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Introduction

Cell movement is a critical cellular process that contributes to 
embryonic development, immune defense and wound healing. 
The actin cytoskeleton has long been known to be critical for 
various aspects of this process, including polarization, leading 
edge protrusion and cellular contraction (Fig. 1). Myosin-based 
contraction of unbranched actin filaments is closely connected 
to cellular traction formation and speed, and is critical for for-
ward cell movement.1,2 By contrast, dynamic branched actin 
assembly nucleated by the Arp2/3 complex is critical for other 
aspects of cell motility, including formation of protrusive motil-
ity structures and membrane trafficking to promote directional 
cell motility and secretion of extracellular factors (Fig. 1).

The identification of branched actin networks at the leading 
edge of migrating cells, along with the discovery of the Arp2/3 
protein complex that is essential for nucleation of those net-
works,3-6 led to a great deal of excitement in the cell motility field. 
Indeed, Arp2/3 activation by WAVE2 was found to be required 
for the first step of canonical cell motility: formation of leading 
edge protrusions known as lamellipodia.7-10 Concurrently, the 
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Branched actin assembly is critical for a variety of cellular 
processes that underlie cell motility and invasion, including 
cellular protrusion formation and membrane trafficking. 
Activation of branched actin assembly occurs at various 
subcellular locations via site-specific activation of distinct 
wASp family proteins and the Arp2/3 complex. A key branched 
actin regulator that promotes cell motility and links signaling, 
cytoskeletal and membrane trafficking proteins is the Src 
kinase substrate and Arp2/3 binding protein cortactin. due 
to its frequent overexpression in advanced, invasive cancers 
and its general role in regulating branched actin assembly 
at multiple cellular locations, cortactin has been the subject 
of intense study. recent studies suggest that cortactin has a 
complex role in cellular migration and invasion, promoting 
both on-site actin polymerization and modulation of autocrine 
secretion. diverse cellular activities may derive from the 
interaction of cortactin with site-specific binding partners.
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Src kinase substrate cortactin was shown to bind Arp2/3 com-
plex,11 serve as a cofactor for Arp2/3 activation, and to stabilize 
branched actin networks after they are formed.12,13 In cells, cor-
tactin localizes at sites of dynamic actin assembly and is favored 
as a marker for actin-rich motility protrusions such as lamelli-
podia and invadopodia.14-16 Interestingly, in addition to Arp2/3 
complex, cortactin binds to a large number of signaling, cytoskel-
etal and membrane trafficking proteins (Table 1 and Fig. 2) and 
links them to dynamic actin networks. Because of this linkage 
and the general role that cortactin plays in stabilizing branched 
actin networks,13 a number of studies have examined the role of 
cortactin in migration and invasion. Overall, cortactin appears 
to be a strong promoter of cellular invasiveness, with multiple 
potential mechanisms.

General Features of Cortactin

The gene encoding cortactin, CTTN (previously denoted 
EMS1), is located on the long arm of chromosome 11, in the 
11q13 region that is frequently amplified in a number of can-
cer types.17 Cortactin is ubiquitously expressed, except in most 
hematopoietic cells that instead express the homolog hematopoi-
etic specific 1 (HS1).18 Osteoclasts are a notable exception to this 
rule, expressing both HS1 and cortactin.19 The mechanisms con-
trolling cortactin expression are not well understood; however, 
an increase in cortactin mRNA has recently been shown to be 
downstream of hyaluronan (HA) binding to its receptor, CD44, 
through the activation of the NFκB pathway.20 In addition, 
phospho-Stat3 was recently shown to bind the CTTN promoter 
and upregulate transcription.21 In cancer, cortactin is frequently 
overexpressed, both as a consequence of gene amplification and 
by additional unidentified mechanisms.17,22-25

