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Abstract
Bacterial biofilms are more resilient to standard killing methods than free-living bacteria.
Pseudomonas aeruginosa PAO1 biofilms grown on borosilicate coupons were treated with gas-
discharge plasma for various exposure times. Almost 100% of the cells were inactivated after a 5-
min plasma exposure. Atomic force microscopy was used to image the biofilms and study their
micromechanical properties. Results show that the adhesiveness to borosilicate and the thickness
of the Pseudomonas biofilms are reduced upon plasma treatment.
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I. Introduction
Biofilms are microbial communities responsible for undesirable effects such as disease and
biofouling.

Cooperative interactions among members of the biofilm make conventional methods of
controlling microbial growth often ineffective. Therefore, there is a need to develop new
sterilization techniques. The use of gas-discharge plasmas is a good alternative since
plasmas contain a mixture of reactive species, free radicals, and UV photons well-known for
their decontamination potential against free microorganisms. We have reported the use of
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plasma to inactivate Chromobacterium violaceum biofilms [1]-[5]. We are presently
studying biofilm inactivation of the opportunistic pathogen Pseudomonas aeruginosa PAO1.

P. aeruginosa is a gram-negative organism that preys on victims with compromised immune
systems, patients on respirators, and causes infections of burned tissue and colonization of
catheters and medical devices. It is also, together with Burkholderia cenocepacia, the main
cause of mortality in patients [6] with cystic fibrosis. P. aeruginosa is an extremely versatile
bacterium and lives almost anywhere (in water, soil, plants, and animals) and can use almost
anything for food.

Pseudomonas biofilms have been intensively studied. Many of the genes involved in biofilm
formation and its regulation [7] and the physiological events leading to biofilm formation [8]
are known. Different strategies were also used to control/inactivate Pseudomonas biofilms:
use of biocides, antibiotics, or the combination of both [9]-[13]; use of chelators [14]; use of
compounds such as furanone and signal molecules such as N-acyl homoserine lactones [15],
[16]; and modification of surfaces [17], [18] just to mention a few.

In this paper, we present data on plasma-initiated inactivation of P. aeruginosa biofilm
grown on borosilicate and micromechanical properties of the biofilms through force versus
distance curves.

II. Materials and Methods
A. Biofilm Growth

P. aeruginosa one-, three-, and seven-day-old biofilms were produced in batch culture using
the CDC biofilm reactor (Bio-Surface Tech., MT). The biofilms were grown on borosilicate
(glass) coupons in tryptic soy broth (TSB) at 37 °C with agitation. After the selected growth
time, the coupons were aseptically removed from the reactor, and unbound bacteria were
removed by rinsing the coupons twice with saline. Coupons were air-dried prior to being
subjected to gas-discharge plasma for various exposure times (5, 10, 15, 30, and 60 min)
under sterile conditions. A control without plasma treatment (0-min exposure time) was
included. After treatment, the coupons were placed in a wet chamber and incubated with 50
μL of sterile saline for 10 min. Biofilms were then scrapped off the coupons and suspended
in 1 mL of sterile saline, serially diluted, and suspensions were plated in duplicates on an
agarized solid TSB medium. Plates were incubated at 37 °C and evaluated for colony-
forming-units (CFU) formation by counting the colonies. Data (CFUs/mL) were transformed
to percentages assigning the control a 100% of survival. Short-exposure-time experiments
(0, 1, 2, 3, and 5 min) were carried out as described above for three-day old biofilms.

