestingly there

appears to be an interaction between HMGCR rs3846662, the

intron 13 SNP known to directly influence exon 13 alternative

splicing [3,4], and the degree of statin suppression of exon 13

skipping, since this phenomenon was only seen in cell lines that

carry at least one copy of the ‘‘A’’ allele of rs3846662 (Figure 8A).

Consequently, the relationship between rs3846662 and

%HMGCR13(2) expression was blunted by statin treatment

(interaction p,0.0001, Figure 8B). Similar results were seen

with rs688, an exon 12 SNP that regulates LDLR exon 12

alternative splicing, and %LDLR12(2), where sterol suppression of

exon 12 skipping occurred only in cell lines with at least one copy

of the ‘‘T’’ or minor allele (Figure 8C). Using a dominant genetic

model, rs688 genotype remained significantly associated with

%LDLR12(2) after statin treatment, however this relationship was

attenuated compared to that with baseline %LDLR12(2)

(Figure 8D). Given the sterol by genotype interaction in

regulation of alternative splicing, we genotyped the HepG2 cell

line and found that it was heterozygous for the minor allele of

rs3846662 (A/C) and homozygous for the major allele of rs688

(C/C).

Discussion

The genes involved in cellular cholesterol biosynthesis and

uptake are known to be coordinately regulated by the SREBP/

Insig/SCAP system in response to sterols such that these pathways

are induced and suppressed as a whole [17]. Here we provide

evidence that orchestrated regulation of HMGCR and LDLR, the

two key regulatory genes responsible for cholesterol biosynthesis

and uptake, respectively, also occurs at the level of alternative

splicing. Furthermore, other genes in the pathway of cholesterol

biosynthesis including HMGCS1 and MVK, as well as another key

gene involved in cholesterol uptake, PCSK9, are subject to similar

regulation, suggestive of a pathway level effect. Although

coordinated regulation of the cholesterol biosynthetic pathway

has also been seen at the level of enzyme activity and/or protein

amount [21,22,23,24], these changes have been attributed largely

to mechanisms that influence protein synthesis such as SREBP-

induced gene expression. Coordinated regulation of pre-mRNA

splicing of multiple genes by an external stimulus has been recently

demonstrated in the case of insulin, which has been found to affect

splicing of over 150 genes [25]. Moreover, orchestrated changes in

alternative splicing have been shown in several biological processes

including apoptosis [26].

Alternative splicing of HMGCR, LDLR, MVK, and PCSK9

reduces protein or enzyme activity [3,4,5,6,8,9,27,28,29]. In

addition, we found here that alternative splicing of the 59 UTR

of HMGCS1 reduces the half-life of the transcript, consistent with

the likelihood that this process also results in decreased HMGCS1

protein levels. We found that cellular cholesterol deficiency

reduced the ratio of alternatively spliced to full-length transcripts

(increasing enzyme or protein activity) while cholesterol accumu-

lation increased this ratio (decreasing enzyme or protein activity).

These data strongly suggest that modulating the ratio of full-length

to alternatively spliced transcripts is a generalized mechanism for

regulating expression of genes involved in cholesterol biosynthesis

and uptake. Moreover, we found evidence for in vivo operation of

this mechanism by showing that cholesterol feeding influences

alternative splicing of hepatic HMGCS1, MVK, LDLR and PCSK9

in African Green monkeys. Although in vivo sterol regulation of

HMGCR13(2) could not be confirmed in this species due to lack of

detectable hepatic expression, we have identified its presence in

other non-human primates (personal communication M.W.M). As

described in the supplementary material, the association of the

magnitude of alternative splicing with hepatic content of

cholesterol ester but not free cholesterol likely represents the role

of the former as the storage form of excess diet-derived cholesterol,

while multiple homeostatic mechanisms operate to limit increases

in cellular free cholesterol.

