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REVIEW review

The cadherin family is classified into classical cadherins, 
desmosomal cadherins and protocadherins (PCDHs). Genomic 
structures distinguish between PCDHs and other cadherins, and 
between clustered and non-clustered PCDHs. The phylogenetic 
analysis with full sequences of non-clustered PCDHs enabled 
them to be further classified into three subgroups: δ1 (PCDH1, 
PCDH7, PCDH9, PCDH11 and PCDH20), δ2 (PCDH8, PCDH10, 
PCDH12, PCDH17, PCDH18 and PCDH19) and ε (PCDH15, PCDH16, 
PCDH21 and MUCDHL). ε-PCDH members except PCDH21 have 
either higher or lower numbers of cadherin repeats than those of 
other PCDHs. Non-clustered PCDHs are expressed predominantly 
in the nervous system and have spatiotemporally diverse 
expression patterns. Especially, the region-specific expressions of 
non-clustered PCDHs have been observed in cortical area of early 
postnatal stage and in caudate putaman and/or hippocampal 
formation of mature brains, suggesting that non-clustered 
PCDHs play roles in the circuit formation and maintenance. The 
non-clustered PCDHs appear to have homophilic/heterophilic 
cell-cell adhesion properties, and each member has diverse 
cell signaling partnership distinct from those of other members 
(PCDH7/TAF1; PCDH8/TAO2β; PCDH10/Nap1; PCDH11/β-catenin; 
PCDH18/mDab1). Furthermore, each PCDH has several isoforms 
with differential cytoplasmic sequences, suggesting that one 
PCDH isoform could activate intracellular signaling differential 
from other isoforms. These facts suggest that non-clustered 
PCDHs play roles as a mediator of a regulator of other molecules 
as well as cell-cell adhesion. Furthermore, some non-clustered 
PCDHs have been considered to be involved in neuronal diseases 
such as autism-spectrum disorders, schizophrenia and female-
limited epilepsy and cognitive impairment, suggesting that they 
play multiple, tightly regulated roles in normal brain function. In 
addition, some non-clustered PCDHs have been suggested as 
candidate tumor suppressor genes in several tissues. Although 
molecular adhesive and regulatory properties of some PCDHs 
began to be unveiled, the endeavor to understand the molecular 
mechanism of non-clustered PCDH is still in its infancy and 
requires future study.
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Introduction

Cadherin is a calcium-dependent adhesion protein that consti-
tutes a large family of cell adhesion molecules. Cadherins have 
been identified by the presence of extracellular cadherin repeats 
of about 110 amino acid residues, and can be classified into sev-
eral subfamilies based on shared properties and sequence similar-
ity (Fig. 1): the classical cadherins, desmosomal cadherins and 
protocadherins (PCDHs).1,2 The PCDH family can be divided 
largely into two groups, based on their genomic structure: clus-
tered PCDHs and non-clustered PCDHs.3-5 The term “PCDH,” 
however, sometimes includes Fats and seven-pass transmembrane 
cadherins (Flamingo/CELSER) in the broad sense.6-9 Here, 
the term “PCDH” is used in a restricted sense, including only 
clustered and non-clustered PCDHs. PCDHs are expressed pre-
dominantly in the nervous system,10,11 and constitute the largest 
subgroup (about 80 members) of the cadherin superfamily.12,13

In this review, we will focus on recent findings of non-clus-
tered PCDHs, and attempt to provide further insights into the 
molecular mechanisms and disease-relationship of non-clustered 
PCDH members on which the findings have been accumulated 
over the past few years.