B. Plasma Generation and Conditions
The gas-discharge plasma was produced using a commercially available inductively coupled
Atomflo 300 reactor (Surfx Technologies, CA) that delivers an atmospheric plasma jet [19].
The reactor consists of two perforated rectangular plates separated by a gap of 1.6 mm
across. The upper aluminum electrode is connected to a 100-W RF power supply (13.56
MHz), and the lower electrode is grounded. The size of the plasma showerhead is 0.63 cm
wide by 2.54 cm across. For the experiments, an atmospheric-pressure plasma jet was
generated using a He flow of 20.4 L/min, a secondary gas flow (N2) of 0.15 L/min, and an
input power of 35 W. Both gases were industrial grade. The plasma applicator was mounted
such that the showerhead was 4 mm away from the biofilm.
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C. AFM
Three-day-old biofilms were grown on glass coupons, treated with plasma for 0, 5, 30, and
60 min, and processed as indicated above. The coupons were rinsed twice and air-dried, and
atomic force microscopy (AFM) images were obtained in air in contact mode using the
Quesant Instrument's universal scanning probe microscope. Commercial silicon cantilevers
from MikroMasch were employed with spring constants from 0.1 to 0.5 N/m. For each
coupon, at least four widely separated regions were imaged to obtain a representative sample
and ensure reproducibility. Images consisted of 500 lines of 500 points per line for a total of
250 000 pixels of data.

To ascertain the micromechanical properties of the biofilm, force–displacement curves were
obtained. The procedure consisted of bringing the AFM tip in contact with the sample and
then moving the sample upward in a set distance while monitoring the deflection of the
cantilever. At each sampling location where force–displacement curves were obtained, the
tip was brought in and out of contact at a rate of 0.5 Hz to the maximum set sample
deflection (1.8 μm), and the displacement curve was recorded upon the fifth trial. This
technique helped to reduce hysteresis that was often observed in the first few trials. The
process was then repeated so that at least five force–displacement curves were recorded at
each sampling location. For comparing samples with different plasma treatments, all of the
force–displacement data were recorded on the same day using the same cantilever. This
method ensured control for humidity and cantilever-dependent factors (such as spring
constant) that can influence the shape of these curves [20].

III. Results and Discussion
The percentage of remaining culturable cells versus plasma exposure time for borosilicate-
grown P. aeruginosa biofilms is shown in Fig. 1. At time zero, the percentage of culturable
cells is 100% and corresponds to the control without plasma treatment. The graph shows that
regardless of the biofilm age, there is a clear decrease in the percentage of cells versus time.
Seven-day-old biofilms do not seem to be more resilient than younger biofilms, and there
are no significant differences in the percentage of remaining culturable cells for the different
sampling dates. Similar results were reported for C. violaceum biofilms grown for four or
seven days on polystyrene microtiter plates [1]-[5]. In the case of P. aeruginosa biofilms,
the decrease in the percentage of cells is even more dramatic since there are almost no
culturable cells after a 5-min treatment with plasma. The inset to Fig 1(b) shows that most of
the inactivation occurs before biofilm exposure to plasma of less than 1 min.

To rule out the effect of temperature on biofilm inactivation, we measured the temperature
of the gas reaching the coupon surface by placing a thermometer on its surface. Equilibrium
temperatures of 31 °C were reached within a few minutes and remained constant over time.
Therefore, temperature is not responsible for biofilm inactivation.

In a previous work, we studied the chemistry of the generated plasma by spectroscopy, and
we reported the presence of NO γ-bands around 250 nm and an OH band around 309 nm [3].
These reactive species have direct impact on microorganisms, particularly on their
outermost membranes [21]-[23]. The presence of these radicals can, therefore, compromise
the function and viability of the membrane and the cell wall. The plasma conditions chosen
for our experiments were those that maximized OH and NO emissions and produced stable
plasma [3].

Cell concentration (in log CFU/mL) for biofilms not subjected to plasma treatment is
5.96±0.24, 7.12±1.52, and 5.82±0.42 for one-, three-, and seven-day-old biofilms,
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respectively. As cell concentration is slightly higher for three-day-old biofilms, experiments
for AFM imaging were carried out with those biofilms.