Cortactin contains the following key domains: an amino-ter-
minal acidic domain, a tandem repeat domain, a carboxy-termi-
nal proline-rich region that contains a number of phosphorylation 
sites and an SH3 domain (Fig. 2). The N-terminus of cortactin 
is critical for regulating branched actin assembly, via conserved 
interactions with the branched actin-nucleating Arp2/3 protein 
complex and with filamentous actin (F-actin) at the acidic and 
repeats domains, respectively.11,26 Interestingly, recent structural 
studies found that cortactin alters the lateral and longitudinal 
contacts of actin subunits within an actin filament, suggesting 
that by changing the local conformation of filamentous actin 
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thought to be a functional homolog based on its role in endocy-
tosis and its ability to induce weak activation of Arp2/3 complex 
through interactions with both F-actin and Arp2/3 complex.30,31 
While orthologs exist in a number of species, they differ in the 
number of tandem F-actin binding repeats they contain, similar 
to the splice variants (discussed below). For example, Drosophila 
cortactin contains only four repeats.32

Cortactin function is altered through several different mecha-
nisms including alternative splicing, phosphorylation and acet-
ylation. The three major splice variants of cortactin, A, B and 
C, respectively contain 6.5, 5.5 and 4.5 of the cortactin repeats 

cortactin might promote the exposure of new binding sites for 
Arp2/3 complex and thereby indirectly increase the affinity of 
Arp2/3 complex for the side of a mother actin filament.27,28 The 
C-terminus instead allows cortactin to function as a scaffold-
ing protein, since many cytoskeletal, membrane trafficking and 
signaling proteins bind to the C-terminal SH3 domain (Fig. 2  
and Table 1) and can be bridged to the actin cytoskeleton 
through cortactin.29

Cortactin is evolutionarily conserved with members iden-
tified in a diverse array of species from sponges to mammals.18 
Although no cortactin gene exists in yeast, the protein ABP1 is 

Figure 1. regulation of cellular motility by branched actin and cortactin. Cell motility requires coordination of several processes, including protrusion 
of the leading edge lamellipodium, adhesion, contraction of actin bundles, and retraction of the rear of the cell.  depicted in the zoomed panels are 
mechanisms by which cortactin may regulate motility, including: promoting lamellipodial persistence, focal adhesion assembly, cellular signaling and 
secretion of autocrine factors.
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Table 1. table of cortactin binding partners

Cortactin binding proteins Localization Function Binding site References

Arp2/3
Located at branch points of actin filaments 

network
Actin nucleation ntA 4, 11

Actin filaments Cell cytoskeleton Cytoskeletal polymer repeat regions 15

HDAC6 Cytoplasm deacetylase repeat region 36, 151

SIRT1 Cytoplasmic and nuclear deacetylase repeat region 37

Caldesmon
Filamentous distribution, lamella and lamel-

lipodia
Actin binding protein, 

contraction
n-terminus 152

p120 catenin
Cell-cell junction, nucleus, membrane ruffles, 
actin halos associated with endocytic vesicles

Cell-cell adhesion via 
cadherin stability & 

 trafficking
n-terminus 81, 153–155

Grb2
Cytoplasm, plasma membrane, lipid rafts, 

 perinuclear region
Signaling adaptor n-terminus 52, 156, 157

Met
plasma membrane, dorsal ruffles, early 

 endosomes and late endosomes
receptor tyrosine kinase ? 52, 158

K+ channel Kv1.2 Cortical cytoskeleton ion channel ? 159

PTP1B Cytoplasmic face of endoplasmic reticulum tyrosine phosphatase tyr446 160, 161

Nck1
Cytoplasmic, cell periphery, podosomes, 

 invadopodia
Signaling adaptor

phospho-y421, 
466

162–164

Syk
nucleus, cytoplasm, perinuclear region, plasma 

membrane at cell-cell contacts
tyrosine kinase ? 53, 58, 165

Src family kinases (Src, Fer)
Cytoplasmic, plasma membrane, focal adhe-

sions, podosomes, invadopodia
tyrosine kinase

phospho-y421, 
466, 482

55, 56, 70, 71, 
166, 167

ERK1/2 nucleus, cytoplasm Serine/threonine kinase S405, 418 57, 168–170

PAK1 Cytoplasm, plasma membrane, focal adhesions Serine/threonine kinase S113 59, 170–173

