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Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate
adaptive and protective effects in the heart. These effects may be particularly important in chronic
heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down
regulated and dysfunctional. This review summarizes these data and proposes that selectively
activating α1-adrenergic receptors in the heart may represent a novel and effective way to treat
heart failure.
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Description of α1-ARs
The neurohormonal alterations of heart failure (HF) are characterized by marked elevations
in sympathetic catecholamines, norepinephrine (NE) and epinephrine (EPI) [1]. NE and EPI
activate two main classes of myocardial adrenergic receptors (ARs), alpha-1-ARs (α1-ARs)
and beta-ARs (β-ARs). The most abundant cardiac AR is the β1-AR, though there are also
smaller but functionally important populations of β2- and α1-ARs. All ARs are prototypical
G-protein coupled receptors (GPCRs) with seven transmembrane domains, though they
differentially activate Gα subunits: β-ARs couple predominantly to Gs, and α1-ARs to Gq,
although β2- and α1-ARs can also couple to Gi.
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Acute activation of β1-ARs increases heart rate and myocardial contractility. However
excessive chronic stimulation of cardiac β1-ARs, as with elevated catecholamines in HF,
mediates harmful processes, including cell death, fibrosis, and adverse remodeling [2–9].
Interestingly, recent investigations suggest that myocardial β2-ARs might mitigate the harm
associated with chronic β1-AR activation (article by Talan et al in this issue, and [10,11]).
Nevertheless, drugs that block the activation of β-ARs (β-blockers) reduce HF morbidity
and mortality and have become a cornerstone of HF therapy [12]. α1-ARs in the heart have
been the subject of less intensive investigation, but multiple lines of evidence define
adaptive and protective roles for cardiac α1-ARs (Tables 1–3) that contrast sharply with the
toxic effects of excessive chronic β-AR activation [9].

α1-ARs exist as three distinct molecular subtypes, named α1A, α1B, and α1D (reviews in
[13–19]). All three subtypes are activated by NE and EPI and blocked by the α1-antagonist
prazosin. There are significant differences among subtypes in amino acid sequence,
signaling, and tissue distribution. However, all α1-ARs couple to Gq to activate
phospholipase Cβ1, with increases in diacylglycerol and activation of protein kinase C. In
cardiac myocytes, increases in inositol trisphosphate and subsequent release of intracellular
calcium are controversial. The α1B subtype might also couple to Gi [20–24]. The α1A
subtype protects cardiac myocytes via ERK activation [25–27].

Further α1-AR intracellular signaling is diverse: over seventy molecules have been
identified as downstream effectors of α1-AR-stimulated hypertrophy in cultured neonatal rat
ventricular myocytes (NRVMs). Functionally, cardiac α1-ARs control numerous adaptive
processes, including positive inotropy, gene transcription, protein synthesis, glucose
metabolism, and inhibition of cell death (reviews in [16,28–32]).

This review explores the cell, animal, and human data that reveal beneficial roles for α1-AR
activation in the heart, and collectively encourage a reexamination of the currently
prevailing paradigm wherein chronic catecholamine elevation is felt to be wholly
maladaptive in HF [33,34].

α1-AR expression and regulation in animal models and the human heart
Figure 1 summarizes expression and function of α1-ARs and β-ARs in the main cells of the
animal and human heart.

α1-ARs IN HEART OF ANIMAL MODELS
α1-AR binding in the heart is similar among species, except for the rat, where binding is six-
fold higher than either human or mouse [35]. In the rodent heart, cardiomyocytes express
only the α1A and α1B subtypes [25], with α1B more abundant than α1A, whereas the α1D
subtype is in coronary arteries [36,37].

Rodent cardiac fibroblasts (FBs) do not express α1-ARs at all [38], and thus are uninvolved
in the FB proliferation that characterizes maladaptive remodeling. Indeed, α1-agonist
treatment does not cause fibrosis [39], in contrast with some β-AR agonists [40,41], that
stimulate cardiac FB proliferation through β2-ARs [42–45].

Numerous studies have identified functional α1-ARs in endothelial cells (ECs) of multiple
systemic vascular beds in the rat [46,47], but their presence and function in cardiac ECs of
animal models remains unknown.

In vitro and in vivo studies suggest that the α1A and α1B subtypes in rat cardiomyocytes
might be differentially regulated by chronic stimulation [48], but total cardiac α1-ARs are
not desensitized or down-regulated in hypertrophy in vitro or HF in vivo [48,49]. Strikingly,
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in myocardium and arteries where the α1A is expressed, it is present in only subpopulations
of vascular or cardiac myocytes [50–52], unlike the α1D, which is present in most or all
vascular myocytes [53]. Another recent, unexpected finding is that the α1A and α1B
subtypes in cardiac myocytes are located primarily on the nuclear membrane, not the
sarcolemma [54].