Fig. 2 displays typical AFM images for P. aeruginosa biofilms grown on glass coupons and
treated with plasma for different exposure times, as indicated in materials and methods. The
upper and bottom rows display 40 μm × 40 μm and 10 μm × 10 μm area scans, respectively,
and cross sections of the 10 μm × 10 μm area scans are included. For each image, removal of
any overall background tilt was performed. This procedure involved subtracting a plane
determined from the average slope between the top and bottom edges and right and left
edges of the scan. There are no obvious qualitative differences that we interpret from these
images. From the cross sections of the 10 μm × 10 μm images, the overall thickness of the
biofilm can be determined as the distance between the lowest features (the flat surface of the
glass coupon) and the highest features (the “peak” of the biofilm). Examining these
differences yields biofilm thicknesses of ~750, 700, and 450 nm for the 0-, 5-, and 60-min
plasma treatment samples, respectively. A more precise method for quantifying the surface
topography of the biofilms was also employed by examining the 40 μm × 40 μm images, the
largest scan area obtainable from the AFM. For each scan, the average height of the surface
features was determined as relative to the lowest point in the scan (assigned the value of
zero height). Using this method from the 8, 4, and 4 regions, sampled for the control, 5- and
60-min plasma treated samples yielded mean values of the average heights of 1123, 1190,
and 940 nm, respectively. Therefore, the trend of reduction of the average height after a long
period of plasma treatment (60 min) was consistent with the reduction of biofilm thickness
seen in the images of Fig. 2 and the reduction in culturable cells in Fig. 1. However, there
was a wide variability in the average heights measured for each of the samples, and the
reported mean values differed by less than one standard deviation.

Fig. 3 shows a typical force–displacement curve obtained on the P. aeruginosa biofilm
grown on the glass coupon for the control sample. The curve displays the same general
features that were exhibited in all of our measured force–displacement curves. Upon (dashed
line) approach, the tip encounters the sample's surface at the origin of the graph and deflects
upward with a slope that increases. Upon (solid line) retraction, the tip roughly retraces the
approaching curve with some hysteresis that mainly occurs around the middle of the first
quadrant of the graph. Upon (in the third quadrant of the graph) further retraction, the tip
adheres to the surface until it breaks free, and the points retrace the approaching data along
the negative x-axis of the graph. For the purposes of analysis, two sections of the curve were
considered. For approaching, the slope of the curve for positive sample displacements up to
0.2 μm was determined. For significantly higher sample displacements, the data are less
reliable since the optical detection of the cantilever deflection becomes increasingly
nonlinear. Others have performed similar analyses on bacteria, employing force–
displacement curves over comparable scales [24]-[26]. For retracting, the height of the
adhesive step, as indicated in Fig. 3, was measured.

The slope of the force–displacement curves can be used to determine an elastic constant or
stiffness of the biofilm. The derivation involves the analysis of the relative compression due
to the contact between two effective springs, the cantilever and the biofilm. The biofilm
stiffness, S, is related to the unitless slope, m (cantilever displacement/sample
displacement), and the cantilever spring constant, k, through the following: [25],

(1)
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Therefore, when using the same cantilever for comparisons between different plasma
treatments, relative changes in bacterial stiffness are a function of the slope of the force–
displacement curves only.

Fig. 4 shows comparisons between the initial slope of the force–displacement curve for the
0-min treatment (control) and 30-min plasma-treated samples on glass coupons. Curves at a
number of regions for each sample were obtained. Although there appears to be an overall
reduction in the slope of the displacement curves after 30 min of plasma treatment versus the
control sample, the results differ by just slightly more than one standard deviation.
Specifically, the mean slope value of the eight regions measured for the control sample is
0.947 with a standard deviation of 0.115. For the 30-min treated sample, the mean slope
value for the five regions measured is 0.754 with a standard deviation of 0.062. Therefore,
this reduction in the slope is consistent with a reduction in the stiffness constant, S, of the
biofilm and indicates softening of the biofilm with plasma treatment.

From the same force–displacement curves obtained for the sample regions shown in Fig. 4,
adhesive step data were extracted and displayed in Fig. 5.

