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Introduction

Multiple Sclerosis (MS) is a progressive degenerative neurologic 
disease, characterized by chronic, inflammatory demyelination 
and axonal damage.1 Despite 150 years of investigation, the pre-
cise etiology of MS still remains largely unknown.2 Although 
widely regarded as an autoimmune disease, there still remains a 
divergence of opinion that challenges the role of central dysregu-
laton in disease pathogenesis.3 A diverse array of associations has 
been described; this may allude to a phenotypically similar group 
of diseases rather than a single, distinct entity. Immune dysregu-
laton appears to be central to MS as evidenced by antibodies and 
autoreactive T cells against components of the myelin sheath; 
there is also shared pathology with experimental autoimmune 
encephalitis and a downstream clinical response to immuno-
modulatory therapy.4,5 Host genetics have a strong contribution 
with defined linkage to the major histocompatibility complex 
(MHC).1 Finally, the contribution of an environmental trigger 
has yet to be definitively excluded as a means of either initiating 
or maintaining disease progression.

Within this complex interplay the phenomenon of leukocyte 
chimerism has further been hypothesized to harbor a role, both 
broadly in autoimmune disease, as well as specifically in MS.6 
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Chimerism refers to the enduring co-existence of genetically dis-
parate populations of cells within a single host. This phenome-
non is well demonstrated in a number of clinical settings, notably 
pregnancy,7 twinning, transplantation6 and blood transfusion.8,9 
Chimeric populations of allogeneic or non-self cells elude the 
host immune system and persist at low levels. Given that chime-
ric populations typically account for less than 5% of host cellular 
burden the term microchimerism (MC) is often used to describe 
this phenomenon. The clinical significance of MC is only begin-
ning to be appreciated and extends to both adverse effect e.g., 
Graft versus host disease (GVHD), Autoimmune disease7,10,11 
as well as the potential for therapeutic benefit e.g., Graft versus 
malignancy effect, adoptive immunotherapy, tissue regeneration 
and repair.12

MC has gained increasing attention through its plausible 
link to autoimmune disease. MC is well described in pregnancy 
through bidirectional trafficking of cells between mother and 
fetus, a proportion of which may persist following separation at 
delivery. An MC-linked autoimmune hypothesis builds on the 
notion that sustained occult populations of fetal cells, express-
ing paternal-derived “foreign” antigens, could be stimulating 
an alloimmune response, masquerading as an “autoimmune” 
disease. This hypothesis followed the observation of shared 
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microchimeric cells were detected in a positive subject. This is 
distinctly different from the comparatively robust levels of MC 
encountered in transfusion-associated MC in which the alloge-
neic, minor population may occupy as much as 1–4% of circu-
lating host leukocyte burden. Sustained high-level MC following 
transfusion has been repeatedly described in subjects transfused 
following severe traumatic injury.17-19 The clinical significance of 
a quantitative difference between transfusion-associated MC and 
fetal associated MC is still not known.

Our study also draws attention to the deficiencies inherent to 
MC evaluation using Y-chromosome based platforms. This fol-
lowed the unexpected finding in which a similar proportion of 
MS+ females displayed male MC independent of a known history 
of male pregnancy. Eleven of 24 (~46%) of MS+ females with-
out known pregnancy tested positive for MC. Although coun-
terintuitive, similar unexpected findings have been reported in 
other studies,15,16 albeit at lower levels than that encountered in 
our study. This underscores that self-reported negative pregnancy 
history may not definitively exclude a history of pregnancy: up 
to 30% of pregnancies end in early fetus loss with up to 14% 
being occult and clinically unrecognized.20 It has further been 
suggested these early miscarriages may indeed convey greater risk 
to develop persistent fetal MC.21

Other sources of potential error were also addressed: spuri-
ous reporting and coding errors were primarily excluded upon 
audit of the results. PCR contamination, another necessary 
consideration, was deemed unlikely as both positive and nega-
tive controls were run in parallel with the assays. Furthermore, 
in the event that amplicon contamination occurs, it tends to 
be at a quantitatively higher level than that encountered in our 
study and is typically uniform across samples.22 One would not 
expect intermittent, exceedingly low-level contamination while 
still preserving the ability to discriminate between experimen-
tal groups such as MS and non-MS subjects as observed in the 
current study. Assay function and reliability is critical to MC 
analysis and our group has consequently studied different aspects 
of sample viability with concurrent PCR contamination in view 
of MC detection. The outlined results do not appear consistent 
with any known form of amplicon contamination.23 We have also 
conducted extensive technical validation of MC PCR assay per-
formance, which includes both rigorous spiking studies, as well 
as direct sequencing to definitively verify the identity of reaction 
products.24,25