CBP90 Cytosol, membrane and synaptic vesicles ? SH3 33

ZO-1 Cell-cell junction tight junction adaptor SH3 32

BPGAP1 Cytoplasm, plasma membrane rhoA-gAp SH3 174, 175

Hip1R present at all clathrin patches Membrane trafficking SH3 176

BK channels plasma membrane Membrane excitability SH3 177

ASAP1/AMAP1
recycling endosomes, focal adhesions, invado-

podia, podosomes
ArF6 gAp SH3 129, 178–181

Abl/Arg Cytoplasm, nuclear, plasma membrane tyrosine kinase SH3
45, 60, 182, 

183

N-WASp golgi, podosomes and invadopodia. Actin assembly SH3 97, 184, 185

Dynamin2
plasma membrane, trans-golgi network, cell 

cortex, cortical ruffles
gtpase, Membrane traf-

ficking
SH3 186–189

CortBP1/SHANK2
within secretory granules (cytoplasm), mem-

brane ruffles, neuronal growth cones, lipid rafts

Synaptic plasticity, adap-
tor protein, regulates  
na+/H+ exchanger 3

SH3 190–195

FGD1
Cytoplasm, golgi, cell cortex and membrane 

ruffles
Cdc42-geF SH3 196, 197

WIP perinuclear region, membrane ruffles
Adaptor protein, Actin 

binding/assembly, wASp 
stabilization

SH3 68, 198–200

Non-muscle myosin light 
chain kinase

Actin stress fibers, lamellipodia Contraction SH3 47, 201, 202

Missing in metastasis 
(MIM)

plasma membrane, actin bundles, stress fibers, 
cytoplasm

Adaptor protein, Actin 
binding and regulation

SH3 203, 204

CD2AP
Cell membrane, endosomes, immune synapse 

(t cells)
endocytosis (binds to 

rab4 & c-Cbl)
SH3 205–210

List of Cortactin binding proteins
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growth factor (PDGF;45), thrombin,46 sphingosine-1-phosphate,47 
homophilic ligation of E-cadherin,48 bacterial phagocytosis49 
and integrin activation.50 The downstream kinases involved in 
the phosphorylation of cortactin by these pathways include Src 
family kinases (Fer, Fyn, Syk and Src), tyrosine kinases (Abl 
and Arg, ErbB2 and c-Met), as well as serine/threonine kinases 
extracellular regulated kinase 1/2 (ERK1/2; at S405 and S418), 
p21 activated kinase 1 (PAK1; at S405/418) and protein kinase 
D (PKD; at S298).16,45,51-59 Phosphorylation has been shown to 
be important for enhancing cortactin function in migration and 
invasion by altering the complement of proteins associated with 
cortactin.43,44,60,61

Many of the phosphorylation sites occur within the proline-
rich domain, and may regulate binding to the adjacent SH3 
domain (Fig. 2). In particular, Src kinase phosphorylation 
has been shown to inhibit accessibility of the SH3 domain,57 

domains.33,34 Loss of the repeat domains via alternative splicing 
leads to both diminished binding affinity for F-actin, decreased 
localization to cellular cortical actin and decreased motility.33-35 
Acetylation can also occur within the tandem repeats region and 
regulates both F-actin-binding and cell motility.36,37 A recent 
paper is suggestive for cortactin deacetylation being important 
in invadopodia function, as the cortactin deacetylase HDAC6 
regulates both invadopodia activity and protein acetylation at 
invadopodia.38

Cortactin was originally identified as a substrate for Src tyro-
sine kinase (at Y421, Y470 and Y486 in the human sequence); 
however, it is a substrate for many different kinases (reviewed 
in refs. 39 and 40). An increase in phosphorylation of tyrosine, 
serine and/or threonine residues of cortactin is seen upon stimu-
lation by numerous sources, including fibroblast growth factor 
(FGF),41,42 epidermal growth factor (EGF),43,44 platelet-derived 