α1-ARs IN HUMAN HEART
The distribution of α1-AR subtypes in the human heart mirrors the rodent heart (summarized
in [55]). The α1A and α1B are the most abundant subtypes in the myocardium [56], whereas
the α1D is the predominant and functional subtype in epicardial coronary arteries and
smooth muscle cells [55]. Human epicardial coronary artery ECs express α1B-ARs that
activate ERK and eNOS, and increase DNA synthesis [57], and could play a role in coronary
vasodilation and angiogenesis.

Numerous studies show that total α1-AR expression remains stable or increases in the
failing human heart [56,58–62], whereas β1-ARs reliably decrease [63,64], so that the
fraction of total ARs consisting of α1-ARs increases substantially. In non-failing human
myocardium, α1-ARs constitute 2–23% of total AR binding (mean of 5 studies 11%),
whereas that percentage increases to 9–41% (mean 25%) in failing myocardium [56,58–62].
Levels of the α1A and α1B subtypes are undiminished in both the left ventricle (LV) and
right ventricle (RV) of the failing human heart [56]. The decrease in β-ARs in HF is
accompanied by an uncoupling of some beneficial pathways activated by β-ARs, including
those that mediate positive inotropy [63,65]. In contrast, as in animals, α1-ARs appear to
maintain their function in HF, as evidenced by the finding that the degree of positive
inotropy induced by α1-AR stimulation can be equal to that induced by β-AR stimulation in
failing human heart muscle [66,67].

Evidence from α1-AR gain of function in animal models
α1-AR GAIN OF FUNCTION USING PHARMACOLOGY (Table 1)

Early physiologic studies of the heart’s response to α1-AR activation focused on the
coronary arteries, where NE infusion causes vasoconstriction of epicardial coronary arteries,
primarily or only in the setting of atherosclerosis (reviewed in [55]). Multiple studies also
identify a positive inotropic response to α1-AR activation in humans [66–69], and some
animals [70–73], though results vary according to species [74,75] and developmental stage
[76], and are different in the normal mouse RV (negative inotropy) [76–78] and LV
(positive inotropy) [73].

Subsequently, cell culture experiments using AR agonists identified a number of important
functions of α1-ARs in cardiomyocytes, most notably the induction of hypertrophy and
stimulation of transcription [79–87]. The initial experiments were conducted in NRVMs,
though later work in cardiomyocytes from adult rat and cat confirmed the findings [88–93].
α1-AR stimulation, often with phenylephrine ("PE"), remains a standard model for assaying
hypertrophic signaling, although it needs to be appreciated that PE can have substantial β-
AR agonism. Further in vitro studies using AR agonists identified additional
cardioprotective processes mediated by α1-AR activation, including energy production [94],
preconditioning against hypoxia and calcium overload [95–98], and prevention of apoptosis
and necrosis [4,27,99–102].

In vivo gain-of-function studies using pharmacology bolster the in vitro findings and
demonstrate important biologic roles for cardiac α1-ARs. Chronic low-dose NE infusion in
the mouse, cat, and dog stimulates adaptive hypertrophy, characterized by normal or
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enhanced cardiac function, without increasing blood pressure, promoting fibrosis, or
accelerating cell death [39,103–107].

α1-AR activation by NE or PE infusion in the isolated heart and in vivo also reliably
ameliorates ischemia-reperfusion-induced apoptosis and necrosis in mouse, rats, dogs and
rabbits [21,108–125]. Interestingly, methoxamine was ineffective in some studies [113,126],
and effective in others [109,111]. α1-Agonism also protects against doxorubicin
cardiotoxicity [102,127], and calcium overload [98]. Pleiotropic mechanisms implicated in
these cardioprotective effects include ecto-5’-nucleotidase activation and increased
adenosine release [96,108,111,128]; activation of ERK [27,129], K ATP channels [125], and
protein kinase C [115,130]; increased heat shock proteins [116], β1-integrins [131], and fetal
genes [130]; induction and activation of inducible nitric oxide synthase (iNOS) [124,132],
superoxide dismutase (SOD) [95,97], cyclooxygenase-2 [132], and GATA-4 [102];
phosphorylation and inactivation of Bad [31,101]; and up-regulation of anti-apoptotic Bcl
proteins [99,102,122].