Co-regulation of alternative splicing of multiple genes in

pathways affecting cholesterol metabolism may provide a means

to quickly modulate or fine-tune the effects of SREBP-mediated

transcriptional regulation of intracellular cholesterol content.

Indeed, our results demonstrate that sterol-induced changes in

HMGCR alternative splicing can occur prior to detectable

transcriptional response. Although our incubations with IMR-90

fibroblasts suggest that HMGCR alternative splicing is not

regulated by non-sterol end-products of the mevalonate pathway,

these results do not exclude the possibility of more immediate

regulation (within 45 minutes post-treatment) of HMGCR

alternative splicing by products other than cholesterol generated

from the mevalonate pathway.

Coordinated regulation of alternative splicing across multiple

genes suggests that there are shared mechanisms responsible for

generating this response. One possibility for such a mechanism is

suggested by our finding that siRNA knockdown of PTBP1, an

RNA binding protein and negative splicing regulator previously

shown to bind the LDLR gene [16], reduces the relative levels of

LDLR, HMGCS1, MVK, and PCSK9 splice variants. Although these

changes were relatively modest, it was recently reported that

siRNA knock-down of PTBP1 results in the up-regulation of

PTBP2. Since PTBP1 and PTBP2 have similar functional effects,

dramatic changes in splicing are seen only when both PTBP1 and

PTBP2 are knocked down [30]. Thus, our results indicate that

modulation of PTBP1 reduces the level of alternatively spliced

mRNA despite the compensatory up-regulation of PTBP2, which
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also occurs when PTBP1 is down-regulated in response to sterol

depletion (personal communication, M.W.M. and F.G.). Moreover, the

attenuation of HMGCS1, MVK and LDLR12(+) transcriptional

response to statin after PTBP1 knock-down suggests that these

genes are also subject to transcriptional regulation by PTBP1,

consistent with previous reports that PTBP1 can bind and activate

promoters [31,32]. However, the specificity of this activity is

different from its effects on mRNA stability, as demonstrated by

the robust effects of PTBP1 knock-down on LDLR exon 4 skipping,

but not on statin-induced expression of the LDLR4(+) transcript.

We also found that PTBP1 gene expression is sterol regulated

since sterol depletion reduced PTBP1 expression and this was

reversed by sterol loading. These results are consistent with recent

reports demonstrating that PTBP1 protein is up-regulated in vivo in

LDLR2/2 mice fed a Western versus chow diet [33]. Further-

more, PTBP1 knock-down eliminated sterol induced regulation of

alternative splicing of LDLR, HMGCS1 and MVK. These findings,

together with the down regulation of PTBP1 gene expression by

sterol depletion, are consistent with the likelihood that regulation

of PTBP1 mediates sterol-induced changes in the magnitude of

alternative splicing of LDLR, HMGCS1, and MVK. Although

PTBP1 knock-down reduced PCSK9 8(2)/8(+), it did not

influence sterol induced change in this ratio; in addition, PTBP1

does not appear to regulate HMGCR, suggesting the involvement

Figure 8. Interaction between genetic and non-genetic regulators of HMGCR and LDLR alternative splicing. A) Correlation of
%HMGCR13(2) expressed after 24 hour treatment with 2.0 mM simvastatin versus sham buffer (baseline value) in 134 immortalized lymphoblast cell
lines split by rs3846662 genotype. The p-value indicates that the interaction between %HMGCR13(2) and rs3846662 genotype was statistically
significant. B and D) %HMGCR13(2) and %LDLR12(2) at baseline conditions and after statin treatment split by rs3846662 or rs688 genotype
respectively. P-values were calculated using a two-tailed paired t-test. Values shown are mean 6 s.e.m. C) Correlation of %LDLR12(2) expressed after
treatment with simvastatin versus after treatment with placebo (baseline value) in 251 immortalized lymphoblast cell lines. A dominant genetic
model was applied since C/T and T/T cell lines behaved identically.
doi:10.1371/journal.pone.0019420.g008
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of other splicing factors in generating these variants. This is

consistent with previous reports that PTBP1 knock-down did not

alter either HMGCR or SREBP2 transcript levels [16]. Given the

fact that PTBP1 has been shown to regulate alternative splicing of

numerous other genes not previously implicated in cholesterol

metabolism [13,14,15], our findings raise the possibility that sterols

influence alternative splicing on a more global scale beyond the

genes described here. However, in the absence of changes in

transcriptional response, the physiological effects of changes in

alternative splicing may be minimal.