Classification and Genomic Structures  
of Non-Clustered PCDHs

Clustered PCDHs (PCDHα, β and γ family) are encoded as 
a large cluster in the genome,4,14-16 while non-clustered PCDH 
genes are scattered in the genome.13 Non-clustered PCDHs which 
have so far been found are summarized in Table 1. Most non-
clustered PCDHs typically have six or seven cadherin repeats, 
while PCDH15, PCDH16 and MUCDHL has 11, 27 and 4 cad-
herin repeats, respectively. Human non-clustered PCDH genes 
are often located at three chromosomal loci: 4q28-31, 5q31-33 
and 13q21. A striking difference in the genomic organization 
of classical cadherin genes and PCDH genes is the presence of 
unusually large exons in PCDH genes.9 The ectodomain of each 
member of the PCDH gene is encoded by a single large exon  
(Fig. 2A and B), while the classical cadherin extracellular 
domain is encoded by multiple exons (Fig. 2C).17 Typically, this 
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the sequence of each human non-
clustered PCDH to curtail the com-
plexity (Fig. 3 and Sup. Fig. 1A and 
B). If PCDHs have isoforms, we 
presented one isoform. In our analy-
ses, non-clustered PCDHs were clas-
sified into three groups (Fig. 3 and 
Sup. Fig. 1A and B): δ1, δ2 and ε 
subgroups. We obtained similar but 
a slightly different result from that 
by Redies et al.5,20 We classified soli-
tary non-clustered PCDHs into one 
group, which we refer to as ε group. 
In our analyses, PCDH12 and 
PCDH20 are classified into δ2 and 
δ1 subgroup, respectively, whereas 
PCDH15, PCDH16, PCDH21 
and MUCDHL are classified into ε 
group. One characteristic feature of 
ε-PCDHs is that the members except 
PCDH21 have either higher or lower 
numbers of cadherin repeats com-
pared to other δ-PCDH members 
(Table 1): 11 repeats in PCDH15, 27 
repeats in PCDH16 and four repeats 
in MUCDHL. Although PCDH12 
and PCDH20 are classified into 

δ-PCDHs, we could not find the CM1, CM2 and CM3 motifs 
in the cytoplasmic domains of PCDH12 and PCDH20.

Spatial and Temporal Expression  
of Non-Clustered PCDHs in the CNS

Each classical cadherin tends to be expressed at the highest lev-
els in various types of tissue during development: E-cadherin in 
epithelia, N-cadherin in neural tissue and muscle, R-cadherin 
in forebrain and bone, and P-cadherin in the basal layer of epi-
dermis.2 However, PCDHs appear to be expressed mainly in the 
central nervous system (CNS).10,11,20,22

Expression patterns of non-clustered PCDHs in the CNS 
system have been studied well at protein and/or mRNA lev-
els, although some non-clustered PCDHs such as PCDH1 and 
PCDH19 are expressed in non-neuronal tissue.23,24 Expression of 
PCDH10/OL-PC protein is most extensively studied. PCDH10 
protein is expressed in certain local circuits of functional systems 
such as the olfactory system, nigrostriatal projection, olivocer-
ebellar projection and visual system.25,26 These results are consis-
tent with the finding that PCDH10-deficient mice have defects 
in axon pathfindings of striatal neurons and thalamocortical 
projections.27 PCDH19 protein is also expressed in retinofugal 
projections.28

Studies on mRNA expressions have been carried out more 
systemically. Some non-clustered PCDHs show the region-spec-
ificity in the basal ganglia25,29 with gradients (PCDH8, PCDH9, 
PCDH10, PCDH17 and PCDH19) and/or the matrix/strio-
some-based expression patterns (PCDH1, PCDH8, PCDH9, 

PCDH large exon encodes the entire extracellular portion as well 
as the transmembrane domain and a short cytoplasmic part, thus 
giving rise to a complete PCDH molecule. If additional exons 
for an extension of the cytoplasmic domain are absent, the cor-
responding PCDH would be a single-exon gene such as the b 
subfamily of the clustered PCDHs18,19 and PCDH7b of non-
clustered PCDHs (Fig. 2A and B). Large exons are also found 
in Fat and Flamingo cadherins, thus sometimes being classified 
into PCDH subgroup: however, these exons encode only some 
parts of the extracellular domains.9 On the other hand, there are 
a few exceptions in non-clustered PCDH members: The extracel-
lular domains of PCDH11, PCDH15, PCDH16 and μ-PCDH 
are encoded by multiple exons.5

At present, non-clustered PCDHs have been divided into 
three groups: PCDHδ1 (PCDH1, PCDH7, PCDH9 and 
PCDH11), PCDHδ2 (PCDH8, PCDH10, PCDH17, PCDH18 
and PCDH19) and solitary PCDHs (PCDH12, PCDH15, 
PCDH20 and PCDH21) in the phylogenic tree.5 All PCDHδ 
members contain highly conserved motifs [Conserved motif 
(CM) 1, 27 amino acids; CM2, 17 amino acids] in their cyto-
plasmic domains.5,20,21 Members of PCDHδ are further divided 
into PCDHδ1 with protein phosphatase-1α (PP1α) binding 
domain (RRVTF, CM3) and PCDHδ2 without PP1α binding 
domain.5,20 We performed phylogenetic analysis again in order 
to include all known non-clustered PCDHs which are summa-
rized in Table 1, and all analyses, using either the whole protein 
sequences, extracellular protein sequences or intracellular protein 
sequences, showed similar results irrespective of the species. In 
the present study, therefore, we present the analysis based on 