A recent novel finding concerns α1-ARs in the RV. α1-ARs mediate a negative inotropic
effect in the normal mouse RV, and a positive inotropic effect in the normal LV. However,
in HF after myocardial infarction (MI), α1-AR stimulation causes positive inotropy in the
RV [73]. This "switch" might be mediated partly by changes in coupling to myosin light
chain kinase, though the details are under investigation. This finding might enhance the
implications of α1-AR activation in chronic HF, as the development of RV failure in the
setting of chronic left ventricular failure is known to be highly predictive of poor outcomes
[133].

β-Blockers provide an unexpected example of α1-AR gain-of-function. NE and EPI signal
predominantly through the β1-AR in the normal and failing heart, because β1-ARs are the
most abundant cardiac AR, and have the highest affinity for NE and EPI [134]. In cultured
adult mouse myocytes, NE or EPI inactivate ERK via β-ARs, whereas NE or EPI activate
ERK via α1-ARs, in the presence of a neutral β-blocker, such as propranolol [135]. Since
ERK activation by α1-ARs is cardioprotective [27], β-blockers might “work” in HF partly
by unmasking beneficial α1-AR signaling, at the same time that they inhibit maladaptive β-
AR pathways.

TRANSGENIC MOUSE α1-AR SUBTYPE GAIN OF FUNCTION (Table 2)
The limited number of pharmacologic agents specific for the three α1-AR subtypes
prompted the creation of transgenic mouse models to explore which of the subtypes
regulated these beneficial effects. Different labs used receptor cDNAs from different
species, with varying activating mutations, and with MyHC or native receptor promoters to
create mice with very different receptor levels. It is perhaps not surprising that the
phenotypes vary.

In general, however, α1A-transgenics show enhanced contractility and cardioprotection
without hypertrophy, even at extraordinarily high over-expression levels. In contrast, α1B-
transgenics have variable hypertrophy without hypertension, and are predominantly
maladaptive.

A constitutively active mutant (CAM) α1A causes preconditioning, when 2- to 3-fold over-
expressed in heart with the endogenous mouse α1A promoter [136]. The WT α1A expressed
in myocytes with the α-myosin heavy chain (α-MyHC) promoter causes increased
contractility and ANF levels without hypertrophy, with 148- to 170-fold over-expression
[137], and cardioprotection after coronary ligation or pressure overload, with 66-fold over-
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expression [138,139]. However, long-term α1A over-expression (112- to 170-fold) causes
fibrosis and early death [140].

α1B transgenic mice have less consistent results. A CAM α1B made with the α-MyHC
promoter causes hypertrophy with 2- to 3-fold myocyte-specific over-expression [141,142],
and worsens pathological hypertrophy after TAC [143], but reduces reperfusion arrhythmias
[144]. A CAM α1B made with the endogenous mouse α1B promoter for systemic
overexpression (2-fold cardiac) also causes hypertrophy, without increased blood pressure
[145,146], but with decreased contractility [37]. A WT α1B with the same endogenous
promoter causes variable hypertrophy and negative inotropy [145,147]. In contrast, a WT
α1B 40- to 70-fold over-expressed in myocytes with the α-MyHC promoter shows no
hypertrophy, but rather fetal gene induction, decreased inotropy, pathological response to
PE, dilated cardiomyopathy, and early death [22,148–150].

Normal expression of the α1D subtype in heart is limited to coronary arteries and smooth
muscle cells [36,37,151], and there are no formal reports of a vascular transgenic mouse
[152].

Evidence from α1-AR loss of function in animal models (Table 3)
α1-Antagonists have negative effects on adaptive cardiac processes in vitro and in animal
models in vivo [132,153–155] (Table 3), supporting the data from pharmacology gain of
function (Table 1). However, the pharmacologic tools can have nonspecific effects, and are
inadequate to distinguish α1-subtypes in vivo. The shortcomings of pharmacology and the
inconsistencies of the transgenic mice prompted the creation of knockout (KO) mouse
models for the three α1-AR subtypes (reviewed in [16]). Importantly, phenotypes vary
markedly between mice that are on a mixed genetic background versus congenic.
Furthermore, only a few studies analyze mice separately by sex, an essential precaution
given sex differences in cardiovascular phenotypes [156].

Mice lacking the α1A on a mixed genetic background (FVB/N × 129SvJ) have normal heart
size but low blood pressure (BP), and no vasopressor response to the α1A subtype agonist
A61603 [50]. The pressor response to PE is normal [50]. In the congenic C57Bl/6J
background, the α1A-KO has normal heart size and BP [157].

