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Chemotherapy resistance is a key contributor to the dismal prognoses for lung cancer patients. While the majority of studies have
focused on sequence mutations and expression changes in protein-coding genes, recent reports have suggested that microRNA
(miRNA) expression changes also play an influential role in chemotherapy response. However, the role of genetic alterations at
miRNA loci in the context of chemotherapy response has yet to be investigated. In this study, we demonstrate the application of
an integrative, multidimensional approach in order to identify miRNAs that are associated with chemotherapeutic resistance and
sensitivity utilizing publicly available drug response, miRNA loci copy number, miRNA expression, and mRNA expression data
from independent resources. By instigating a logical stepwise strategy, we have identified specific miRNAs that are associated with
resistance to several chemotherapeutic agents and provide a proof of principle demonstration of how these various databases may

be exploited to derive relevant pharmacogenomic results.

1. Introduction

Lung cancer is the most common cause of cancer-related
deaths worldwide, with a five-year survival rate of less than
15% [1]. The high incidence of late-stage diagnosis and a lack
of efficient therapeutic strategies remain key contributors
to the dismal survival statistics. Thus, to improve lung
cancer patient outcome, improvement in early detection and
a better understanding of the underlying tumor biology
that governs response to therapy are necessary. Response to
systemic therapy has been shown to be strongly associated
with a variety of clinical and molecular features. For exam-
ple, the chemotherapeutics Avastin and Permetrexed have
shown differential response or adverse effects in different
histological subtypes of lung cancer [2, 3]. Tyrosine kinase
inhibitors (TKIs) targeting the epidermal growth factor
receptor (EGFR) have shown preferential efficacy in Asian
females who typically harbor sequence mutations in EGFR as
well as those individuals who harbored EGFR amplifications,
EGFR mutations, and the absence of KRAS mutations [4—6].

Very recently, inhibitors to ALK rearrangement also showed
significant response in patients who harbor this genetic
alteration [7].

In addition to molecular features that can predict
sensitivity, there are also examples of features that can
predict resistance. In ovarian cancer, resistance to therapy
was observed in those individuals who carried amplifications
of genes such as P-glycoprotein as well as specific regions
in the genome such as 19q12 and 20q11.22-q13.12 [8, 9].
With respect to lung cancer, while there are individuals
who do respond to TKIs, a large proportion will develop
resistance to these therapies by acquiring an additional
EGFR mutation (T790M), amplification of the ¢-MET
oncogene, or hypermethylation of the PTEN locus [10-12].
High levels of ERCC1 mRNA and protein, a key player
in nucleotide excision repair, have been associated with
resistance to platinum-based chemotherapy [13]. Similarly,
low levels of RRM1/2 mRNA and protein were associated
with favorable gemcitabine response in NSCLC patients
[14].
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Although alterations in protein-coding genes remain
a main focus to elucidate sensitivity or resistance to
chemotherapy, deregulation of microRNAs (miRNAs) has
recently been shown to play a role in chemotherapy response
[15-17]. miRNAs are small noncoding RNAs approximately
18-25 nucleotides in length that negatively regulate gene
expression posttranscriptionally [18, 19]. miRNA biogenesis
begins with a long, double-stranded RNA known as a pri-
miRNA, typically hundreds to thousands of nucleotides in
length, which is processed into sequentially shorter double-
stranded RNA sequences by the endonucleases Drosha and
Dicer that are of 70 and 22 nucleotides in size, respectively
[20, 21]. Dissociation of the duplex and incorporation of
the mature strand into the RNA-induced silencing complex
(RISC) guides RISC to the target mRNA, where the miRNA
exhibits its effect [22]. miRNAs bind target transcripts
based on sequence similarity—typically in the 3’UTR of
the transcript and sometimes in the 5UTR and the coding
region—resulting in inhibition of translation or transcript
degradation [18, 19, 23].

The relevance of miRNA deregulation to cancer biology
arises because increased expression of certain miRNAs
can result in downregulation of tumor suppressor genes,
while decreased expression of other miRNAs can lead to
increased expression of oncogenes [20, 21]. Often located at
chromosomal breakpoint regions, fragile sites, and minimal
regions of loss of heterozygosity or amplification, miRNA
loci are highly susceptible to genomic alterations and sub-
sequently, deregulated expression [24-27]. Aberrant miRNA
expression is a common feature of both dysplasia and
cancer, and miRNA expression profiles have been associated
with prognosis, disease progression, survival, and outcome
prediction [28, 29]. Further, miRNA expression profiles have
been found to be superior to global mRNA expression
profiles for the accurate definition of cancer types [30, 31].
Lung cancer drug response has been associated with the
deregulation of several miRNAs. For example, sensitivity of
nonsmall cell lung cancer (NSCLC) to cisplatin treatment
was linked to upregulation of miR-181a, while resistance was
conferred by upregulation of miR-630 [32]. Sensitivity to
another chemotherapeutic agent, Gefitinib, was correlated
with loss of miR-128b [33]. Several studies have shown that
the overexpression of specific miRNAs, such as miR-134
and let-7a, can increase drug sensitivity, demonstrating the
therapeutic potential of miRNAs [34, 35].