Figure 1. Classification of cadherin superfamily including PCDHs. All cadherin superfamily members 
have calcium-binding cadherin repeats. The number of cadherin repeats varies from one subfamily to 
another. On average, a single cadherin repeat contains 110 amino acids in length. PCDHs are largely 
classified into the clustered PCDHs and non-clustered PCDHs, yet also include fats and seven-pass 
transmembrane cadherins in some cases. The clustered PCDHs are consisted of the PCDHα, β and 
γ family, which is clustered in a small genome locus. Non-clustered PCDHs are scattered in several 
genome loci.
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the septotemporal axis of adult hippocampus.30 Furthermore, 
most of non-clustered PCDH is constitutively expressed in the 
CNS; however, PCDH8/arcadlin is inducible, and PCDH19 and 
PCDH20 are reducible in the hippocampus and cerebral cortex 
by elevated activity, such as epileptic seizure.30-32 These diverse 

PCDH10, PCDH11 and PCDH17),11,29 suggesting the circuit 
correlation of their expressions. PCDH7, PCDH9, PCDH11 
and PCDH17 also revealed characteristic expression correlated 
to thalamo-cortical circuits at early postnatal stages,11 and most 
non-clustered PCDHs showed topographical preferences along 

Table 1. Features of non-clustered protocadherin family

Gene 
symbol

Name Other designation # EC
# Known 
isoform

Locus 
(human)

Related diseases

PCDH1 Protocadherin 1
Cadherin-like protein 1, proto-

cadherin 42 (PCDH42, pc42), Axial 
protocadherin (AXPC)

7 2 5q31.3 Asthma83

PCDH7 BH-protocadherin
Protocadherin7, BHPCDH, BH-pc, 
Neural fold protocadherin (NFPC)

7 4 4p15 Non-small-cell lung cancer84

PCDH8 Protocadherin 8
Arcadlin, Paraxial protocadherin 

(PAPC)
6 2 13q21.1

Cocaine abuse85/tumor sup-
pressor (breast cancer70/
mantle cell lympoma86)

PCDH9 Protocadherin 9 Cadherin superfamily protin VR4-11 7 3 13q21.32
Autism spectrum disorder55/
auditory neuropathy87/tumor 
suppressor (glioblastoma72)

PCDH10 Protocadherin 10
OL-protocadherin (OL-PCDH, 

OLpcad)
6 2 4q28.3

Autism54/tumor suppressor 
(gastric,73,74 cervical,77,78 and 

other cancers73,75,76,79,80) 

PCDH11
Protocadherin 

11X-linked
Protocadherin11X (PCDH11X), proto-
cadherinX (PCDHX), protocadherin-S

6 8 Xq21.3
Late-onset Alzheimer’s  

disease57,58

Protocadherin 
11Y-linked

Protocadherin11Y (PCDH11Y), proto-
cadherinY (PCDHY), protocadherin22 

(PCDH22)
6 3 Yp11.2 Prostate cancer47,88

PCDH12 
(PCDH14)

Protocadherin 12
Vascular endothelial cadherin 2 

(VE-cadherin-2, VECAD2), vascular 
cadherin2, protocadherin 14

6 1 5q31

PCDH15
Protocadherin-

related 15
Usher syndrome 1F (USH1F), deafness 

autosomal recessive 23 (DFNB23)
11 12 10p21.1

Usher syndrome63-66,89/
hyperlipidemia90

PCDH16 
(DCHS1)

Dachsous 1 
(Drosophila)

Dachsous-like, fibroblast cadherin 1, 
fibroblast cadherin FIB1, protocad-

herin 16 (PCDH16), CDH25, FIB1
27 1 11p15.4

PCDH17 Protocadherin 17 Protocadherin68 (PCDH68, PCH68) 6 1 13q21.1
Schizophrenia56/tumor 

suppressor (esophageal 
carcinoma81)