Although many of the coordinated changes in the relative ratios

of alternatively spliced to full-length transcripts can be attributed

at least in part to PTBP1 mediated changes in alternative splicing,

we found that splice variant specific regulation of mRNA half-life

also occurs. The reduction in %HMGCR13(2) with sterol

depletion is likely due to a combination of both transcript-specific

changes in half-life and direct effects on exon 13 skipping. We

showed that sterol depletion specifically reduced the half-life of the

HMGCR13(2) transcript, but had no effect on the half-life of

HMGCR13(+). However, we also found that the absolute level of

HMGCR13(2) drops while HMGCR13(+) increases within 30

minutes of statin exposure, an effect not likely attributable to

changes in transcript stability. In addition, as described further

below there was an interaction between statin-induced changes in

%HMGCR13(2) and rs3846662, a SNP that directly regulates

exon 13 skipping, demonstrating that there are also sterol-induced

changes in the process of alternative splicing. Although splice

variant-specific changes in mRNA stability and direct regulation of

alternative splicing can each contribute to the overall changes in

the relative abundance of alternatively spliced transcripts,

regulation at the level of mRNA stability was only identified in

two of the transcripts studied, HMGCR13(2) and LDLR4(2),

while changes in alternative splicing were evident for all six

transcripts studied, consistent with a pathway level effect.

Using a repository of immortalized lymphoblast cell lines, we

demonstrated that the magnitude of sterol-induced changes in

both suppression and induction of HMGCR and LDLR percent

alternatively spliced transcripts varied widely among individual

cell lines, but that these changes were strongly correlated among

the cell lines. Although we previously reported that HMGCR13(+)

and 13(2) were induced to a similar degree in 172 immortalized

lymphoblast cell lines incubated with either 1.8 or 14.5 mM

activated simvastatin in the presence of 10% FBS (24 hours) [4],

additional data (total n = 185) revealed that the 13(2) transcript

was induced slightly less (5.1%, p = 0.039) than the 13(+)

transcript. Since these cells were exposed to identical incubation

conditions, variation in response suggests that there is a genetic

component in the regulation of alternative splicing. Cis-acting

SNPs in both HMGCR and LDLR, rs3846662 and rs688, have

been shown to regulate exon 13 and exon 12 skipping respectively

[3,6]. Notably, there was evidence for a strong interaction between

genetic and sterol regulation of alternative splicing since sterol

depletion blunted the relationship between rs3846662 and

%HMGCR13(2), and rs688 with %LDLR12(2), suggesting that

these SNPs influence the mechanism by which sterols regulate

alternative splicing. On the basis of these findings, these SNPs

would be predicted to be more strongly associated with inter-

individual variation in ambient levels of plasma LDL-cholesterol

than with changes induced by statin treatment. Indeed, this

appears to be true since neither rs3846662 nor rs688 have been

associated with statistically significant changes in LDL-cholesterol

after statin treatment despite their association with baseline levels

of LDL-cholesterol [3,6,34,35,36,37,38]. A SNP by sterol

interaction is consistent with the finding of sterol-induced changes

in HMGCR alternative splicing in the HepG2 cell line, which is

heterozygous for the minor allele of rs3846662. However, the

HepG2 cell line is homozygous for the rs688 ‘‘C’’ allele, which,

based on results in lymphoblast cell lines with this genotype, would

predict lack of statin suppression of %LDLR12(2), in direct

contrast to our findings. This inconsistency may reflect cell type

specific differences in the genetic regulation of LDLR exon 12

skipping.