In this study, we sought to determine the role of DNA
copy number alterations at miRNA loci in chemotherapy
response. As a proof of principle, making use of datasets gen-
erated by multiple institutions, encompassing we performed
an integrative and comparative DNA dosage and expression
alteration analysis of miRNA loci in highly sensitive and
resistant lung cancer cell lines for 18 different chemother-
apeutics. Using a rigorous, stepwise analysis strategy, we
identified four miRNAs which were frequently gained and
overexpressed in lung cancer cell lines resistant to one or
two of five different chemotherapeutic agents. Subsequent
gene expression and gene network analyses for each set
of mRNA targets of a given miRNA revealed functions
such as DNA replication and repair and cellular assembly
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and maintenance that were overrepresented in all four
sets. These findings demonstrate the feasibility and the
value of integrative analysis of multidimensional publicly
accessible databases as a strategy for pharmacogenomics dis-
covery.

2. Material and Methods

2.1. Drug Response Profiles of Cancer Cell Lines. Drug
response ICsp data for 18 different chemotherapeutics
across 350 cancer cell lines (See Supplementary Material
available online at doi: 10.1155/2011/474632 Supplemental
Table 1) was generated as part of the Wellcome Trust Sanger
Institute and Massachusetts General Hospital’s (MGH)
joint Genomics of Drug Sensitivity in Cancer Project. Data
was downloaded from the following website: (http://www
.sanger.ac.uk/genetics/CGP/translation/compound_sens_da-
ta.shtml). Briefly, ICsy is the required concentration of a
particular drug to cause in vitro growth to be inhibited by
50%, and thus, a measure of drug effectiveness. A low 1Csg
indicates that a drug is very effective at inhibiting growth
while a high ICs, indicates that a drug is less effective and
thus requires a higher dosage to function. Of the 350 cancer
cell lines, 73 cell lines were of lung origin.

2.2. Generation of DNA Copy Number Profiles for Cancer Cell
Lines. Affymetrix SNP 6.0 data for the cancer cell lines were
obtained from the Wellcome Trust Sanger Institute CGP Data
Archive (http://www.sanger.ac.uk/genetics/ CGP/Archive/).
Of the 73 lung cancer cell lines with drug response data, 67
of them also had matching SNP array hybridization data
(Supplemental Table 2). SNP array data were normalized
using default parameters in Partek Genomics Suite (PGS,
Partek Inc, St. Louis, MI). Whole genome copy number
profiles were visualized using SIGMA? software [36].

2.3. miRNA and mRNA Expression Data for Cancer Cell
Lines. The current annotation of autosomal miRNAs and
their genomic coordinates were obtained from the UCSC
Genome Browser (http://www.genome.ucsc.edu/) using the
NCBI36/hg18 mapping [37]. miRNA and mRNA expres-
sion profiles for lung cancer cell lines were downloaded
from the Broad Institute (http://www.broadinstitute.org/cgi-
bin/cancer/datasets.cgi) under the “Sanger Cell Line Project.”
Affymetrix HG-U133A mRNA expression data were RMA-
normalized using the “affy” package in Bioconductor in R
[38—40]. Mapping of probes to genes was performed using
the Affymetrix NetAffx annotation file (version NA31). Of
the 73 lung cancer cell lines with drug response data, 64 had
matching miRNA expression while 68 had matching mRNA
expression data (Supplemental Table 2).

2.4. Determination of Predicted miRNA Targets. TargetSpy
(version 1.0) and TargetScan (version 5.1) miRNA target
prediction software were used to identify mRNA targets
for further analyses [41-44]. For TargetSpy, the “no seed
requirement, high sensitivity” set of targets were used, while
for TargetScan, the nonconserved miRNA-mRNA targets
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were used. For the miRNAs that were further assessed for
target analysis, only miRNA-mRNA target pairs that were
present in both databases were assessed for gene expression
differences.

2.5. Statistical Analysis. For DNA alteration analysis, copy
number profiles of the cancer cell lines were determined
against a pooled reference comprised of 72 cytogenetically
normal individuals in the HapMap collection. SNP 6.0
data for the HapMap individuals were obtained through
Affymetrix. Subsequently, to determine copy number gains
and losses, copy number profiles were subjected to segmen-
tation analysis using the “Genomic Segmentation” algorithm
in PGS with the following parameters: minimum genomic
markers = 20, P-value threshold for adjacent regions having
significantly different means = 1 x 107, and P-value
threshold for deviation from normal (diploid) copy number
=1 x 107°, In addition to meeting P-value thresholds, a
region was deemed gained if the cell line had >2.3 copies
while a region was deemed lost if the cell line has <1.7 copies.
For each cell line, the copy number status for individual
miRNA loci were determined by mapping the genomic
coordinates of the miRNA loci to the identified regions of
alteration.

To determine miRNA loci in differentially altered regions
of copy number between highly resistant and sensitive cell
lines, for each chemotherapeutic, cell lines were ranked based
on their ICsy value. The frequency of copy number gain,
loss, and retention were compared between the top 1/3 and
bottom 1/3 of cancer cell lines using a 3 by 2 Fisher’s exact
test. A miRNA was deemed significant if the P value from the
Fisher’s exact test was <.05.

For miRNA and mRNA expression analysis, similar to
the differential copy number analysis, cell lines were ranked
based on ICs for each drug. Subsequently, for each miRNA,
the expression in the top and bottom tertiles of cell lines was
compared using a nonparametric Mann Whitney U test. A
miRNA was deemed significant if the P value from the Mann
Whitney U test was <.05.