Although the unexpected findings were therefore postulated 
to be real, we employed a biological control in order to validate 
the results. Female neonatal cord bloods were used for this pur-
pose, representing an ideal control having never been pregnant. 
Although still subject to trafficking of cells from the mother, 
maternal cells will elude capture by a Y-chromosome based 
assay. There does remain the rare possibility of an undetected 
or resorbed male twin contributing cells; this is, however, con-
sidered unlikely. There also remains the theoretical possibility 
of intergenerational chimerism whereby trafficking of cells from 
a prior pregnancy into the mother could lead to downstream 
exchange with the new fetus as reflected in the associated cord 
blood.26,27

histopathological overlap between scleroderma, an autoimmune 
disease of, again, undetermined cause, with GVHD, a predict-
able adverse effect of chimerism in the setting of transplantation. 
This questions the existing paradigm of central immune dysregu-
lation underlying autoimmune disease. The aim to understand 
whether MC indeed has a role in this complex process, forged 
the basis for our study to evaluate whether there is an association 
between MS and the presence of MC.

Results

The results of SRY MC assays are summarized in Tables 2–4. 
Tables 2 and 3 present the initial results of two contingency 
table analyses for the prevalence of MC in the three groups. 
Table 4 presents the summary findings following introduction 
of the CBU controls and presents the different rates of positivity 
between the groups. Among the 27 women in group 1 (MS with 
a history of male pregnancy), 10 (37.0%) had evidence of MC. 
Among the 24 women in group 3 (MS without known male 
pregnancy), 11 (45.8%) had male MC. Overall, of 51 women 
with MS, 21 (41.2%) had MC. Among 22 MS-negative sib-
lings, 4 (18.2%) had male MC. All positive MC assays were 
near the lower limit of detection consistent with the presence 
of a single copy or small number of copies of target sequence. 
There was no occurrence of a positive amplification in any no-
template control.

Cord blood results. Each of the 30 samples underwent 22 
amplification cycles using the same protocol employed for the 
initial study subjects. Summarizing each individual’s results as 
the number of positive results observed over all cycles provides 
an alternate outcome to the binary indicator of positivity sum-
marized above. A Poisson regression model fitted to these results 
for all individuals, taking the indicator of membership in the four 
groups as the predictor variable provided estimates of the group-
specific positivity rates as well as estimated relative rates com-
paring groups, taking the CBU group as the reference. Results 
(Table 4) indicate significantly higher rates in both groups of 
women with MS. Additional comparisons of the two MS groups 
with the MS- siblings revealed no significant differences.

Discussion

The association between fetal derived MC and later development 
of MS, as suggested by our findings, is consistent with other stud-
ies examining this relationship.13

Our results are also similar to those reported for scleroderma 
in which the presence of rare allogeneic cells has been docu-
mented.14 However, the levels of MC observed in our study exceed 
that of others,13 particularly in subjects that were reportedly nul-
liparous.15,16 We can only speculate that alternative methodolo-
gies and reporting strategies in part account for this difference. 
More specifically, this may be attributable to the higher levels of 
DNA analyzed in our study. Given the limited sample size, we 
are, however, reluctant to overstate this finding.

The data from our study are based on 1,500,000 inputs 
for each sample in which approximately 1–12 male allogeneic 
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well as other studies seeking to gauge tissue MC. In view of these 
pilot findings, spinal fluid and affected neural tissue (brain) may 
provide a more representative sample for examination of MC. If 
MC is common in MS and involves target tissues specific to the 
disease, these findings could unravel new conceptual models for 
future investigation of MS.

Methods

Subjects. The study was conducted on samples from 51 strin-
gently ascertained MS-affected individuals and 22 unaffected 
family members, obtained through the UCSF Multiple Sclerosis 
DNA Bank (MSDB). All known ancestors were Non-Hispanic 
White, and of European descent. Diagnostic criteria and ascer-
tainment protocols are summarized elsewhere in references 31 
and 32. White blood cells were isolated by Ficoll gradient and 
high molecular weight DNA isolated using standard desalt-
ing procedures. The work was approved by the Committee of 
Human Research at The University of California San Francisco.