PCDH18 Protocadherin 18
Protocadheinr 68-like protein 

(PCDH68L)
6 1 4q31

PCDH19 Protocadherin 19
Epilepsy female-restricted with 

mental retardation (EFMR)
6 2 Xq13.3

Female-limited epilepsy 
and mental retardation59,60/

Dravet syndrome61

PCDH20 
(PCDH13)

Protocadherin 20 Protocadherin 13 (PCDH13) 6 1 13q21
Huntington disease91/non-

small-cell lung cancer82

PCDH21 
(CDHR1)

Protocadherin 21
MT-protocadherin, photoreceptor 

cadherin (PRCAD), cadherin-related 
family member1 (CDHR1)

6 1 10q23.1 Retinal dystrophy67-69

MUCDHL 
(CDHR5)

Mucin and 
cadherin-like protein

µ-protocadherin (MU-PCDH), 
MUCDHL, MUPCD

4 3 11p15.5

The number of extracelluar cadherin repeats is predicted by SMART program. Non-clustered protocadherins typically have six or seven cadherin 
repeats, and the ectodomain is encoded by a single large exon. However, the cadherin domains of PCDH11, PCDH15, PCDH16, MUCDHL are encoded 
by multiple exons. δ1-PCDHs are indicated with red background, δ2-PCDHs are indicated with yellow and ε-PCDHs are indicated with green. The 
numbers of isoforms and related diseases have been updated on July 25, 2010. The largest numbers of isoforms are present in human, rat and 
mouse species, based on the information of GeneID at Pubmed. Only those of PCDH7 and PCDH11X are based on the submitted sequences (PCDH7a, 
AY69613; PCDH7b, AY690614; PCDH7c, AY690615; PCDH7c1, AY690616) and a published paper.92
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PCDH1/AXPC, PCDH7/neural fold protocadherin (NFPC) 
and PCDH8/PAPC exhibited substantial adhesive activity in 
vivo. A Xenopus PCDH1-homolog AXPC and a PCDH8/arcad-
lin ortholog PAPC are complementally expressed in paraxial 
mesoderm, and mediate cell sorting and cell movements during 
embryonic gastrulation.36,37 In addition, PCDH7/NFPC has 
been shown to regulate differentiation of the embryonic ecto-
derm,40 neural tube formation,41 cell morphology,38 and axonal 
elongation in retinal ganglion cells.42 As for the mechanism for 
strong adhesive activity of PCDH7, its interacting protein may 
be involved. Template-activating factor1 (TAF1) interacts with 
the cytoplasmic region of PCDH7, and may regulate the adhesive 
activity of PCDH7 (Fig. 5A).40 Thus, the homophilic interac-
tion of some PCDHs may mediate cell-cell adhesion as classical 
cadherins.

On the other hand, heterophilic cell adhesion activity has 
been reported between PCDHα4 (one of clustered PCDHs) and 
β1 integrin in an in vitro cell aggregation assay with HEK293T 
cells.43 Integrins recognize the RGD motif that is essential for 
integrin-dependent cell adhesion. This RGD motif is found in 
fibronectin, vitronectin, fibrinogen, von Willebrand factor and 
many other large glycoproteins.44 Interestingly, this RGD motif 
has also been seen in the extracellular domain (EC1 or EC2) 
of certain non-clustered PCDHs (PCDH17, PCDH19 and 
MUCDHL) (Fig. 4). This suggests a possibility that non-clus-
tered PCDHs may also have heterophilic adhesion activity, act-
ing as membrane-associated ligands or receptors for integrins. In 
addition, PAPC, a putative mammalian PCDH8/arcadlin homo-
log, participates in early cell sorting by regulating the adhesive 
activity of a classical C-cadherin.45 This suggests that PCDH8/
PAPC may have heterophilic interaction with classical cadher-
ins. PCDH8/arcadlin shows also a lateral (cis) interaction with 
N-cadherin in the same plane of plasma membrane, and regu-
lates the endocytosis of N-cadherin.31 Recently, the heterophilic 
intereaction between PCDH15 and classical cadherin (cadherin 
23) has been reported.46 Thus, PCDHs may mediate homophilic, 
heterophilic or both cell adhesions in vivo.