Upon identifying which lung cancer cell lines (LCCLs)
contained matching DNA copy number and drug response
profiles, for each chemotherapeutic, we compared the pat-
terns of copy number alteration between the most sensitive
and resistant LCCLs for 636 miRNA loci. Of the resulting
differentially altered miRNA identified using the above
statistical criteria, we filtered out those miRNAs which were
both preferentially gained and lost in either highly resistant
or highly sensitive LCCLs. We defined these variably altered
miRNAs as those whose differential alteration frequency
(DAF) of gain, frequency of gain in highly resistant minus the
frequency of gain in highly sensitive, was within 10% of the
DAF of loss, which is the frequency of loss in highly resistant
minus the frequency of loss in highly sensitive. In parallel,
upon identifying LCCLs with both miRNA expression and
drug response profiles, we compared the miRNA expression
profiles between the most sensitive and resistant LCCLs
for 254 miRNAs using the above-mentioned statistical
methods. Although 418 unique miRNAs are represented

on the microarray platform, we restricted this analysis to
the 254 miRNAs that were expressed in at least 4 LCCLs.
Subsequently, for each drug, we identified the miRNAs which
were both significantly different at the DNA copy number
and expression levels that matched in the same direction
that is, if a miRNA had higher copy number in the highly
resistant LCCLs as compared to the highly sensitive LCCLs,
then the expression would also have to be higher, and
vice versa. Next, for each significant miRNA, bioinformatic
analysis was performed to identify target mRNAs, and
mRNA expression profiles for these genes were compared
in a similar manner to that performed in the differential
DNA copy number and miRNA expression analyses (using
TargetSpy and TargetScan; see above). Restricting to those
targets whose mRNA expression profiles negatively correlate
with miRNA expression profiles, we performed gene network
and function analysis using Ingenuity Pathway Analysis to
identify significantly overrepresented functions that were
common to all sets of differentially expressed miRNA
targets. A flow chart illustrating this strategy is shown in
Figure 1.

2.6. Gene Network and Pathway Analysis. For each miRNA,
the set of differentially expressed target genes were analyzed
using Ingenuity Pathway Analysis (Ingenuity Systems, Red-
wood City, CA) to determine statistically overrepresented
networks and pathways. Briefly, a right tailed Fisher’s exact
test was employed to calculate a P-value for the probability
that enrichment of functions within the gene list of interest
and the entire list of genes in the human genome is due
to chance alone. Only the Molecular and Cellular Functions
within the Biological Functions analysis were assessed.

3. Results

3.1. Copy Number Alterations of miRNA Loci Correlate with
Drug Response in Lung Cancer Cell Lines. Sixty seven lung
cancer cell lines with available ICsy data were used to analyze
miRNA copy number alterations. For each drug, cell lines
were sorted based on ICsp values and the frequencies of
DNA copy number gain, loss, and retention were compared
between the highest (most resistant, n = 22) and the lowest
(most sensitive, n = 22) tertile of cell lines. Of the 636
miRNAs assessed, 307 miRNAs (48.3%) were significantly
different between high and low ICs, for at least one drug,
and 20 miRNAs (3.1%) were different for at least four drugs
(P < .05 Fisher’s exact test, Table 1, Supplemental Table 3).
In addition, among the 307 miRNAs, 58.4% were either more
frequently gained in high ICsy or more frequently lost in
low ICsy while 23.6% were either more frequently lost in
high ICs or more frequently gained in Iow ICs lung cancer
cell lines. The remaining 41 miRNAs (17.9%), although
significantly different, had less than a 10% DAF difference
between resistant and sensitive lines and were, therefore,
deemed variably altered (see methods) and subsequently
removed. This brought the total number of miRNAs with
significant differences in copy number to 266 (Figure 2).
In terms of the drug with the most striking pattern of
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FIGURE 1: The search for drug response-related miRNAs began with data acquisition from several independent databases. Drug response
data for lung cancer cell lines (LCCLs) was integrated independently with copy number and expression data, and unique filtering criteria
were applied. The integration of all three dimensions applied further filtration criteria, and the remaining miRNAs underwent predicted
target analysis. The resulting mRNA target expression was anticorrelated with miRNA expression, and cellular functions of the final mRNA
target list were derived by Ingenuity Pathway Analysis.
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FIGURE 2: Flowchart summarizing the process for the identification of the four miRNAs which correlated significantly with drug response.

differential alteration between high and low ICsq cell lines,
TAE684, a small molecule ALK fusion kinase inhibitor,
had 66 miRNAs that were significantly different between
the most resistant and most sensitive cell lines (Figure 3).
Conversely, miR-662 was the most frequently differentially-
altered miRNA across all of the drugs, appearing significant
in 6 of 18 drugs.