HMGCR and LDLR transcriptional responses to sterols are

coordinately regulated by SREBP, as indicated by the correlation

of their changes in response to statin in our lymphoblast cell lines

(p = 0.03, n = 24). The lack of correlation between fold changes in

either total HMGCR or LDLR gene expression with

%HMGCR13(2), %LDLR12(2) or %LDLR4(2) indicates that

the molecular mechanisms underlying variation in the transcrip-

tional regulation of these genes in response to sterol depletion do

not also influence changes in alternative splicing. These results

demonstrate that variation in transcriptional regulation is

independent of variation in pre-mRNA splicing. The finding that

changes in HMGCR exon 13 skipping occur prior to changes in

gene transcription provides further evidence of independent

control. In the case of prolonged exposure to extreme cholesterol

depletion, such as a 24 hour incubation with statin in the absence

of exogenous cholesterol, this small shift in pre-mRNA splicing to

generate more 13(+) versus 13(2) transcript may initially help

correct for small imbalances in cholesterol homeostasis prior to the

stimulation of a robust transcriptional response. Furthermore, the

fact that this was seen only with HMGCR is consistent with the

extensive degree to which HMGCR activity is regulated [20], and

indicates that HMGCR alternative splicing is subject to additional

forms of regulation.

We have shown that alternative splicing contributes to

coordinate regulation of genes involved in cholesterol homeostasis,

including the two key regulatory genes HMGCR and LDLR. This

effect is influenced by cis-acting SNPs that blunt the suppression of

alternative splicing in response to sterol depletion. Our findings

indicate that alternative splicing augments the robust transcrip-

tional response generated by changes in cellular cholesterol status,

and contributes to cellular cholesterol homeostasis under condi-

tions of variation in sterol availability, such as statin treatment.

Methods

Cell Exposures
HepG2 cells were grown in MEM supplemented with 1%

nonessential amino acids, 1% sodium pyruvate and 10% heat

inactivated fetal bovine serum (FBS) (Hyclone). Immortalized

lymphoblast cell lines were derived from the Cholesterol and

Pharmacogenetics clinical trial [39], and grown in RPMI 1640

media supplemented with 10% FBS, 500 U/ml penicillin/

streptomycin, and 2 nmol/L GlutaMAX [4]. IMR-90 cells were

grown in high glucose DMEM supplemented 2 nmol/L Gluta-

MAX and 10% FBS. All culture media and supplements were

obtained from Invitrogen unless otherwise indicated, and all

cultures were maintained at 37uC with 5% CO2. Simvastatin was

provided as a gift from Merck (Whitehouse Station, NJ) and was

converted into 99% of the activated form (beta-hydroxy

simvastatin acid) as previously described [4]. LDL-cholesterol

was isolated from 250 ml of plasma from a single individual as

previously described [40] using written informed consent and with

approval by the Committee for the Protection of Human Subjects

at Children’s Hospital and Research Center Oakland. LDL-

cholesterol concentration was calculated by the Friedewald

equation. Cells were exposed to either conditions of sterol
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depletion, defined as 24 hour incubation in media supplement-

ed with 10% lipoprotein deficient serum (LPDS) and simvas-

tatin (concentration varied by experiment), or sterol loading,

defined as 24 hour incubation in media supplemented with

10% LPDS and either 50 mg/ml LDL-cholesterol or 1 mg/ml

25-hydroxycholesterol.

Animal studies
Wild caught feral adult male St. Kitts vervets (Cercopithecus

aethiops sabaeus), also called African green monkeys [41] were

studied in two separate experiments. Because the plasma

cholesterol response to dietary cholesterol varies widely among

individuals, plasma cholesterol response to a 4 week challenge with

a diet containing 35% of energy as saturated fat and 0.4 mg/kcal

of dietary cholesterol was assessed for each animal. A 4 month

washout with monkey chow diet followed this initial diet challenge.