Regulator of various “effector” molecules. Recently, non-
clustered PCDHs have been clarified as a regulator of other mol-
ecules. PCDHs lack a β-catenin binding cytoplasmic site present 
in classical cadherins. The cytoplasmic domains of non-clustered 
PCDHs are different from each other, and their homology ranges 
from low to moderate.2,3 Therefore, non-clustered PCDHs could 
act as a regulator via interaction with a variety of intracellular 
binding partners.

δ-PCDHs have conserved cytoplasmic motifs (CM1, CM2, 
CM3 and CM4), whose binding molecules remain largely elusive; 
Only CM3 region is known to interact with PP1α.20 PCDH7 
(NFPC) has four isoforms (7a, 7b, 7c and 7c1), and PCDH7c 
and 7c1 have CM1, CM2 and CM3 motifs (Fig. 5A). PCDH7c1 
is an 8 amino acid-deleted 7c from the region between CM2 and 
CM3. All PCDH7 isoforms interact with template-activating fac-
tor1 (TAF1).40 PCDH11Y has three isoforms (11Ya, Yb and Yc), 
and only PCDH11Yc has CM1, CM2 and CM3 motifs (Fig. 5B).  
All isoforms of PCDH11Y bind to β-catenin, and this interaction 
may regulate wnt signaling and tumorgenesis.47

and circuit-correlated expression patterns of non-clustered 
PCDHs in the CNS suggest that non-clustered PCDHs play 
roles in the wiring of neural circuit formation and maintenance 
through their adhesive and regulatory mechanism.

Molecular Function of Non-Clustered PCDHs

Adhesive properties play important roles in morphogenesis dur-
ing the developmental to adult stage. The formation of germ lay-
ers and tissues, cell rearrangement and migration, cell sorting, 
neurite outgrowth, axon pathfinding and synaptic formation in 
neurons depend on the cell adhesion ability. The function of clas-
sical cadherin is mediated by strong cell-cell adhesion through 
homophilic interactions, whereas the PCDHs appear to have 
more varied physiological functions as a mediator of cell-cell 
adhesion or a regulator of other molecules. Recently, the molecu-
lar functions of non-clustered PCDHs have been clarified. We 
next discuss the role of non-clustered PCDHs as a mediator of 
cell-cell adhesion and/or a regulator of other molecules.

Mediator of cell-cell adhesion. Adhesion properties and 
cytoplasmic partners of non-clustered PCDHs are still poorly 
understood. Most of the cadherin superfamily proteins show 
calcium-dependent homophilic adhesion activities.33,34 Although 
several non-clustered PCDHs (PCDH1, PCDH7, PCDH8, 
PCDH10, PCDH18 and PCDH19) exhibit homophilic binding 
ability, some of these (PCDH8, PCDH10 and PCDH19) show 
only weak binding ability.26,32,35-39 Nevertheless, the cell-cell 
adhesion is strengthened when the cytoplasmic tail of PCDH1/
axial protocadherin (AXPC) or PCDH8/paraxial protocadherin 
(PAPC) is removed36,37,39 or the cytoplasmic tail of PCDH19 is 
replaced with that of E-cadherin,39 suggesting that the extracel-
lular domain of non-clustered PCDHs is able to form cell-cell 
adhesive interactions, and that the cytoplasmic domain may not 
efficiently stabilize those interactions to facilitate adhesion or 
may regulate negatively their extracellular adhesions.

Figure 2. Comparison of the genomic organization of α-PCDHs (A), 
mouse PCDH7b (B) and N-cadherin gene (C).
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Finally, each PCDH has several isoforms that are differ-
entiated from their cytoplasmic domains. This suggests that 
PCDH isoforms could play diverse roles as intracellular signaling 
regulators.

In summary, weak homophilic or heterophilic interaction and 
diverse intracellular sequences of non-clustered PCDHs suggest 
that they may function as a regulator of cell-cell adhesive, and/
or intracellular effect molecules rather than only physical glues 
between cells.

Non-Clustered PCDHs and Disease

Abnormalities in non-clustered PCDHs may be responsible for 
the pathogenesis of several neurological disorders and carcino-
genesis. Especially, the relationship between δ-PCDHs and cog-
nitive dysfunction has been well investigated, and as described 

The intracellular domain of PCDH8/arcadlin interacts with 
thousand and one amino acid protein kinase 2β (TAO2β) which 
activates p38 MAPK pathway, and subsequently promotes endo-
cytosis of N-cadherin (Fig. 5C).31 Because N-cadherin regulates 
spine dynamics and maintains the shape and density of spines,48,49 
this PCDH8-TAO2-p38 MAPK pathway may transfer epi-
leptic activity into dendritic spine morphology via N-cadherin 
endocytosis.