Figure 2. Cortactin domain structures. Schematic diagram of key cortactin domains and binding partners. the following abbreviations are used: ntA, 
n-terminal acidic domain and SH3, Src homology 3 domain. proteins whose interaction with cortactin has been narrowed down to a particular domain 
are represented in the same color as the domain on cortactin.  interacting proteins shown in yellow bind the amino terminus of cortactin, which con-
stitute the ntA + repeats domains.  Amino acids that are essential for the interaction with key cortactin binding proteins, including w22 for interaction 
with Arp2/3 and w525 for interactions within the SH3 domain, are shown.  the kinases known to phosphorylate cortactin are found above the respec-
tive sites they have been shown (or hypothesized) to phosphorylate. 
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shown to increase cell motility in transwell, scratch assays and 
single cell random motility experiments.66,71-73 Likewise, knock-
down of cortactin using si/shRNA approaches has been shown 
to decrease cell motility.20,66,74,75 Recently, two groups gener-
ated and analyzed cortactin-null mouse embryonic fibroblasts 
(MEFs) generated from embryos containing FLOX-ed cortac-
tin alleles and reported divergent results. One group reported a 
similar effect of cortactin knockout to the shRNA studies, with 
decreased migration in wound closure and single cell motility 
assays in cortactin-null MEFs, compared to controls.69 By con-
trast, Tanaka et al. reported that cortactin loss did not affect 
MEF motility in wound closure and transwell migration assays.76 
It is unclear why no effect was evident in the latter study; how-
ever it is possible that the requirement for cortactin in efficient 
cell migration depends on the microenvironment. Indeed, in 
Drosophila, loss of the single cortactin gene diminishes border 
cell migration.77

The mechanism by which cortactin affects migration is not 
entirely clear (Fig. 1). Although cortactin is a prominent marker 
of lamellipodia, it is not essential for their formation.66,69,75,78-80 
Instead, cortactin affects the characteristics of lamellipodia, 
including their stability or persistence,66,81 actin dynamics within 
the lamellipodia,66,69 whether a dominant lamellipodium or 
multiple smaller protrusions are formed,78 and PDGF-induced 
membrane ruffling69 (Fig. 1). Furthermore, inhibition of lamel-
lipodia formation by other mechanisms does not necessarily lead 
to decreased cell motility speed,82 suggesting that lamellipodia 
may be more important for cell directionality rather than to drive 
cell motion.

A second potential mechanism by which cortactin might affect 
cell motility is via regulation of adhesion dynamics. In fibrosar-
coma cells, cortactin was found to affect the rate of assembly of 
focal complexes.66 Likewise, Lai et al. found that cortactin-null 
cells treated with PDGF had more prominent focal adhesions.69 
Interestingly, Boguslavsky et al. found that the cortactin-binding 
partner, p120-catenin, regulates both the assembly rate of focal 
adhesions and lamellipodial persistence, similar to cortactin.66,81 
Those similarities suggest both a partnership of the two mole-
cules and a linkage between lamellipodial stability and adhesion 
formation. Cortactin has also been shown to affect the rate of 
cell spreading, an adhesion-dependent process.60,81 As adhesions 
have been closely tied to cell motility speed,83,84 and shown to be 
necessary for lamellipodial stability,85-87 cortactin regulation of 
adhesions seems a likely mechanism of motility regulation.

A third, and not mutually exclusive, mechanism by which cor-
tactin has been postulated to regulate cell motility is via activa-
tion of cellular signaling. Although generally cortactin has been 
thought to act as an effector of cellular signaling proteins, Lai et 
al. recently demonstrated a constitutive defect in cdc42 signal-
ing and a defect in PDGF-induced Rac activity in cortactin-null 
MEFs.69 Cortactin was also found to affect both the expression 
and activity of RhoA in head and neck squamous carcinoma cells 
(HNSCC).88 Alteration in Rho GTPase activity could indeed 
affect multiple steps of motility reported to be regulated by 
cortactin, including adhesion dynamics (via Rho A) and lamel-
lipodial activity (via Rac1). Alterations in cdc42 activity could 

although this may be opposed by the binding of SH2-domain 
containing proteins, such as Nck1, to the phosphorylated tyro-
sine.62,63 Indeed, in cells, tyrosine phosphorylation of cortac-
tin has been shown to increase the binding affinity of the SH3 
domain binding partner Dynamin 2.64 By contrast, ERK phos-
phorylation increases accessibility of the SH3 domain resulting 
in increased N-WASp binding to cortactin,57 which may account 
for Erk-regulation of cell motility and lamellipodial dynamics.43 
Likewise, PAK1 phosphorylation of the same sites in cortactin 
was shown to increase N-WASp binding to cortactin without 
affecting the Arp3- or actin-binding properties of cortactin.54 It is 
likely that the Erk and Src phosphorylation events are not mutu-
ally exclusive in cells,43 which may account for diverging models 
from in vitro biochemical experiments57 and cellular studies.64 In 
addition, a number of novel phosphorylation sites were identified 
by mass spectrometry,65 including many in the amino-terminus; 
the regulatory kinases and functions of those novel sites remain 
largely unknown. Taken together, these data suggest that cor-
tactin phosphorylation regulates the affinity and combination of 
binding proteins associated with cortactin.