Subjects were selected according to disease status, reproduc-
tive history and availability of genomic DNA (see Table 1 for 
clinical data). Subjects were selected in three groups such that use 
of Y-chromosome analysis of MC would always be informative:

Group 1: MS+ women with a history of one male pregnancy 
before symptom onset (n = 27)

The rationale for including both qualitative and quantitative 
results (see Table 4) is to present a balanced interpretation of the 
data. Simply reporting as positive vs. negative neglects a grey area 
where subjects test positive, but are near a threshold for positiv-
ity. Although categorized as being chimeric, these cases are more 
likely attributable to non-specific amplification and background 
noise. This was evident in the CBUs: despite selection of these 
samples as the closest approximation to a biological control, 
results demonstrate there were still qualitative positives. However, 
the quantitative data (number of positive wells) derived in this 
study demonstrated a more plausible negative interpretation, i.e., 
results approached an absolute negative, both in the proportion 
of samples affected when compared with the nulliparous MS- 
siblings, and also the observed rate of positivity (Table 4). The 
latter was not significantly different from zero, and also signifi-
cantly lower than corresponding rates in the two microchimerism 
groups. Findings in the current study also emphasize the inherent 
limitations of using sex chromosome probes in evaluation of MC; 
this has lead to utilization of alternative platforms using HLA-
based and Non HLA-Insertion-deletion (Indel) panels to impart 
greater precision for this purpose.

Results from our analyses raise the question of whether MS 
confers a higher risk of fetal loss. The literature asserts the con-
trary: MS confers neither increased risk of fetal loss nor other 
pregnancy related complication.28-30 Pregnancy is also associated 
with clinical improvement while disease relapse is frequently evi-
dent in the post-partum period. The age of MS onset was ear-
lier in subjects that reported never having been pregnant. It is 
possible, however, that a diagnosis of MS may have influenced 
a decision to pursue pregnancy, at least in this small group of 
individuals.

In summary, these pilot results, while bound by certain limi-
tations, do suggest that low-level MC is associated with MS. 
Prospective study of a larger subject population, using greater 
input of genomic DNA with serial blood samplings of subjects is 
needed. In addition, confirmation of MC by alternative assays is 
important. Of note the HLA-DR and InDel assays have already 
achieved remarkable results in the setting of transfusion associated 
MC.9,25 Through targeting selective, informative alleles expressed 
on a panel of somatic chromosomes, these assays both bypass the 
gender restriction of the Y-chromosome based assays as well as 
avoid the associated problems of a sex-chromosome based probe 
as illustrated by this study.9,25 Finally, it is important to note that 
blood may not be the ideal target tissue in which to evaluate MC; 
rather it is a tissue of convenience for both the present study as 

Table 1. Clinical data

Description
Number of 

subjects
Mean age of 

onset (Range)
Mean age of entry 
into study (Range)

Mean number of live births

Male Female

Group 1
MS Pos Women with one 

Male Pregnancy
27 39.46 (23–39) 52.96 (39–74) 1.52 0.85

Group 2
MS Neg Women with one 

Male Pregnancy
22 N/A 51.24 (37–68) 1.45 0.91

Group 3
MS Pos Women who Have 

Never Been Pregnant
24 28.58 (13–48) 37.79 (16–61) N/A N/A

Table 2. Comparison of microchimerism in MS-positive subjects with 
male pregnancy versus MS-negative siblings with male pregnancy*

MS pos 
N (%)

MS neg 
N (%)

Totals

Microchimerism neg 17 (0.49) 18 (0.51) 35

Microchimerism pos 10 (0.71) 4 (0.29) 14

Totals 27 22 49
*p = 0.207 by Fisher’s exact test (2-tailed).

Table 3. Comparison of microchimerism prevalence in all MS-positive 
versus MS-negative subjects*

MS pos 
N (%)

MS neg 
N (%)

Totals

Microchimerism neg 30 (0.63) 18 (0.38) 48

Microchimerism pos 21 (0.84) 4 (0.16) 25

Totals 51 22 73

*p = 0.066 by Fisher’s exact test (2-tailed).
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Group 2: MS- siblings of MS+ subjects with a history of male 
pregnancy (n = 22)

Group 3: MS+ women who reported they had never had a 
known pregnancy (n = 24).

Analysis of microchimerism. Given that subjects were selected 
on the basis of having had a male pregnancy, the Y-chromosome 
marker was informative for allogeneic cells—microchimerism. 
An allele-specific quantitative PCR assay for a 73-bp region of the 
sex-determining region of the human Y chromosome sequence 
(SRY) was used as a marker for male MC in all subjects. The 
detailed methodology and technical validation of these MC assays 
has been described previously in reference 33 (see Fig. 1 for typi-
cal amplification curve). Briefly, 10 μg of genomic DNA repre-
senting approximately 1,500,000 cell equivalents, was analyzed; 
600 μL of a 1:1 mixture of Solution A (0.1 M KCl, 0.01 M Tris 
Base, 0.0025 M MgCl