PCDH10/OL-PC interacts with Nck-associated protein 1 
(Nap1)/WAVE1 (Fig. 5D),50 and PCDH10/Nap1/WAVE1 com-
plex affects actin assembly and subsequently regulates cell migra-
tion.51 However, it is not known how PCDH10/Nap1/WAVE1 
complex controls actin assembly.

PCDH18 interacts with mouse Disabled homolog 1 (mDab1) 
(Fig. 5E),52 which functions downstream of Reelin and mediates 
neural circuit formation.53

Figure 3. Phylogenetic tree of human non-clustered PCDHs on the basis of their total protein sequences. Multiple alignments and phylogenetic 
analysis were performed using the ClustalW2 program (www.ebi.ac.uk/Tools/clustalw2/), and the tree was visualized using the Treeview program 
(http://taxonomy.zoology.gla.ac.uk/rod/). The scale bar represents the substitution rate of amino acid per ten. All sequences used were obtained 
from the National Center for Biotechnology Information (NCBI). Accession numbers are as follows: PCDH1 (NM_002587), PCDH7 (NM_002589), PCDH8 
(NM_002590), PCDH9 (NM_020403), PCDH10 (NM_032961), PCDH11 (NM_014522), PCDH12 (NM_016580), PCDH15 (NM_033056), PCDH16 (NM_003737), 
PCDH17 (NM_001040429), PCDH18 (NM_019035), PCDH19 (NM_020766), PCDH20 (NM_022843), PCDH21 (NM_033100) and MUCDHL (NM_021924).
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Epsilon PCDH and retinal pigmentosa. Usher syndrome 
type 1F (USH1F) is characterized by a loss of vision due to reti-
nitis pigmentosa (RP), a genetic disease with progressive dys-
function and degeneration of the rod and cone photoreceptors, 
and bilateral sensorineural deafness.62 PCDH15 is expressed 
in inner ear hair cell stereocilia and retinal photoreceptors,63,64 
and may play a pivotal role in the morphogenesis and cohesion 
of stereocilia bundles and retinal photoreceptor cell mainte-
nance or function. The mutation, splicing abnormality, frame-
shift, nonsense or large deletions of PCDH15 gene have been 
shown to cause USH1F,63,65,66 indicating that the dysfunction 
of PCDH15 plays a pathogenetic role in the RP and hear-
ing loss associated with USH1F. Moreover, null mutations in 
PCDH21, which is known as a photoreceptor-specific gene,67,68 
cause the RP.69 These results suggest that the abnormality of 
epsilon PCDHs might disrupt photoreceptors and induce visual 
dysfunction.

Non-clustered PCDHs on chromosome 13q21 as tumor 
suppressors. Recently, some delta PCDHs (PCDH8, PCDH9, 
PCDH10, PCDH17 and PCDH20) have been reported as can-
didate tumor suppressor genes. The expressions of PCDH8 in 
breast70 and hematologic cancers,71 PCDH9 in glioblastoma,72 
PCDH10 in gastric,73,74 colorectal,73 nasopharyngeal, esopha-
geal,75 breast,76 cervical,77,78 lung, hepatocellular,75 tesicular79 and 
hematologic cancers,80 PCDH17 in esophageal squamous cell 
carcinoma81 and PCDH20 in non-small-cell lung cancers82 are 
reduced or silenced through gene inactivation such as promoter 
hypermethylation and/or somatic mutation, and re-expression of 
PCDH8,70 or PCDH10,74 suppresses tumor cell proliferation and 
inhibits cell migration. Notably, PCDH8, PCDH9, PCDH17 

below, some epsilon PCDHs are related to sensory impairment. 
Also, the emergence or silencing of non-clustered PCDHs on 
chromosome 13q21 influences oncogenesis.