Cortactin and the Actin Cytoskeleton

Virtually all of the cellular activities of cortactin, including cell 
migration and invasion, as well as localization, require associa-
tion with Arp2/3 complex and the actin cytoskeleton.11,12,35,66,67 
Through this association, cortactin has been shown in vitro to 
regulate branched actin assembly by many mechanisms, includ-
ing activation of Arp2/3 complex, stabilization of actin branches, 
enhancing activation of Arp2/3 complex by Wiskott-Aldrich 
Syndrome protein (WASp) family proteins and scaffolding of 
other actin regulators, such as N-WASp and WIP.12,13,26,68 A func-
tion that is unique to cortactin and is thought to be important for 
regulation of actin dynamics is prevention of the de-branching 
of actin filament networks.13 This function is likely to be par-
ticularly important in newly polymerized networks in cellular 
protrusions, since cortactin strongly localizes to such actin-rich 
structures and also has a high affinity for ATP-bound and ADP-P

i
- 

bound actin.66 Indeed, a recent study showed faster turnover 
of actin networks in cortactin-null cells compared with con-
trols, as measured by fluorescence recovery after photobleaching 
(FRAP).69 Recruitment of cortactin to sites of new protrusions 
and dynamic actin assembly occurs in response to many signals, 
including Rac activation,70 and requires the presence of binding 
sites for the Arp2/3 complex and (to a lesser extent) F-actin.11,12,66 
In aggregate, these data suggest a role for cortactin in the regula-
tion of newly polymerizing actin networks.

Cortactin in Cell Motility

The prominent localization of cortactin to the leading edge of 
migrating cells sparked an early interest in its potential func-
tion in cell migration. Indeed, numerous studies have demon-
strated an important role for cortactin in the motility of diverse 
cell types, including fibroblasts, endothelial cells and a variety 
of carcinoma cell lines. Overexpression of cortactin has been 
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rapid progression through these stages. It is currently unknown 
whether actin assembly occurs concurrently with or prior to cor-
tactin recruitment.

An early study showed that neutralizing antibodies against 
cortactin block ECM degradation at invadopodia.14 Numerous 
subsequent studies have reported that cortactin regulates 
both the number and activity of invadopodia and podo-
somes.44,61,67,79,90,91,101-105 Mechanistically, there are two major 
processes by which cortactin is thought to regulate invadopodia: 
(1) by facilitating actin assembly at invadopodia initiation sites; 
and (2) by regulating membrane trafficking for the recruitment 
of ECM-degrading proteinases to invadopodia (Fig. 3). A role 
for cortactin in actin assembly at invadopodia is likely based 
on its general role in regulating Arp2/3 activity, as well as the 
potential to provide positive feedback through direct binding to 
the Arp2/3 activator N-WASp and upstream regulators includ-
ing the cdc42 GEF, Fgd1 and Nck1.63,97,106,107 Consistent with 
that idea, two recent papers demonstrated that cells express-
ing cortactin molecules with non-phosphorylatable mutations 
at the Src phosphorylation sites have reduced N-WASp activ-
ity, Nck1 recruitment and barbed end polymerization.44,61 In 
addition, the phospho-mutant cortactin affected the lifetime 
of invadopodia, suggesting a role for cortactin in invadopodia 
maturation.61