In the first experiment, animals were fed a diet with no added

cholesterol (see Rudel et al. [42] for diet composition) for 22 weeks,

n = 20. Animals were then fed for 19-weeks with the same diet

supplemented with 0.6 mg/kcal cholesterol with either 35% of the

energy as monounsaturated fat (n = 10) or saturated fat (n = 10).

Liver biopsies were surgically collected via a midline laparotomy

before and after cholesterol feeding, and tissues were stored at

280uC until analysis. A portion of frozen tissue was taken,

weighed, and liver lipid concentrations were determined after lipid

extraction using the enzymatic methods previously described [43].

One animal died before liver biopsies were collected and data

from a second animal was omitted since it demonstrated abnormal

transcriptional up-regulation of HMGCR and LDLR after choles-

terol feeding. In the second experiment animals were fed a diet

containing 35% of energy as monounsaturated fat supplemented

with 0.002, 0.2 or 0.4 mg/kcal cholesterol (n = 5 per diet), and

liver biopsies were collected after 10-weeks. All procedures were

approved by the Wake Forest University Animal Care and Use

Committee through protocols A04-048 and A10-024. All efforts

were made to minimize suffering using the appropriate anesthetic

and analgesic agents. Animals were routinely monitored by

veterinarians for all medical and dental conditions, with

appropriate treatments administered by specialists.

Liver tissue was snap frozen in liquid nitrogen at the time of

collection and was stored at 280uC until processed for RNA

extraction. Liver RNA was extracted with Trizol (Invitrogen), and

RNA concentration and integrity was verified by A260/280

reading and gel electrophoresis. Expression of alternatively spliced

transcripts was verified by RT-PCR and DNA sequencing; primer

sequences are listed in Table S1. Positively identified splice

variants were quantified by qPCR. Baseline quantities of each

transcript were calculated as the average of experiment 1 animals

collected before cholesterol feeding (n = 18) and experiment 2

animals after 0.002 mg/kcal cholesterol feeding (n = 5). Transcript

fold changes with cholesterol feeding for each individual were

calculated as the transcript quantity after cholesterol feeding

divided by the averaged baseline value (n = 28). Since there were

no consistent statistically significant differences in cholesterol-

induced changes in %HMGCS1 2(2), %MVK4(2), %LDLR4(2),

%LDLR12(2) or %PCSK9 8(2) among the three cholesterol

doses, the data for all doses were combined for each of these splice

variants.

siRNA transfection
PTBP1 knock-down was achieved by 18 hour transfection of

2.56105 HepG2 cells/well in 6-well plates with 12.5 pmole

Silencer Select siRNA (Applied Biosystems) using pSPORT-

NeoFX transfection agent (Applied Biosystems) following the

manufacturer’s protocol. Cells were exposed in replicate to either

the PTBP1 siRNA duplex, the Silencer Select Negative Control

#1 (Applied Biosystems), pSPORTNeoFx transfection agent only,

or no additions to ensure that changes in alternative splicing with

knock-down were specific to the reduction of PTBP1. Knock-down

was confirmed by qPCR and Western blot incubated with a

monoclonal mouse anti-PTB antibody (Invitrogen) and GAPDH

(D-6) mouse monoclonal antibody (Invitrogen). Protein band

intensity was quantified on the Alpha Imager TM.

Transcript quantification
RNA was extracted using the Qiagen RNAeasy (Qiagen) mini-

kit with QIAshredders, and 5 mg of RNA was reverse transcribed

into cDNA using the Applied Biosystems cDNA archive kit.