α1B-KOs created on a mixed background (C57Bl/6J × 129Sv) have normal heart size, and a
decreased pressor response to α1-agonist infusion [107,158–160], whereas α1B-KOs on a
congenic C57BL/6J background have small hearts [157]. Regardless of genetic background,
α1B-KO mice have a normal blood pressure. The α1B-KO heart enlarges normally with
TAC. However, a subpressor dose of PE, which causes an adaptive hypertrophy in WT
mice, has no effect in α1B-KO mice [107].

α1D-KO mice in a mixed genetic background have normal hearts, but decreased blood
pressure and reduced coronary vasoconstriction in response to PE infusion [37,160,161].

Mice lacking both the α1B and α1D in a mixed genetic background have a normal heart, but
decreased blood pressure and a decreased pressor response to agonist infusion [160].

The double α1AB-KO has been characterized in a congenic C57BL/6J background. The
double KO eliminates all cardiac α1-AR binding. A key role for ERK in the phenotype is
suggested by the facts that activated ERK in the KO myocardium is reduced to 30% of WT,
as assayed by phosphorylation of Elk1 in vitro by ERK immunoprecipitated from intact
hearts, and PE no longer activates ERK and downstream kinases (p90RSK, p70S6K) in KO
myocytes [25].
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α1AB-KO mice have normal blood pressure, but males have decreased heart and myocyte
hypertrophy during post-weaning development. Other organs are normal [25]. Contractility
is normal by echocardiography in awake mice, but cardiac output is decreased due to lower
stroke volume and bradycardia; contractility of isolated myocardium is abnormal; β-ARs are
desensitized; and exercise tolerance is impaired [25,26,162].

After pressure overload by transverse aortic constriction (TAC), the α1AB-KO mice have
worse dilated cardiomyopathy, HF, and increased mortality [25,26], confirming the
importance of α1-ARs in cardioprotection. Mechanisms underlying this dilated
cardiomyopathy include increased apoptosis, increased fibrosis, and failure to induce fetal
and other genes [26]. Hypertrophy after TAC measured by heart and myocyte size is the
same or greater in α1AB-KO mice as in WT mice, illustrating a dissociation between
hypertrophy per se (unaffected) and fetal genes (not induced) [26].

Thus, the double α1AB-KO impairs the physiological hypertrophy of normal post-weaning
development, and worsens pathological hypertrophy after TAC. Importantly, the double β-
AR KO is opposite the double α1-AR KO. Double KO of the β1- and β2-ARs has no effect
on developmental heart growth, but induces fetal genes in the basal state, and improves
pathological hypertrophy after TAC [163,164].

Experiments using cultured cardiomyocytes from α1AB-KO mice provide insight into the
mechanisms underlying the in vivo findings, revealing increased myocyte death with toxic
stimuli, including β-AR stimulation, H2O2 and doxorubicin [25,27]. Adenoviral
reconstitution of the α1A subtype in double KO myocytes rescues the phenotype, through a
pathway that requires activation of ERK [27]. However, reintroduction of the α1B subtype
does not rescue toxin-induced death of α1AB-KO myocytes [27]. Taken together, these data
demonstrate that the α1A subtype is necessary and sufficient for myocyte protection, and
that the mechanism is myocyte-autonomous and requires ERK activation.

We have made all combinations of α1-KOs congenic in C57Bl/6J, and find that heart size is
smaller than WT in all genotypes lacking the B, whereas it is normal when the B is present,
clearly implicating the α1B subtype in developmental hypertrophy ([157] and unpublished
data).

Tentative summary of α1-AR subtype functions revealed in genetic mouse
models

Although some results are conflicting, a general pattern emerges from genetically altered
mouse models, wherein the α1A subtype mediates cardioprotection; the α1B stimulates
developmental and α1-induced hypertrophy; and the α1D has a predominant role in
vasoconstriction and maintaining blood pressure [16]. The α1A and α1B both mediate
myocardial inotropic effects [78]. The α1A and α1B are not required for heart or myocyte
enlargement after TAC, but are necessary for fetal gene induction.

Human α1-AR gain and loss of function
HUMAN α1-AR GAIN OF FUNCTION (Table 1)

Gain-of-function data in humans demonstrate adaptive and protective roles for cardiac α1-
ARs, including positive inotropy and preconditioning. In non-failing hearts, β–ARs account
for the vast majority of the catecholamine-induced increase in inotropy. However in failing
hearts, α1-ARs can increase contractility equal to β̃-ARs [66,67]. As predicted by animal
and cell models, α1-ARs also cause preconditioning against ischemic injury both in vitro
and in vivo [165–168], and can improve cardiac performance in HF patients [169,170].
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HUMAN α1-AR LOSS OF FUNCTION (Table 3)
Two large clinical trials provide loss-of-function data that support the benefit of cardiac α1-
AR activation. The ALLHAT (Antihypertensive and Lipid-Lowering treatment to prevent
Heart ATtack) trial included an arm in which 24,000 hypertensive men and women received
the non-selective α1-blocker doxazosin. The incidence of HF in the subjects who received
the α1-blocker was twice as high as in those who received any of the other three
antihypertensive agents, and the Data Safety Monitoring Board stopped the doxazosin arm
of the trial prematurely [171]. Subsequent analysis confirmed that this excess harm persisted
after adjustment for covariate risk factors, including blood pressure [172].