Membrane trafficking is also a critical contributing process to 
invadopodia, as its function in ECM degradation relies on deliv-
ery of proteinases94,108 (Fig. 3). In fact, “mature” invadopodia are 
often defined as those associated with ECM degradation.61,101 
Our laboratory identified a specific role for cortactin in regulat-
ing the secretion, cell-surface expression and localization to inva-
dopodia of the matrix metalloproteases (MMPs) MT1-MMP, 
MMP-2 and MMP-9.90,91 Consequently, the importance of cor-
tactin in protein trafficking likely accounts for the larger defect 

affect secretion of extracellular motility factors,89 including 
matrix metalloproteinases (MMPs),90,91 and extracellular matrix 
(ECM).92

Cortactin in Invasion-Extracellular Matrix 
Degradation: Invadopodia and Podosomes

While migration allows for lateral movement, invasion involves 
degradation of ECM to create space for tumor cell growth and 
movement. Dynamic changes in the actin cytoskeleton allow 
for the formation of specialized organelles used in ECM deg-
radation: invadopodia and podosomes.93,94 Invadopodia are 
actin-rich protrusions with associated concentrated proteolytic 
activity found on the basal surface of invasive carcinoma cells. 
Podosomes are similar structures, that are primarily found in 
normal cells that need to cross tissue barriers or remodel ECM, 
such as macrophages and osteoclasts. Although the two struc-
tures contain similar molecular machinery and have common 
functions of ECM degradation and motility,93,94 recent studies 
have identified distinguishing features of invadopodia and podo-
somes, including the importance of Grb2 for podosome but not 
invadopodia assembly95-97 and different dynamics of membrane 
activity between the two structures.98

Invadopodia are thought to form in stages, with actin assem-
bly being triggered at basal membrane sites by growth factor and 
integrin-induced signaling,97,99,100 followed by stabilization and 
matrix degradation97,101 (Fig. 3). Cortactin is a key component 
of both invadopodia and podosomes, and is frequently used as a 
marker of those structures. Live cell imaging studies of invado-
podia have found that cortactin is either recruited simultaneously 
with61 or a few minutes before101 recruitment of the transmem-
brane metalloproteinase MT1-MMP. Within 1–2 min after 
MT1-MMP recruitment, ECM degradation occurs, indicating 

Figure 3. Model of cortactin function at invadopodia. Cortactin is thought to contribute to two major processes in invadopodia:  (1) actin polymeriza-
tion for initiation and/or maturation of invadopodia via activation of n-wASp via nck, activation of cdc42 via Fgd1, and coactivation of Arp2/3 complex 
and (2) vesicular trafficking of matrix metalloproteinases to invadopodia via either regulation of post-golgi trafficking or vesicle capture at invadopo-
dia.  once eCM-degradation is established at invadopodia, they may become longer-lived due to positive feedback.
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and trafficking of MT1-MMP to invadopodia depends on the 
late endocytic v-SNARE VAMP7,108 suggesting a potential point 
of regulation. However, at least in glial cells, MMP2 appears 
to reside in separate vesicles123 from MMP9 and may therefore 
derive from a separate compartment. Furthermore, overex-
pression of cortactin that cannot bind SH3 partners leads to a 
block in trafficking from the trans-Golgi compartment,121 sug-
gesting another site where cortactin may be required for MMP 
trafficking. Finally, cortactin is considered to be an important 
scaffolding protein in dendritic spines and links to the exocyst 
protein Sec8/EXOC4 through its binding partner SHANK2 and  
PSD-95.124,125 The exocyst complex has been shown to mediate 
tethering of post-Golgi vesicles to the plasma membrane126 and 
regulate both cellular migration and invadopodia formation.112,127 
In addition, the cortactin binding partners N-WASp, Dynamin 2, 
FGD1 and ASAP1 all regulate both membrane trafficking and 
invadopodia function,97,106,107,128,129 and are likely candidates to 
mediate the effects of cortactin at one or more membrane traf-
ficking compartments (Table 1).

Cortactin in Cancer

Much of the interest in cortactin has stemmed from the early find-
ing that the cortactin gene, CTTN, was amplified in HNSCC 
and breast cancers130 as part of an amplification of the 11q13.3 
region. Subsequently, cortactin overexpression has been found 
in many cancer types, including melanomas, ovarian, gastric, 
hepatic, colorectal and esophageal.25,131-136 In 11q13-amplified 
cancer cell lines, cortactin expression is increased parallel with 
gene copy number, indicating that gene copy number and protein 
expression levels are “coupled.”74 In addition to gene amplifica-
tion, cortactin expression is increased in many tumors by alter-
native means,23,25 although the exact mechanism remains to be 
determined. The frequent, non-random increase in cortactin 
expression suggests that it provides a selective advantage to devel-
oping or progressing tumors.