Specific qPCR assays were designed using Primer3 [44]. For all

assays, either one primer (Elim Biopharmaceuticals) or the

fluorescent probe (Applied Biosystems) was designed to directly

overlay the site of alternative splicing, for example the exon 3 to

exon 5 splice junction in the case of LDLR4(2). All transcripts

were quantified in both human and monkey samples with either

TaqMan or SYBR Green assays using TaqMan or SYBR

Universal Master Mix (Applied Biosystems) with primer sequences

listed in Table S1. PCSK9 and HMGCR splice variants were

quantified using the assays previously described [4,5]. The

remaining splice variants were quantified using SYBR Green

Master Mix, with dissociation curves run at the end of each

reaction to ensure the generation of a single PCR amplicon. All

reactions were performed in triplicate using 50 ng cDNA per

reaction. Absolute quantification of splice variants was performed

using a serially diluted standard containing the same sequence as

the target amplicon. The specificity of all qPCR assays was verified

by testing for detection of a standard known to contain only the

full-length transcript of a gene with the qPCR assay specific for its

corresponding alternatively spliced variant (for example,

HMGCR13(+) template with 13(2) qPCR assay). Lack of cross-

reaction in the reverse direction (for example, HMGCR13(2)

template with 13(+) qPCR assay) was also confirmed. Primer and

probe sequences are listed in Table S2. CLPTM1 and SLC7A

were quantified in all samples for data normalization. For

Figure 1A only, both HMGCR13(+) and 13(2) transcripts were

amplified by PCR using the following primers, HMGCRex12.F:

tgctaagcatatcccagcctacaag and HMGCRex14.R: atgcctcctttat-

cactgcgaacc. PCR product was loaded onto an agarose gel, and

band density was quantified using the AlphaView Software 1.2.01

(Alpha Innotech).

Percent alternatively spliced mRNA was calculated as the

quantity of the splice variant divided by the quantity of the total

transcripts per gene, e.g., 1006 HMGCR13(2) divided by

[HMGCR13(2) + HMGCR13(+)]. Fold changes were calculated

as the value of the percent alternatively spliced after statin

treatment or sterol loading, divided by the percent alternative

spliced under basal culture conditions, i.e., %HMGCR13(2) with

statin + 10% LPDS divided by %HMGCR13(2) +10% FBS. All

experiments were performed in triplicate unless otherwise

indicated.

Measurement of transcript half-life
HepG2 (n = 12) were first incubated for 24 hours with either

2.0 mM simvastatin + 10% LPDS or sham buffer, after which

1 mg/ml actinomycin D was added. Samples were removed at

eight time points over the course of 48 hours, and splice variants

were quantified as described above. Transcript half-life was

calculated as previously described using only time points consistent

with first order decay kinetics [45]. Half-life was calculated from
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each individual experiment with t-tests used to compare the mean

and standard error values between statin versus sham incubated

cells. In addition, mRNA data per time point was averaged, and

half-life was calculated from the pooled data. Half-life values

measured in the averaged versus pooled data sets were not

significantly different. To determine the effects of PTBP1 on

transcript half-life, HepG2 cells were transfected with either a non-

targeting siRNA control or PTBP1 specific siRNA as previously

described, n = 12. After 18 hours, 1 mg/mL actinomycin D was

added, and transcript half-life was measured as described above.

Genotyping
Rs3846662 genotyping was performed as previously described

[34]. Rs688 genotyping was performed using a fluorogenic allele-

specific amplification method (Millipore) as previously described

[6]. Following amplification, fluorescence was read using an ABI

7900HT (Applied Biosystems) and cluster analysis performed

using SDS v2.3 software (Applied Biosystems).

Statistical Analyses
qPCR data were analyzed as previously described with all data

normalized to CLPTM1 and SLC7A, whose expression was

validated to be non-responsive to sterols [4]. For gene expression

quantification by qPCR, the Grubb’s test for outliers was

calculated for each three triplicate measurement. For dose

response curves, repeated measures MANOVA was used to assess

statin-induced differences between the up-regulation of the

HMGCR13(+) and 13(2) transcripts. Statistically significant

differences in percent alternatively spliced transcripts (HMGCR,

LDLR, HMGCS1, MVK, or PCSK9) after in vitro treatment with

simvastatin, LDL-cholesterol or 25-hydroxycholesterol were

calculated using two-tailed paired t-tests. Two-tailed paired t-tests

were also used to identify statistically significant differences in the

magnitude of change between the full length and alternatively

spliced transcripts in cholesterol versus control fed monkeys.