These results substantiated the findings of the earlier V-HeFT (Vasodilator-Heart Failure
Trials), in which the non-selective α1-blocker prazosin was associated with a trend toward
increased mortality, in contrast with the beneficial effects of other vasodilators [173].
Recently, a smaller retrospective study found evidence of increased HF hospitalizations in
patients taking α1-blockers without concomitant β-blockers [174]. Phentolamine, a
nonselective α-blocker, prevents ischemic preconditioning [175].

α1-Blockers might have off-target effects [176], but the maladaptive phenotype of the α1AB
double KO mouse supports that the adverse results in the ALLHAT and V-HeFT trials were
due to α1-AR inhibition itself, rather than some nonspecific drug effect.

Additional support for the concept that harm results from reducing α1-AR occupancy in HF
arises from clinical trials evaluating the effect of sympatholysis [177]. The MOXSE and
MOXCON trials (using moxonidine) [178–180] and BEST (using bucindolol) [181] all
revealed harmful effects resulting from marked systemic reduction of NE levels. Given the
beneficial effect of decreasing NE binding to β-ARs, these findings suggest that the
observed harm might result from decreasing binding to α1-ARs below some critical
threshold. Indeed, the α1AB double KO mouse indicates that the heart requires some degree
of α1-AR activation by NE and/or EPI.

Translational potential of α1-AR agonists (Table 4)
As summarized above, abundant evidence from cell, animal and human studies indicates
that activating cardiac α1-ARs is beneficial. α1-ARs are highly "druggable", and recruit
numerous downstream adaptive and protective signaling mechanisms. Thus, α1-AR agonists
could represent a novel approach to the treatment of myocardial diseases and HF. α1-AR
augmentation of adaptive hypertrophy, cardioprotection, and positive inotropy might have
multiple clinical applications, including acute myocardial ischemia, cardiotoxicity with
cancer therapy, and chronic systolic HF. As previously mentioned, multiple studies have
shown that α1-AR levels are either unchanged or increased in human HF [56,58–62].
Furthermore, myocardial α1-ARs are thought to be only 10% occupied by NE, even in HF
[134], indicating the potential for additional activation by an exogenous agonist. The safety
of α1-AR activation by an exogenous agonist is well established, as oral (midodrine) and
intravenous (PE) agents are already in clinical use. In fact, a recent small clinical trial
demonstrated a significant benefit associated with the use of midodrine in patients with
advanced HF already receiving contemporary therapy [170].

Given the wealth of data in multiple models from many different labs over three-plus
decades, it is important to consider reasons for possible resistance to the idea of α1-agonist
therapy. Potential concerns and answers are summarized in Table 4.

First, α1B subtype over-expression in transgenic mice causes a maladaptive phenotype, or at
least not adaptive, whereas the KO approach and pharmacology point to the α1A and α1B in
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adaptive effects. We believe that pharmacology and the KOs provide the more reliable
evidence, for reasons noted in Table 4, but the role of the α1B requires more study.

Second, α1-ARs are irrefutably linked to smooth muscle contraction, for example, in the
vascular and GU systems, raising concerns of hypertension, angina, or prostatism with α1-
agonist therapy. Against these possibilities is the key observation, repeated in many labs,
that adaptive cardiac effects of α1-agonists occur at doses that do not increase BP, or cause
myocardial ischemia. Furthermore, the α1D subtype appears to have a key role in smooth
muscle contraction, but is not involved in adaptive cardiac effects, and thus could be
avoided with α1A and/or α1B agonists. As with any systemic therapy, other potential extra-
cardiac effects of an α1-agonist still need to be determined. Some might be favorable. For
example, in the brain, there is evidence that α1-ARs might be neuroprotective [182,183].
KO of the α1B causes abnormal glucose metabolism and obesity [184], implying that an
α1B agonist might have favorable metabolic effects, opposite to the view that α1-blockers
have favorable metabolic profiles [185].