2
·6H

2
0, pH 8.3) and Solution B (10 mM 

Tris, 2.5 mM MgCl
2
·6H

2
0, 1% Tween-20, 1% NP40, pH 8.3) 

was added to the DNA preparation. Twenty-five μL of DNA was 
added to 50 μL of buffer consisting of 1 μM of the each primer 
SB (5'-GAG GCG CAA GAT GGC TCT AGA G-3') and SC 
(5'-CCA CTG GTA TCC CAG CTG CTT GC-3') (Integrated 
DNA Technologies, Coralville, IA), 6 mM Magnesium, 25x of 
SYBR Green (FMC BioProducts, Rockland, ME) and 1 mM 
of dNTPs (Roche). Real-time PCR was conducted using the 
GeneAmp 5700 machine (Applied Biosystems, Foster City, CA) 
and cycle conditions (10 min @ 95°C followed by 45 cycles of: 
30 sec @ 95°C, 30 sec @ 68°C and 45 sec @ 72°C). All reagents 
were prepared and retained in a dedicated laboratory, separated 
from the sample preparation. A female technologist performed all 
procedures. In order to analyze the full 10 μg of genomic DNA 
without inhibition of amplification, we assayed multiple identical 
aliquots in parallel. An average of twenty-four reaction volumes, 
representing the total of 10 μg DNA, were carried out per sub-
ject. In two reaction tubes, we spiked 10 copies of Y-chromosome 
positive DNA as positive controls. Replicate no-template nega-
tive controls were included in each run. Results were evaluated 
for endpoint positivity. A count of one positive event (genomic 
equivalent) was attributed to each well exhibiting low-level posi-
tive amplification.

Data analysis. Subjects were classified as positive or nega-
tive for MC on the basis of Y-chromosome PCR results. A sub-
ject was considered positive for MC if any positive reaction was 
present in any of the 24 parallel aliquots assayed. The propor-
tion of subjects positive or negative for MC was compared in 2 
x 2 contingency tables according to disease status and/or preg-
nancy history using 2-tailed Fisher’s exact test. To investigate 

Table 4. Summary comparison of average rates of positivity for F-MC between MS patients, siblings and CBU controls
Group N Average rate*  (95% CI) Relative rate** (95% CI) p-value**

CBU 30 0.009 (0.003, 0.02) -

MS-prior birth of a male child 27 0.04 (0.03, 0.06) 5.56 (1.40, 21.97) 0.015

MS-reported never pregnant 24 0.04 (0.03, 0.06) 5.87 (1.49, 23.16) 0.012

SIB 22 0.02 (0.01, 0.03) 2.27 (0.45, 11.46) 0.32
*Average positivity rates for each group (defined for an individual as the proportion of positive results observed in 22 amplification cycles), with exact 
95% Poisson confidence intervals. **Relative positivity rates for each group, using the CBU group as the reference. (Estimates from Poisson regression). 
†p-values for comparison of estimated positivity rates in each group to rate in CBU group.

Figure 1. (A) Amplification Curve. The assay is performed in a 96 well 
plate where each well is monitored at every cycle for fluorescent 
intensity (Rn, y-axis). As PCR progresses and generation of new ampli-
cons, Rn increases until reaching a plateau. At the end of each run, a 
user-defined threshold is set. This threshold is the level of fluorescence 
at which CTs or threshold cycle, is calculated. This threshold is set 
higher than the noise level in the baseline. During the reaction, the 
cycle number at which the fluorescent intensity crosses the threshold 
value is defined as CT. The CT represents the cycle at which a statistically 
significant increase in ΔRn is first detected. Therefore, samples with a 
low CT have an abundant target. In this figure, the threshold is set to 1 
and the CT of the female DNA spiked with positive DNA is at an average 
of 35.5. The DNA from a female subject (negative) does not cross the 
threshold. (B) Dissociation Curve. At the end of the cycle, the generated 
amplicons were analyzed for specificity. The amplified products were 
melted by increasing the temperature to 95°C with melt temperature 
corresponding to the temperature at which half of the amplicons are 
denatured. The derivative (y-axis) is the slope of the curve generated 
by the melting curve. The peak of the dissociation curve is equal to the 
melting temperature. Temperature is labeled on x-axis (60°C to 95°C). 
In this figure the spiked positive DNA melts at 83°C. The DNA from a 
female subject (negative) predictably failed to generate any amplified 
product.
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equivalents were used per cord blood unit. Results were analyzed 
using two-sample tests of proportion comparing the number 
of positive wells for each MS subject group to the CBU group. 
Calculations were performed using SAS software, Version 9.1.3.
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