3.2. miRNA Expression Levels Correlate with Drug Response
in Lung Cancer Cell Lines. miRNA expression was assessed
in 64 lung cancer cell lines using a similar method to that
applied for identifying copy number alteration differences,
comparison of the highest and lowest tertile of cell lines (n =
21) based on ICsg values for each drug. miRNA expression
profiles were available for 498 probes measuring 418 unique
miRNAs. However, a number of miRNAs have little to
no expression. To account for these cases, miRNAs with
expression in less than four cell lines were removed, leaving
292 probes which corresponded to 254 unique miRNAs
(Figure 2). One hundred thirty four miRNAs (represented
by 146 probes) of the 254 (52.8%) miRNAs with available
expression data were significant in at least one drug (P <
.05, Mann Whitney U test) (Supplemental Table 4), with
18 miRNAs significant in at least four drugs (Table 2). Of
the 134 differentially expressed miRNAs, 40% had higher
expression in high ICs, while 60% had higher expression
in low ICs5¢ lung cancer cell lines. HKI-272 had the most
miRNAs [30] that were significantly different at the expres-
sion level (Figure 4), and miR-625 was the most frequently
differentially expressed miRNA, appearing significant in 7 of
18 drugs.

TaBLe 1: List of miRNA with most frequent differential copy
number alterations.

miRNA
hsa-mir-662
hsa-mir-124-2
hsa-mir-1285-2
hsa-mir-548h-2
hsa-mir-1208
hsa-mir-1225
hsa-mir-1228
hsa-mir-1299
hsa-mir-147
hsa-mir-181a-2
hsa-mir-181b-2
hsa-mir-1827
hsa-mir-1972
hsa-mir-492
hsa-mir-548¢
hsa-mir-548d-1
hsa-mir-548f-2

Significant drugs
6 (AZ, Erl, Gel, Go, HKI, MK)
5 (Erl, HKI, Ra, Sor, Sun)
5 (MG, PE, PH, Ra, Sun)
5 (Gel, HKI, MK, PD, Sor)
4 (Cy, Erl, HKI, Sun)
4 (AZ, Go, MK, Sor)
4 (Gel, MK, PF, TAE)
4 (AZD, Erl, MK, PH)
4 (Erl, HKI, MK, TAE)
4 (Erl, HKI, MK, TAE)
4 (Erl, HKI, MK, TAE)
4 (AZ, Gel, Pac, PF)
4 (AZ, G6, MK, Sor)
4 (Gel, Im, Pac, PF)
4 (Gel, MK, PE, TAE)
4 (Cy, Go, HKI, Sun)
4 (Go, MG, PE, TAE)

hsa-mir-600 4 (Erl, HKI, MK, TAE)
hsa-mir-601 4 (Erl, HKI, MK, TAE)
hsa-mir-940 4 (AZ, Go, MK, Sor)

3.3. Integrative Analysis of miRNA Gene Dosage and Expres-
sion Levels in Lung Cancer Cell Lines. To determine if miRNA
dosage modulates expression, we compared the 266 miRNAs
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FiGure 3: Comparison of the frequency of alteration of 636 miRNA loci between highly sensitive and highly resistant lung cancer cell lines
(LCCLs) to agent TAE684. Highly sensitive LCCLs were represented by the lowest tertile of ICsy while the highly resistant were represented by
the highest tertile of ICsp. miRNA genomic position information was obtained from the UCSC Genome Browser database [37], and miRNAs
on chromosomes X and Y were excluded. Copy number alterations frequencies were plotted using SIGMA? software [36]. Vertical lines
denote the frequency of alteration, where 1 or —1 signifies the alteration that occurs in 100% of samples. Horizontal bars depict miRNAs,
with the frequency of copy gains and losses of each miRNA displayed to the right and left of 0, respectively. miRNAs disrupted in resistant
lines are displayed in red, those occurring in sensitive lines are displayed in green, and regions of overlapping frequencies are shown in black.

differentially altered at the copy number level and the
134 miRNAs differentially expressed in at least one of the
drugs analyzed. Considering only those miRNAs that were
significant at both the copy number and miRNA expression
level for the same drug, the intersection of these two lists
yielded five miRNAs, miR-10b, -191, -193b, -328, and -628
(Figure 2). Of these five, only expression of four miRNAs,
mir-10b, -193b, -328, and -628 matched the direction of
their respective copy number alterations. For example, miR-
628 is more frequently gained in high ICsy lines compared
to low ICsg lines treated with agent PF-2341066 and also
shows higher expression in high ICs lines compared to low
ICs lines (Table 3), whereas miR-191 is frequently gained in
low ICs¢ lines when treated with TAE684, but shows higher
expression in high ICs lines.

3.4. Gene Expression Analysis of mRNA Targets of miR-10b,
miR-193b, miR-328, and miR-628. The target prediction
software TargetScan and TargetSpy were used to identify
putative mRNA targets of miRNAs found to be significantly
different at the copy number and miRNA expression levels
between high-1Csy and low-ICs cell lines. For the four miR-
NAs (miR-10b, miR-328, miR-193b, and miR-628) identified
by integrative analyses, only miRNA-mRNA targets present
in both databases were used for further analysis.

miR-10b was identified as having a significant association
with response to the proteosome inhibitor MG-132. In total,
target prediction analysis found 636 genes that were deemed
as putative targets of miR-10b (Supplemental Table 5).
Comparison of the gene expression profiles between lung
cancer cell lines with high and low ICsy for MG-132
revealed 48 of these target genes to be differentially expressed
(P =< .05, Mann Whitney U test), with 32 of them
showing the expected direction of differential expression
(i.e., anticorrelated mRNA expression to miRNA expression)
(Table 4).