The proven efficacy of carvedilol in the treatment of HF [186] would also seem to argue
against the therapeutic benefit of an α1-AR agonist, since carvedilol blocks both α1- and β-
ARs. However, it is important to recognize that the α1-blocking properties of carvedilol
extinguish shortly after initiation of therapy [187,188]. In fact, chronic carvedilol use
actually increases the blood pressure response to PE infusion in HF patients [189]. Thus the
benefits associated with chronic carvedilol use are likely related to β-blockade, not α1-
blockade, as well as to a number of salutary effects unrelated to ARs [155,190–194].

Finally, α1-ARs are associated with "pathological" hypertrophy, because they are coupled to
Gq, and induce fetal genes in rodent models. On the contrary, the studies reviewed here
indicate clearly that α1-ARs stimulate adaptive and protective effects in heart, not
pathological. For reasons outlined in Table 4, it is not appropriate to extrapolate from Gq
over-expression to the conclusion that all cardiac Gq-coupled receptors mediate pathology.
Likewise, induction of fetal genes, such as ANF, BNP, skeletal α-actin, and β-MyHC is
considered a hallmark of pathological hypertrophy. However, it is not clear that induction of
these genes is causal, or even maladaptive. For instance, one fetal gene, BNP is even used as
therapy in HF (nesiritide, Natrecor). As another example, skeletal α-actin is increased by 5-
fold in BALB/c mouse hearts, yet cardiac structure is normal and contractility is enhanced
[195]. Finally, recent work suggests that the prototypical fetal gene, β-MyHC, is induced by
pressure overload only in a minor population of myocytes, and that the cells with β-MyHC
are smaller than those without β-MyHC, not larger [196]. The low fraction of myocytes
expressing β-MyHC casts some doubt on contractile function significance, and the small cell
size suggests that β-MyHC is not a marker for cell hypertrophy.

Future Directions
Given the valid concerns regarding the activation of non-cardiac α1-ARs with a putative
agonist, ongoing studies will need to focus on assuring cardioselectivity. Cardioselective α1-
AR activation with low doses of systemically delivered agonists appears to be feasible and
beneficial, though careful investigation for previously undetected systemic effects is
required.

An alternate approach to cardioselectivity would be the use of a subtype-selective agent for
activation of myocardial α1A or α1B-ARs, thereby eliminating undesirable coronary
vasoconstriction by activation of α1D-ARs. Indeed, our lab showed recently that a low,
nonhypertensive dose of an α1A-selective agonist (A61603) prevents doxorubicin-induced
cardiomyopathy and death in a mouse model of HF [127]. Future efforts should focus on
further unraveling the roles of the α1A and α1B subtypes in the heart, to determine whether
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both should be targeted. Importantly, the distribution of the cardiac α1-AR subtypes appears
to be identical in rodents and humans, suggesting that rodent models could offer accurate
platforms for assessing the cardioselectivity and safety of novel therapies, as well as for the
further elucidation of mechanism.
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Figure 1.
Summary of α1-AR subtypes and functions in different cardiac cells.

Jensen et al. Page 22

J Mol Cell Cardiol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Summary of α1-AR cell, animal, and clinical loss and gain of function studies.
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Table 1

α1-AR Gain of Function Models: Pharmacology

IN VITRO MYOCYTES

System Agonist Findings & References

NMVMs   PE ↓ Cell death with prolonged hypoxia [97]

NRVMs NE, EPI, PE ↑ Myocyte HT, fetal gene induction [79–87]

NRVMs PE ↓ Apoptosis [4,99–101]

NRVMs PE ↓ Doxorubicin toxicity [102]

NRVMs & ARVMs NE, methoxamine ↓ Cell death with hypoxia-reoxygenation [95,96]

ARVMs NE, PE, EPI ↑ Myocyte HT, protein synthesis & cell survival [89–91]

AMVMs PE ↓ Apoptosis & necrosis caused by β-AR agonism, H2O2 or doxorubicin;
requires ERK signaling [27]

AMVMs NE, EPI ↑ ERK with β-blocker, via α1-ARs [135]

ACVMs PE ↑ Myocyte HT, fetal gene induction [88,92,93]

IN VITRO PERFUSED HEART

Species Agonist Findings & References

Rat   EPI ↑ Glycolysis in heart [94]

Rat   EPI ↑ Protein synthesis in heart [89]

Rat   PE ↓ Ca++ injury in Ca++ depletion-repletion [98]

Rat   NE, PE ↓ global I-R injury [21,110,114,115,120]

Rabbit   PE ↓ regional I-R injury [113]

ANIMAL IN VIVO

Species Agonist, Model Findings & References

Mouse PE, A6 infusion Physiologic HT without ↑ BP [107,127]