It is apparent from this graph that there is a wide variability in adhesive step values over the
various regions of each sample. Even considering this variability, there is an obvious overall
reduction in this adhesion with plasma treatment. The mean adhesive step height of the eight
regions measured for the control sample is 0.516 μm with a standard deviation of 0.249 μm.
For the 30-min treated sample, the mean adhesive step height for the five regions measured
is 0.061 μm with a standard deviation of 0.039 μm. Therefore, there is an order of magnitude
reduction in adhesion with 30 min of plasma treatment, and the two means differ by well
beyond one standard deviation. This reduction of adhesion with plasma treatment indicates
that the biofilm would exhibit less adhesion to surfaces, prohibiting its retention.

We previously reported that C. violaceum biofilm-forming cells undergo sequential
morphological changes after plasma treatment. Bacterial cells may undergo modifications
ranging from minimal changes to putative loss of cell walls. In another contribution, we
verified the relative “roughness” of cells by examining an image's cross sections and
analyzing the standard deviation of the surface height. These surface features are consistent
with cells undergoing damage [4], [27]. The present study goes beyond those reports
suggesting that the architecture and the stability of the biofilm as a whole may be impacted
by plasma treatment.

IV. Conclusion
Our results clearly show that bacterial biofilms can be inactivated by using gas-discharge
plasma. The architecture and stability, together with cell culturability, are impacted by the
plasma treatment. These results are evidences of the potential for plasma as an alternative
sterilization method against biofilms. However, based on our previous results, [4] we are
aware that viability experiments should always be carried out before drawing the conclusion
that plasma is useful to kill cells based solely on measurement of culturable cells. It is
widely accepted that the lack of culturability does not imply that there are no viable cells in
the sample. When cells are viable but nonculturable (VBNC), they are unable to produce
colonies in an agarized medium but they are still alive and may retain pathogenicity. The
VBNC state is a survival mechanism of bacteria facing environmental stress conditions that
has been reported for many gram-negative organisms [28]-[30]. Bacteria enter into this
dormant state in response to one or more environmental stresses, which might otherwise be
ultimately lethal to the cell. Research is being carried out in our laboratories to try to better
understand the mechanism leading to cell inactivation.
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Fig. 1.
Percentage of culturable cells versus plasma exposure time. P. aeruginosa biofilms were
grown on borosilicate for (a) one day, (b) three days, and (c) seven days and were subjected
to plasma for various exposure times and processed, as indicated in materials and methods.
Results are the average of at least four independent experiments. Platings for colony
counting were performed in duplicates. The bars represent the standard error of the mean.
(b-2) Inset to part b.
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Fig. 2.
AFM images of P. aeruginosa bacterial biofilm treated with gas-discharge plasmas for 0
(column I), 5 (column II), and 60 min (column III). The top and bottom rows consist of 40
μm × 40 μm and 10 μm × 10 μm scan areas, respectively. Cross sections of each 10 μm × 10
μm scan are included, with the location of the cross section indicated by a horizontal line on
the image.
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Fig. 3.
P. aeruginosa biofilm force–displacement curve for the control sample on the glass coupon.
Data for (dashed line) tip-sample approach and (solid line) tip-sample retraction are shown.
The negative displacement of the cantilever that occurred due to tip adhesion to the biofilm
upon retraction is designated as the adhesive step.

Zelaya et al. Page 13

IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. Author manuscript; available in PMC 2011 May 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
P. aeruginosa biofilm force–displacement curve slopes for (control, first eight bars) 0- and
(bars 11–15) 30-min plasma-treated samples. Eight and five different regions were
examined on the 0- and 30-min treated samples, respectively. The height of each bar on the
graph corresponds to the mean slope of five curves obtained for each region. Error bars
represent plus and minus one standard deviation about this mean.
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Fig. 5.
P. aeruginosa biofilm force–displacement curve adhesive step data for (control) 0- and 30-
min plasma-treated samples. Eight and five different regions were examined on the 0- and
30-min treated samples, respectively. The height of each bar on the graph corresponds to the
mean adhesive step height of five curves obtained for each region. Error bars represent plus
and minus one standard deviation about this mean.
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