Interestingly, miR-193b alteration was significantly asso-
ciated with response to two therapeutics: AZ628 and
MKO0457 (RAF and aurora kinase inhibitors, resp.). When
a similar analysis to hsa-miR-10b was performed for miR-
193b, 518 genes were identified as putative targets of miR-
193b (Supplemental Table 5). For the analysis of gene
expression between highly sensitive and resistant AZ628 cells,
28 of these targets were differentially expressed, with ten of
these genes matching the expected direction of differential
expression. For MK-0457, 67 of these target genes were
differentially expressed with over half (37) matching the
expected direction (Table 4).

Alteration of miR-328 was significantly associated with
the response to Hsp90 inhibitor Geldanamycin in lung
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TABLE 2: Most frequently different miRNAs at the expression level.

miRNA
hsa-mir-625

Significant drugs
7 (Erl, Go, HKI, MG, Pa, PHA, Ra)
6 (Erl, Go, HKI, MG, Pa, Sun)
6 (AZ, Erl, Gel, Go, HKI, Pa)

hsa-mir-130a

hsa-mir-148a

hsa-mir-215 5 (Gel, Go, MG, MK, Pa)
hsa-mir-518b 5 (Cy, PE, PHA, Ra, Sun)
hsa-mir-100 5 (Erl, Go, HKI, Sun, TAE)
hsa-mir-192 5 (Gel, Go, MG, MK, Pa)
hsa-mir-375 5 (Erl, Gel, Go, HKI, Pa)
hsa-mir-503 5 (Cy, Erl, MK, PHA, Ra)
hsa-mir-193b 4 (AZ, MK, PHA, Ra)
hsa-mir-521 4 (Cy, Erl, Im, PHA)
hsa-mir-95 4 (Cy, Erl, MG, Sun)
hsa-mir-194 4 (Gel, Go, MG, Pa)
hsa-mir-205 4 (Erl, Gel, Go, HKI)
hsa-mir-222 4 (AZ, Erl, Gel, HKI)

4 (AZD, Erl, Gel, Go6)
4 (MG, Pa, Sor, Sun)
4 (AZD, MG, Pa, Sun)

hsa-mir-27a
hsa-mir-377
hsa-mir-382

cancer cell lines. Of the 437 genes targeted by miR-328,
49 of these genes were significantly differentially expressed
between highly resistant and sensitive cell lines, with 31 of
the genes matching the expected direction (Supplemental
Tables 5 and 4). Finally, for miR-628, whose alteration was
significantly associated with the MET inhibitor PF-2341066
response, 392 targets genes were identified with 49 of
them being differentially expressed and 22 of those in the
appropriate direction (Supplemental Tables 5 and 4).

4. Discussion

Chemotherapy response can be influenced by a number of
clinicopathological and molecular factors. At the molecular
level, while a large focus revolves around the role of activating
and inactivating sequence mutations as well as copy number
amplifications and deletions in protein coding genes, there
has been an increasing emphasis on examining the role of
miRNAs and response to chemotherapy. Recent studies have
focused on differentially expressed miRNAs in conjunction
to resistance and sensitivity to a variety of chemotherapeutics
[32-35, 45, 46]. However, the influence of copy number
alterations at miRNA loci (or gene dosage) in the context of
drug response has not been thoroughly investigated. To this
end, we have performed an integrative analysis of genome-
wide miRNA copy number, miRNA expression, mRNA
expression, and drug sensitivity data from 18 different
chemotherapeutics on a panel of lung cancer cell lines to
identify miRNAs that are significantly different at the copy
number and expression levels between the most sensitive and
resistant cell lines for a given drug.

Highest ICsg to
HKI-272 (n = 21)

Lowest ICsg to
HKI-272 (n = 21)

Significant

Sorted by lowest to highest P-value

L
0 10

Color scale

FiGUure 4: Heatmap visualization of the miRNA expression of
the 254 miRNAs (represented by 292 unique probes) that passed
expression filtering criteria for the 21 most sensitive (yellow bar,
low ICs) and 21 most resistant (blue bar, high ICs) to drug HKI-
272. In total, 30 miRNAs were found to be significantly differentially
expressed between the most sensitive and resistant lung cancer cell
lines (LCCLs, orange bar). For this visualization, since a value of 4
represented no expression, all expression values were subtracted by
4 such that baseline expression would be shown as 0 (black).

Upon comparison of the 636 annotated miRNAs
throughout the human genome, it was found that 266
of them revealed significant differences in copy number
alteration pattern between sensitive and resistant cancer cell
lines for at least one drug (Supplemental Table 3). Moreover,
of the 266 miRNAs, there were more miRNAs with increased
copy number for the highly resistant versus the highly
sensitive lung cancer cell lines than vice versa. The miRNA
that was found to have a differential pattern of copy number
alteration between sensitive and resistant cancer cell lines for
the most drugs was miR-662, and, conversely, the drug with
most significantly different miRNAs was TAE684. miR-662 is
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TasLE 3: List of miRNAs with significant copy number and expression alterations in the same drug.

miRNA Copy number alteration Expression alteration Drug in which significant
hsa-mir-10b Gained, High ICs Overexpressed, High ICs MG-132

hsa -mir-193b Gained, High ICs Overexpressed, High ICs AZ628, MK-0457
hsa-mir-328 Gained, High ICs Overexpressed, High ICs Geldanamycin
hsa-mire-628 Gained, High ICs Overexpressed, High ICs PF-2341066

TaBLE 4: Differentially expressed mRNA targets for the four identified miRNAs.