Mouse PE in vivo & global ischemia in
perfused heart

↓ I-R injury [124]

Mouse NE & LAD ligation ↑ Right ventricular inotropy [73]

Mouse PE, A6 infusion & Doxorubicin Prevents CM, decreases apoptosis [102,127]

Rat NE & regional I-R ↓ I-R injury and arrhythmia [125]

Rat NE in vivo & global ischemia in
perfused heart

↓ I-R injury (delayed cardioprotection) [116,117,130]

Rabbit PE in vivo & global ischemia in
perfused heart

↓ I-R apoptosis & necrosis [122,123]

Rabbit PE & hypoxic cardiac arrest PE infusion preconditions donor hearts [119]

Rabbit NE, Tyr & LAD ligation ↓ I-R injury [112,118,128]

Cat NE infusion Physiologic HT without ↑ BP [39]

Dog NE, Methoxamine & LAD ligation ↓ I-R injury [109,111,121]

Dog NE infusion Physiologic HT without ↑ BP [103–105] [106]

HUMAN

System Agonist, Model Phenotype/Findings

Atrium in vitro   PE ↑ Ischemic preconditioning [166–168]
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IN VITRO MYOCYTES

System Agonist Findings & References

Ventricle in vitro   PE ↑ Ischemic preconditioning [165]

Ventricle in vitro   NE α1-AR = β-AR inotropy in failing heart [66,67]

In vivo   Methoxamine Improved exercise performance in HF [169]

In vivo   Midodrine ↓ Symptoms, ↑ EF, ↓ hospitalizations in HF [170]

A6 = A61603 (α1A-selective agonist); ARVM = adult rat ventricular myocytes; ACVM = adult cat ventricular myocytes; AMVM = adult mouse
ventricular myocytes; CM = cardiomyopathy; EPI = epinephrine; HT = hypertrophy; I-R = ischemia-reperfusion; LAD = Left Anterior Descending
coronary artery; NE = norepinephrine; NMVM = neonatal mouse ventricular myocytes; NRVM = neonatal rat ventricular myocytes; PE =
phenylephrine; Tyr = tyramine (releases NE)
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Table 2

α1-AR Gain of Function Models: α1 Subtype Transgenics

Subtype α1 Receptor (fold
level) with
Promoter

Findings & References

A CAM rat A (2×) with mouse α1A Protection from ischemia [136]

A WT rat A (148–170×) with rat αMyHC ↑ Contractility, no HT [137]

A WT rat A (66×) with rat αMyHC ↑ Protection against myocardial infarction and transverse aortic constriction
[138,139]

A WT rat A (112–170×) with rat αMyHC ↑ Fibrosis & death in aged mice [140]

B CAM B hamster (3×) with mouse αMyHC/ ↑ HT, normal BP [141,142]; ↓ I-R arrhythmias [144]; no preconditioning [197]; ↑
cardiomyopathy after TAC [143]

B CAM or WT hamster (2×) with mouse α1B ↑ HT, ↓ BP, ↓ HR, autonomic dysfunction [145,146]; no preconditioning [136]; ↓
inotropy [37,147]

B WT hamster B (40–70×) with mouse αMyHC No HT, ↑ fetal genes, ↓ β-AR response, ↑ receptor coupling to Gi, ↑ GRK2, ↓
inotropy, maladaptive HT with PE, dilated cardiomyopathy in aged mice [22,148–
150]

CAM = constitutively activated mutant receptor; HT = hypertrophy; WT = wild type receptor
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Table 3

α1-AR Loss of Function Models

ANIMAL PHARMACOLOGY

Species α1-Antagonist
& Model

Findings & References

Rat Prazosin & hemorrhage ↑ I-R injury with α1-blockade [154]

Rabbit CEC & I-R ↑ I-R injury with α1B-blockade [153]

Rabbit Doxazosin & rapid pacing ↓ Efficacy of β-blockade with α1-blockade [155]

Pig Prazosin & I-R ↑ I-R injury with α1-blockade (second window of preconditioning) [132]

KNOCKOUT MICE

α1 Subtype or
Gene

Model Findings & References

A In vivo: basal & agonist infusion Mixed genetic background: normal heart size & function, ↓ resting BP and pressor
response to α1A agonist [50]

Congenic: normal heart size and BP [157]

B In vivo: basal, agonist infusion, TAC Mixed background: normal heart size, normal BP, ↓ pressor response [107,158–
160]; normal HT with TAC, but ↓ HT with subpressor PE [107]

Congenic: small heart, normal BP, sinus bradycardia [157]