Delta PCDH and cognitive dysfunction. Several lines of 
evidence indicate that the dysfunction of non-clustered PCDHs 
is associated with some cognitive dysfunction. For instance, the 
homozygous deletion within a protocadherin cluster (between 
PCDH10 and PCDH18 loci on 4q28.3) proximal to PCDH10 
has been shown to be associated significantly with the pathophys-
iology of cognitive impairment such as autism,54 and recurrent 
and overlapping copy number variations, including PCDH9 loci, 
have been identified in autism patients.55 Another delta protocad-
herin PCDH17 is involved in the pathogenesis of schizophrenia.56

On the other hand, a genome-wide association study showed 
that SNP on Xq21.3 in PCDH11X is associated strongly with 
late-onset Alzheimer’s disease susceptibility,57 although recent 
studies show non-statistical association between PCDH11X 
polymorphisms and late-onset Alzheimer’s disease susceptibil-
ity.58 Nonsense mutation of PCDH19 has been found in seven 
families of mental retardation limited to females, characterized 
by seizure onset in infancy or early childhood and cognitive dys-
function.59,60 Furthermore, the dysfunction of PCDH19 causes 
Dravet syndrome-like epileptic encephalopathy, which is marked 
by seizures, developmental and language delays, behavioral dis-
turbances and cognitive regression.61 The fact that some PCDHs 
regulate synaptic function and morphology30,31,54 leads us to spec-
ulate that delta PCDHs are important for normal function of 
neural circuitry as well as wiring development of neural circuitry, 
and the disruption of delta PCDH may cause abnormal neural 
circuitry and subsequent cognitive impairment.

Figure 4. The extracellular domain sequences of PCDH17, PCDH19 and MUCDHL. The RGD motif is found in the extracellular domains of PCDH17, 
PCDH19 and MUCDHL. The RGD motif is an essential residue for integrin-dependent cell adhesion activity. Other species are: H, human; M, mouse;  
R, rat; C, chick; DR, Danio rerio. PCDH17 (H, NM_014459; M, XM_127786; R, XM_224389; C, XM_417021; DR, XM_684743), PCDH19 (H, NM_001105243; M, 
NM_001105245; C, NM_001098607; DR, NP_001120991), MUCDHL (H, NM_021924; M, NM_028069; R, NM_138525).
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molecular functions of non-clustered PCDH are still in its 
infancy and more detailed functional analyses are required at cel-
lular and molecular levels in the future studies.
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and PCDH20 genes are located around 13q21.1 and closely posi-
tioned within 16 megabases. These results suggest that PCDHs 
on chromosome 13q21 (Table 1) might be broadly involved in 
tumor suppression in a variety of tumors. Also, PCDHs on chro-
mosome 13q21 might be regulated by common genetic or epi-
genetic factors and further involved in a variety of cellular and 
brain function together.

Conclusions

At present, non-clustered PCDHs are considered to play criti-
cal roles in brain development, including normal brain function 
and oncogenesis. Although the involvements of non-clustered 
PCDHs in the pathogenesis of some neural diseases and tumor 
are relatively well established, the endeavors to understand the 

Figure 5. Schematic overview of intracellular signaling proteins bound to the cytoplasmic domain of each PCDH. (A) PCDH7c (PCDH7c and 7c1, but not 
PCDH7a or 7b) has CM1, CM2 and CM3 motifs, and CM3 could be bound by PP1α. This interaction inactivates PP1α.29,93 In addition, all PCDH7 isoforms 
interact with histone-regulating protein TAF1. The PCDH7-TAF1 interaction is involved in retinal axon initiation and elongation in developing retinal 
ganglion cells.42 (B) All PCDH11Y isoforms (11Ya, Yb and Yc) have the binding sequences to β-catenins, however, only PCDH11Yc (but not 11Ya or 11Yb) 
has CM1, CM2 and CM3 motifs. PCDH11Y is biochemically associated with β-catenin, and this interaction might affect wnt signaling and tumorgen-
esis.47 (C) PCDH8/arcadlin binds to a serine-threonine kinase TAO2β. This interaction causes N-cadherin endocytosis at synaptic membrane in a p38 
MAPK-dependent manner.31 (D) PCDH10/OL-PC interacts with Nap1, and this interaction recruits WAVE1, a Nap1 binding protein, to cell-cell contact 
sites. The formation of PCDH10/Nap1/WAVE complex regulates actin assembly, and subsequently promotes the migration of cells.50 (E) PCDH18 is as-
sociated with mDab1, and this interaction might be involved in the correct formation of cortical nerve cell layers.52
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