miRNA 10b 328 193b 193b 628
Drug MG—IS% (2§S. Geldar?am.yc.in A.Z62.8.(RAF MK—O4§7 (Agrora PF—234.106.6 .(MET,
Proteasome inhibitor) (HSP90 inhibitor) inhibitor) kinase inhibitor) ALK inhibitor)
SMARCCI SLCI6A1 PHF15 EIF2S1 DCTD
MKRN2 ANGELI RPP30 ARIH2 NUP188
CMTM6 UBR5 RRPIB TMEM231 ELACI
CSDEI SEMA3C EIF4B GABBRI DACTI
MAP4 MEIS2 WDR48 IKZF1 CYP7BI
MYOI10 TRIM32 PTPN2] FKTN RPA4
NKTR GM2A CLEC2D GPATCHS GARI
RYBP EIF2S1 MRPS16 EZHI UCKLI
ZNF532 RAC2 NUDTI5 OLFMIL2A IL7
SENP5 OLFML2A NECAP2 PSMES3 ABCEI
CBL HIPI AGTPBPI CASP3
WHSC1 PRKD3 NMT2 WBP4
FOXJ2 VDR ADARBI KLF9
APOLDI YMEILI GREBI ACTN2
PEAI5 TP63 SMC5 GPM6A
RADI TFAP2C CCDC28A LSM12
CDC6 CHP2 RNMT PRKCA
Targets UBE2K STK24 Cl50rf29 ADATI
BNIP2 GPRI26 RRPIB PBRM1
PARD6B SERTAD2 AGPAT4 Sp2
FGD6 DSC2 UBA52 TRAIP
MMPI14 PTGIS GOSR1 MAGOHB
OLFML2A RAB22A PRKD3
GNL3L FBXW2 SYF2
CTDSPL HS28T1 SSX2IP
MME RPP30 ANKH
PPFIBP1 SLCI6A3 ZBTB39
MG6PR MANIA2 KBTBDI1
KPNA6 TGIF2 SECI6A
RMI1 CLEC2D PHC3
RBM15B ZNF510
SS18L2 RTFI1
CYLD
WDR48
BTRC
CCNT2

RAB36
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located on chromosomal region 16p13.3 and was found to be
more frequently gained in cell lines highly resistant to AZ628,
Erlotinib, Geldanamycin, G6-6976, HKI-272 (Neratinib),
and MK-0457. All of these drugs, except for Geldanamycin,
which is an antibody that targets HSP90, are kinase inhibitors
[47]. While not much is known of miR-662, it was recently
shown that it is transiently upregulated in response to high
doses of X-ray radiation in human fibroblasts [48]. It should
also be noted that miR-124-2, miR-1285-2, and miR-548h-2
were significantly altered for five drugs (Table 1). Similar to
miR-662, little is known of miR-548h-2. However, miR-124
has been shown to play a tumor suppressive role in cervical
cancer, hepatocellular carcinoma, and glioblastoma, while
miR-1285 inhibits p53 and p21 expression by targeting the
3’UTR of p53 transcript [49-52].

To identify differentially expressed miRNAs in our
dataset, we employed the same approach used to identify dif-
ferential copy number alterations by assessing the expression
of 254 miRNAs in 64 lung cancer cell lines. We identified
134 unique miRNAs significantly different at the expression
level between resistant and sensitive lines in at least one drug.
Of which, 40% overexpressed in highly resistant and 60%
overexpressed in highly sensitive lung cancer cell lines. Of
these 134 miRNAs, miR-625, about which little is known
regarding function, was the most frequently differentially
expressed. It was significantly differentially expressed in the
analyses of agents Paclitaxel, HKI-272, G6-6976, Erlotinib,
Rapamycin, PHA665752, and MG-132. In terms of the
drug comparisons with the highest number of differentially
expressed miRNAs, the comparison between LCCLs highly
sensitive and resistant to HKI-272, an irreversible tyrosine
kinase inhibitor of HER2, revealed 30 differentially expressed
miRNAs.

Previous studies of miRNA deregulation with respect to
response of some of the drugs used in our analyses have
identified a number of miRNAs whose expression correlates
with drug sensitivity. For example, underexpression of miR-
34a and overexpression of miR-125b, 2-21, -222 , and -923
confer Paclitaxel resistance in prostate cancer [53] and
breast cancer [54], respectively, while for hepatocellular
carcinomas expression of let-7c [55], miR-122 [56] and miR-
193b [57] confer sensitivity to Sorafenib. Notably, Sorafenib
is a multikinase inhibitor with highest potency for RAF;
this is consistent with our findings that link mir-193b with
resistance to the RAF inhibitor AZ628. In addition, underex-
pression of miR-130a and -126 was correlated with resistance
to Paclitaxel [58] and Imatinib [59], respectively. From our
analyses, we observed miR-130 and -126 to be overexpressed
in lung cancer cell lines sensitive to Paclitaxel and Imatinib.