Although a number of candidate genes exist in the 11q13 
region, including several FGF family members and FADD,137 
cortactin and cyclin D1 have received the most attention. Cyclin 
D1 is a well known oncogene that is deregulated in many cancers 
and has been particularly associated with tumorigenesis in breast 
cancer.138 Consistent with its role in cell migration and invasion, 
cortactin overexpression has been associated with tumor aggres-
siveness, regional and distant metastasis, poor patient prognosis 
and decreased patient survival. In HNSCC tumors, Rodrigo et 
al. reported that in the rare cases with independent amplification 
of cortactin and cyclin D1, cortactin amplification correlated 
most significantly to decreased patient survival.24 Subsequent 
studies confirmed this finding at the protein expression level, 
finding that cortactin expression in laryngeal cancer predicts 
disease-specific mortality independent of cyclin D1 and FADD 
expression.22,139 Furthermore, cortactin expression in HNSCC 
was found to predict local recurrence, disease-free survival and 
overall survival independent of EGFR expression status.140,141 The 
fact that EGFR and cortactin expression are independent pre-
dictors of disease-free survival suggests that regulation of EGFR 

in ECM degradation than invadopodia numbers in cells lacking 
cortactin.90,91 This statement is supported by the observation that 
the degradation defect in cortactin-deficient cells could not be 
overcome by overexpression of MT1-MMP, suggesting a block 
in secretion when cortactin is absent.90,109 Similarly, in osteoclast 
podosomes, loss of cortactin was found to lead to selective inhi-
bition of proteinase recruitment to actin-rich podosomes, and a 
block in formation of the mature sealing ring.103 However, this 
point is controversial, as a previous study found a loss of the 
actin-rich podosomes themselves.79

Interestingly, the impact of cortactin loss on invadopodia, 
complete block in invadopodia-associated ECM degradation and 
reduction in invadopodia numbers, is similar to that of MMP inhi-
bition by GM6001, TIMP2 or MT1-MMP siRNA.91,101,108 At this 
point it is unclear whether the reduction in invadopodia numbers 
in cortactin-KD cells is the result of inhibition of actin assembly 
at invadopodia initiation sites or a decrease in invadopodia lifetime 
due to abolished positive feedback from ECM degradation. Live 
cell imaging using markers other than cortactin will be required to 
answer this question, if indeed these two functions are separable.

Cortactin in Membrane Trafficking

As noted above, one mechanism by which cortactin might regu-
late motility and invasion is through augmentation of membrane 
trafficking, via direct effects on actin polymerization and/or 
bridging membrane trafficking proteins to the actin cytoskeleton 
(Figs. 1 and 3). Generally, actin polymerization is thought to 
be critical for fission of vesicles, although fusion and tethering 
functions have also been noted.110-112 Of note, cortactin and sev-
eral cortactin binding proteins have been shown to be important 
for protein trafficking to and from the cell surface. For example, 
many studies have shown that cortactin regulates both clathrin-
dependent and -independent endocytosis.54,64,113-118 Interaction 
with SH3 binding partners, such as the Arp2/3 activator N-WASp 
and the membrane pinchase Dynamin 2, along with the actin 
cytoskeleton appears to be necessary and is regulated by kinases 
such as PAK1 and Src.54,113 Of particular interest for cancer cell 
motility and invasion, cortactin expression levels were shown 
to affect ligand-induced internalization and downregulation of 
EGFR levels in HNSCC cells. Thus, cortactin-overexpressing 
cancers are likely to have increased EGFR levels via regulation of 
turnover.119 However, as with many cortactin phenotypes, some 
studies have found no effect of cortactin expression changes on 
endocytosis69,120 indicating that cellular context (either microen-
vironmental or cell-type) may dictate whether cortactin is essen-
tial for regulation of specific phenotypes.