Correlations between %HMGCR13(2) with %LDLR12(2) and

%LDLR4(2) among statin or 25-hydroxycholesterol treated

immortalized lymphoblast cell lines were assessed by linear

regression. To test for a significant interaction between

rs3846662 with statin suppression of %HMGCR13(2), multivar-

iate regression models were created with %HMGCR13(2) after

statin as the dependent variable, and %HMGCR13(2) at baseline

as the independent variable with adjustment for rs3846662 and an

interaction between %HMGCR13(2) at baseline with rs3846662.

A similar model was generated to assess interaction between rs688

and statin suppression of %LDLR12(2). All statistical analyses

were performed using JMP 7.0.1 (SAS Institute).

Supporting Information

Figure S1 Change in hepatic total cholesterol and
cholesterol ester is correlated with change in percent
LDLR alternative splicing. Hepatic total cholesterol and

cholesterol ester were measured in liver biopsies obtained from

African green monkeys with (n = 19) and without (n = 14)

cholesterol supplementation. Percent change in hepatic lipids for

each cholesterol fed animal were calculated from the average of all

control fed animals, and values were adjusted for the change in total

plasma cholesterol as well as the predominant fat (monounsaturated

versus saturated) in each diet to account for differences in response

due to variation in the amount of cholesterol supplementation (0.2,

0.4 and 0.6 kcal/g). Direct correlation in inter-individual variation

in the residuals of percent change in hepatic lipids with change in

alternative splicing was assessed in JMP 7.0.1. Animals who

experienced greater increases in hepatic total cholesterol (A) and

cholesterol ester (B) also had greater increases in %LDLR12(-).

Similar relationships were seen with other splice variants, but did

not achieve statistical significance. There was no relationship

between change in hepatic free cholesterol and %LDLR12(-).This

lack of relationship is consistent with the fact that levels of hepatic

free cholesterol were not elevated in a statistically significant manner

after cholesterol feeding (3.060.1 mg/g liver no cholesterol versus

4.260.5 mg/g liver with cholesterol, p = 0.07), compared to

changes in hepatic cholesterol ester (2.460.5 mg/g liver no

cholesterol versus 15.662.7 mg/g liver with cholesterol,

p,0.001). **Scale reflects residual percent change values after

adjustment as described above.

(TIF)

Figure S2 Effect of PTBP1 knock-down on transcript
half-life. Actinomycin D (1mg/ml) was added to HepG2 cells

after 18hr transfection with either PTBP1 Silence Select siRNA or

a non-targeting siRNA control, n = 8. All values shown are mean

6 s.e.m. *p,0.05, half-life is significantly different between cells

transfected with the non-targeting siRNA and the PTBP1 specific

siRNA.

(TIF)

Figure S3 Change in total transcript levels with PTBP1
knock-down. HepG2 cells were transfected with either a siRNA

targeted to PTBP1 or a non-targeting negative control in

duplicate. After 18 hours, incubation media was refreshed to

include either 2.0mM simvastatin + 10% LPDS or placebo buffer +
10% FBS and cells were incubated for an additional 24 hours,

n = 8. Statin induced fold changes in gene expression were

calculated independently in the PTBP1 siRNA versus non-

targeting negative control samples as the value measured in the

statin incubated sample divided by the value measured in the

placebo incubated sample. All values shown are mean 6 s.e.m.

(TIF)

Table S1 Primer and probe sequences used for quan-
titative real time PCR to detect specific splice variants.
All assays with probe sequences listed were used as TaqMan

assays, assays without a probe sequence were used as SYBR Green

assays.

(DOC)

Table S2 Primer sequences used to detect expression of
alternatively spliced transcripts in the African Green
Monkey.
(DOC)
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