Cancer genomes are characterized by widespread genetic
aberrations including high-level amplifications, deletions,
DNA methylation, mutations, and chromosomal rearrange-
ments. Within the hundreds of alterations in a cancers
genome, only a small subset of these alterations drive
tumor initiation and progression and DNA alterations with
corresponding expression alterations are more likely to
contribute to tumorigenesis [60, 61]. To identify miRNAs
likely implicated in drug resistance, we integrated the 266
miRNAs that were significantly different at the copy number

level and the 134 miRNAs that were significantly different
at the expression level and subsequently filtered for those
miRNAs that were differentially expressed and altered in
the same drug. Our analysis identified four miRNAs, miR-
10b, -193b, -328, and -628, that met these criteria. While
the overlap of significant miRNAs in the same drug is
minimal, stringent selection criteria such as P < .05 for
both copy number and expression alterations, and limited
miRNA expression data, likely contributed to the small
number of overlapping miRNAs. Importantly, many of the
miRNAs most frequently differentially altered at the copy
number level (128 of 266, 48.1%) were not represented on
the microarray platform. Moreover, when we factored in our
expression criteria of expression in at least four cell lines, the
number of miRNAs with expression profiles and significantly
different copy number alterations was reduced to 66. The
copy number profiles of these miRNAs suggest they may
play an important role in drug resistance, dictating the
importance and need to assess these uninvestigated miRNAs
at the expression level.

The observation that miR-10b is differentially gained
and overexpressed in resistant cell lines treated with MG-
132 is consistent with previous findings (Figures 5(a) and
5(b)). miR-10b is an oncomir whose overexpression has been
identified in a variety of cancers [62-67]. Specifically, over-
expression of miR-10b has been demonstrated to promote
the development of metastatic disease in breast cancer and
correlate with clinical breast cancer progression, poor overall
survival in gastric cancer, and higher grades of malignant
glioma. It was also found to be an effective therapeutic
target by using antagomirs to reduce expression of HOXD10,
subsequently suppressing breast cancer metastasis [62, 64,
66, 68]. Bioinformatic and gene expression analysis of mRNA
targets of miR-10b revealed 32 of 636 target genes that were
underexpressed in highly resistant cell lines, which have
high expression of miR-10b. Amongst the identified genes
was RADI (Figure 5(c)). RADI is part of a complex of
proteins known as the 9-1-1 complex, which functions as
a heterotrimeric cell cycle checkpoint [69]. The complex,
which functions in DNA repair, is recruited to the site of
DNA damage or incomplete replication where it recruits
DNA polymerases and DNA repair enzymes. RAD1 has been
shown to be important in preventing tumor development
in response to DNA damage in mice, whereas deletion of
RADI greatly increased the susceptibility for skin tumor
development [70]. In addition, RAD1 is an important com-
ponent of nucleotide excision repair (NER) which can have
drastic effects on chemotherapy drug response. In drugs that
instill double stranded DNA breaks, such as the platinum
based treatment Cisplatin, upregulation of NER increases
drug resistance while in certain non-DNA damage based
chemotherapies, downregulation of NER has been shown
to increase resistance [71, 72]. In NSCLC patients that have
low expression of ERCCI, a gene also involved with NER,
have decreased survival when compared to patients with high
ERCCI1 expression [73], and in both murine and human
cells, low XPC expression, another gene involved in NER,
correlated with resistance to the Doxorubicin derivative,
Nemorubicin [72]. Intriguingly, one of the overrepresented
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FIGURE 5: Example of a miRNA showing differentially copy number alteration, differential miRNA expression, and differential target gene
expression. (a) Copy number alteration comparison between cell lines which are highly resistant and sensitive to agent MG-132 revealed that
the hsa-miR-10b locus, on chromosomal region 2q31.1, is more frequently gained in the highly resistant cell lines (P < .05, Fisher’s exact
test). (b) miRNA expression analysis of miR-10b shows that expression is significantly higher in highly resistant cell lines as compared to
sensitive cell lines to MG-132 (P = .03, Mann Whitney U test). (¢) mRNA expression analysis of RADI, a gene identified by bioinformatics
prediction analysis as a putative target of miR-10b, shows anticorrelative expression to miR-10b expression. Specifically, decreased expression
of RAD1 in highly resistant cell lines to MG-132 relative to highly sensitive lines is observed.

functions identified by Ingenuity Pathway Analysis of the 32
differentially expressed target genes was DNA Replication,
Recombination, and Repair (Figure 6).

Expression patterns of miR-193b in human cancers,
unlike miR-10b, are largely variable. High expression of miR-
193b is frequently observed in head and neck squamous
cell carcinomas and is associated with a high risk of
metastatic disease in uveal melanoma [74, 75]. Conversely, in
other cancer types, overexpression of miR-193b has elicited
increased tumor suppression as well as sensitivity to specific
chemotherapeutics [57, 76, 77]. Moreover, conflicting results
have also been observed within a given cancer type. In
malignant cutaneous melanoma, overexpression of miR-
193b predicts disease outcome and is associated with poor
survival, while induced overexpression in cell lines repressed
proliferation through the downregulation of Cyclin D1 [78,
79]. Subsequent gene expression analysis of target mRNAs
of miR-193b revealed 10 genes that were underexpressed