D In vivo: basal, agonist infusion, salt
loading

Mixed background: normal heart size, ↓ resting BP, ↓ pressor response, ↓
hypertension with salt loading [160,161]; ↓ coronary vasoconstriction with PE
[37]

Congenic: normal heart size, ↓ resting BP (unpublished data)

A & B In vivo: basal, exercise, TAC Congenic: small heart & myocytes (males), normal BP, bradycardia, ↓ exercise, ↓
ERK [25]; ↓ myocardial contractility [162]; normal HT with TAC, but ↓ fetal gene
induction, ↑ apoptosis and fibrosis, ↑ cardiomyopathy, ↑ HF, and ↑ death [26]

A & B In vitro ↓ ERK activation with PE, but not ET or PMA [25]; ↑ apoptosis [26]; α1A but not
α1B subtype rescues ABKO myocyte survival via ERK [27]

B & D In vivo: basal, agonist infusion Mixed: normal heart, ↓ BP, ↓ pressor response [160]

Congenic: small heart, normal BP (unpublished data)

A & D In vivo: basal Congenic: normal heart size, normal BP (unpublished data)

A, B, & D In vivo:basal Congenic: small heart, normal BP (unpublished data)

TH, DBH In vivo:basal NE required for cardiac development in utero [198–200]

HUMAN RANDOMIZED CLINICAL TRIALS

Subtype Test Drug Findings & References

All ARs moxonidine or bucindolol Sympatholysis with ↓ NE (↓ α1 occupancy) increases HF [177–181]

A, B, D prazosin Non-selective α1-blocker trend toward ↑ mortality [173]

A, B, D doxazosin Non-selective α1-blocker ↑ incident HF [171,172,201]

A, B, D phentolamine Non-selective α-blocker ↓ preconditioning [175]

↑ and ↓ = relative to WT mice or control treatment; BP = blood pressure; CEC = chloroethylclonidine; DBH = dopamine beta-hydroxylase; ET =
endothelin; HT = hypertrophy; I-R = ischemia-reperfusion; NE = norepinephrine; PE = phenylephrine; PMA = phorbol myristate acetate; TH =
tyrosine hydroxylase
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Table 4

Concerns & Answers About Potential α1-Agonist Therapy

Concerns Answers & References

Transgenics: α1B-AR over-expression can
be maladaptive (Table 2).

Pharmacology and KOs are congruent on adaptive effects (Tables 1 & 3), and germline KOs are
predictive of drug effects in humans [19,202]; high-level over-expression is non-physiological;
over-expressed or constitutively activated α1- and β-ARs can signal differently from
endogenous receptors [203–205]; over-expressed receptors can inhibit other GPCRs by
"stealing" G proteins [206,207]

Hypertension: α1-receptors cause
vasoconstriction, and α1-agonists will cause
hypertension.

Cardiac trophic effects occur at low, cardioselective doses that do not increase blood pressure
[39,103–107,127]

Angina: α1-receptors constrict coronary
arteries, and an agonist will cause angina.

α1-Receptors do not constrict normal coronary arteries [208]; smooth muscle contraction occurs
at higher doses than required for cardiac trophic effects [36,127]; the α1D is the subtype present
in coronary smooth muscle, and could be avoided with selective agonists [36,37,55].

Prostatism: α1-receptors constrict prostate
smooth muscle, and agonists will cause
urinary retention or prostate symptoms.

Cardiac effects might occur at doses below those activating prostate smooth muscle, as with
vascular; α1D antagonists are effective to treat prostate symptoms [209], and the α1D subtype
could be avoided with α1A- and/or α1B-selective agonists.

Carvedilol: carvedilol blocks α1-receptors
and is efficacious in heart failure.

Carvedilol in chronic therapy does not block α1-effects [187,188], and might even enhance
them [189].

Hypertrophy: α1-receptors cause
hypertrophy, which is bad.

α1-Receptor agonists stimulate an adaptive or "physiological" hypertrophy, with no fibrosis,
and normal or improved cardiac function [39,103–107,127].

Fetal genes: α1-receptors increase β-MyHC
and other fetal genes in rodent models, and
these are hallmarks of pathological
hypertrophy.

It is arguable whether fetal gene induction is maladaptive, or causative in pathological
hypertrophy [195,196,210,211]

Gq: α1-receptors are coupled to Gq, and Gq
over-expression in mice causes pathological
hypertrophy.

Two-fold, life-long α-MyHC-driven Gq over-expression in mice has no phenotype [212,213],
and 5-fold adult myocyte over-expression does not cause pathology [214]; 2-fold increases in
endogenous Gq are the maximum seen in heart failure [215,216], and the Gq is shared among
many cardiac cells and receptors in those cells.
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