With regard to exocytosis, fewer studies have been performed. 
We demonstrated that cortactin regulates the secretion of the 
gelatinases MMP-2 and MMP-9, MT1-MMP and apolipopro-
tein A1 from cancer cells. However, it is unknown at this point 
whether the block in proteinase secretion seen in cortactin-KD 
cells occurs secondary to defective transport from the Golgi121 or 
post-Golgi carriers, or from lack of recruitment of vesicular car-
riers to invadopodia sites.122 Both MMP9 and MT1-MMP have 
been localized to late endocytic/lysosomal compartments108,123 
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proteins on tumor size, raising the possibility that cortactin may 
function similarly.149,150 Alternatively, cortactin has also been 
shown to affect anchorage- and serum-independent growth109,133 
and to regulate cell cycle inhibitor levels88 in squamous carcinoma 
cells. The mechanism by which cortactin alters these tumorigenic 
properties is a current area of investigation, but at least for serum 
independence it appears to be associated with the role that cortac-
tin plays in autocrine secretion.109 Regardless, it is clear that cor-
tactin expression induces aggressive behavior in multiple cancer 
types, and in human cancers is a strong and independent prog-
nostic marker of poor outcome. Future studies should focus on a 
better understanding of the molecular and cellular mechanisms 
by which cortactin influences tumor growth and metastasis.

Summary

Actin assembly serves a pivotal role in cell migration and inva-
sion. Dynamic branched actin networks, nucleated by the 
Arp2/3 complex, provide the force for the formation of many 
cellular protrusions, including lamellipodia and invadopodia. 
They also serve as platforms for the assembly of signaling and 
membrane trafficking proteins at sites of vesicle formation and 
other branched actin-rich structures. The branched actin regula-
tor, cortactin, may be particularly important in the latter process 
as it links the Arp2/3 complex to a variety of binding partners. 
Challenges for the future include identification of relevant pro-
tein complexes that regulate different cortactin-dependent cel-
lular processes as well as determination of how tissue-specific 
contexts determine the outcome of cortactin and cortactin-bind-
ing partner interactions.
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by cortactin119,142 is not the only mechanism by which cortac-
tin promotes cancer aggressiveness. In other cancers, including 
hepatic,25 breast,143 esophageal,133 ovarian,132 melanoma,136 gas-
tric,134,135 and colorectal,131 cortactin expression and/or amplifica-
tion has also been strongly associated with poor prognosis, often 
as an independent predictor of disease recurrence.

Experimental studies using mouse models have largely con-
firmed the prediction that cortactin promotes tumor aggres-
siveness. Unlike cyclin D1, transgenic expression of cortactin 
in the mouse mammary gland does not induce hyperplasias or 
tumors.144 By contrast, overexpression of cortactin in established 
human carcinoma cell lines leads to aggressive in vivo behav-
ior for multiple tumor types. In experimental metastasis assays, 
cortactin overexpression in breast and esophageal squamous 
carcinoma (ESCC) cells led to enhanced metastasis to the bone 
and lungs, respectively.133,145 Likewise, cortactin-overexpression 
in hepatocellular carcinoma cells led to intrahepatic metastasis 
from orthotopic injection sites.146 Using a semiorthotopic tumor 
model for HNSCC, our laboratory found that cortactin expres-
sion regulated invasiveness across a tracheal boundary in vivo and 
invasive behavior in vitro.109 In addition to effects on cell motility 
and invadopodia activity, a mechanism by which cortactin might 
promote cancer aggressiveness is through regulation of cell-cell 
adhesions. However, since cortactin appears to promote rather 
than inhibit cell-cell junction formation and strength,48,147 inac-
tivation of cortactin may be required for promotion of epithelial-
mesenchymal transition.148

In addition to regulating invasiveness, we also found that 
cortactin expression affected the size of HNSCC tumors.109 For 
ESCC, but not breast or hepatocellular carcinoma, cortactin was 
also found to affect tumor size.133,145,146 We speculate that tumor 
type or its local microenvironment may dictate whether cortactin 
only affects invasiveness or also tumor size. Removal of space con-
straints via proteolytic activity and altered angiogenesis have been 
postulated as mechanisms for the effects of other invadopodia 
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