in cell lines highly resistant to AZ628and 37 genes that
were underexpressed in cell lines highly resistant to MK-
0457. One of the target genes that was also differentially
expressed was IKAROS family zinc finger 1 (IKZF1). This
transcription regulating gene functions through associations
with complexes that are both histone deacetylase (HDAC)-
dependent and HDAC-independent [80]. Previous studies
have shown that nonhigh-risk ALL9 patients with IKZF]I
deletions show a 12-fold higher rate of relapse compared
to patients without IKZFI deletions and IKZF1 deletion
has also been implicated in tyrosine kinase inhibitor (TKI)
resistance and disease progression in patients with chronic
phase- (CP-) chronic myeloid leukemia (CML) [81, 82].
Overexpression of an Isoform of IKZF1 lacking a DNA
binding domain, IK6, in acute lymphoblastic leukemia (ALL)
patients with the Philadelphia chromosome has also been
associated with TKI resistance [83]. Interestingly, MK-0457
is a small molecule inhibitor chemotherapy drug that targets
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Figure 6: Overrepresented cellular and molecular functions that
are common to all four sets of differentially expressed target genes.
A “Core Analysis Comparison” was performed using Ingenuity
Pathway Analysis and within the Biological Functions, only functions
within Molecular and Cellular Functions were assessed. In total,
eight of these functions were significant in all four sets. The orange
threshold line corresponds to a P-value of .05.

aurora kinase. Underexpression of IKZF]I as a result of miR-
193b targeted degradation may increase resistance to MK-
0457 in a similar mechanism to TKI resistance.
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Similar to miR-193b, evidence supporting the role of
miR-328 in cancer is also unclear. In lung adenocarcinoma,
miR-328 has been shown to be overexpressed in tumor tissue
relative to matched nonmalignant tissue regardless of EGFR
or KRAS mutation status [28]. However, in other cancer
types, miR-328 underexpression, for example, enables drug
resistance through the upregulation of ABCG2 and correlates
with cancer progression [84—86]. Our analyses revealed miR-
328 to be gained and overexpressed in lung cancer cell
lines resistant to Geldanamycin, an antibody against HSP90.
Target and gene expression analysis of miR-328 identified
31 genes underexpressed in cell lines highly resistant to
Geldanamycin, with one of the targets being the Vitamin
D receptor (VDR). VDR and its downstream components,
have been previously shown to have antiproliferative effects
in a wide variety of cancer types. The anticancer effects
of VDR signaling are mostly mediated through its active
metabolite, 1,25-dihydroxyvitamin D (calcitriol), which has
been shown to exhibit anti-inflammatory effects as well as the
suppression of tumor angiogenesis, invasion, and metastasis
(87, 88]. Expression of VDR has also been shown to be
associated with increased survival in breast, colorectal cancer,
and cholangiocarcinoma. It has been recently shown that
nuclear VDR status may be a prognostic marker of improved
survival in patients with NSCLC [88]. Another intriguing
finding for miR-328-associated mRNAs is the implication of
both H(+)-monocarboxylate cotransporter (MCT) proteins
1 and 4 (SLC16A1/MCT1 and SLC16A3/MCT4). MCT1 and
4 are involved in lactate uptake and pH balance. Inhibition of
MCT1 in tumors can shift aerobic cancer cells from oxidative
phosphorylation (lactate metabolism) to glycolysis (glucose),
resulting in the death of hypoxic tumor cells due to glucose
deprivation [89].

Relatively little has been reported with regard to the
role of miR-628. A recent study revealed that miR-628
was expressed in neuroblastomas with favorable prognosis,
while those with unfavorable prognosis were devoid of
expression, suggesting a tumor suppressive role in this type
of cancer [90]. From our analyses, we identified miR-628
to be gained and overexpressed in resistant lung cancer cell
lines treated with agent PF-2341066, a MET and ALK kinase
inhibitor which has recently shown tremendous efficacy in
a subset of lung cancer patients [7]. While the direction
of expression contradicts the findings in neuroblastoma,
miRNA tissue specificity may play a role in differential
expression patterns. Regardless, further analysis of miR-628
is required to better elucidate its role in human cancers.
Target and gene expression analysis of miR-628 revealed 22
genes which were underexpressed in cell lines highly resistant
to PF-2341066, with one of these differentially expressed
being caspase 3 (CASP3). CASP3 is a gene involved in the
caspase apoptosis cascade by activating caspases 6, 7, and 9
through cleavage [91]. Moreover, it is also used as a general
indicator of cell death and apoptosis. Notably, PF-2341066,
which functions as a TKI inhibitor, was found to induce the
caspase cell death cascade in vitro through increased levels
of CASP3 [92]. Thus, CASP3 downregulation, as a result of
miR-628 targeting, may play a significant role in resistance to
PF-2341066.
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While all involved in response to different drugs, the
targets of these miRNAs share certain biological functions.
Figure 6 illustrates the functions in which the targets of all
four miRNAs participate at a statistically significant level.
Broadly, if roles such as cellular maintenance and DNA repair
were compromised, such cell populations could develop
tolerance to the accumulation of mutations, some of which
could dictate resistance. Participation in small molecule
biochemistry has implications in the alteration of how these
administered drugs are processed. Cellular organization and
cell-to-cell signaling, if altered, could confer a more invasive
phenotype, contributing to drug resistance.

5. Conclusions

In conclusion, we have demonstrated our method of inte-
grative analysis of multiple dimensions of data including
genome-wide miRNA copy number, miRNA expression,
mRNA expression, and drug sensitivity data, all available
in the public domain, can be a powerful tool to identify
miRNAs and genes involved in drug sensitivity. Through
these initial analyses, we have identified miRNAs that may
have a role in conferring chemoresistance to a number of
drugs. Further in vitro and in vivo analyses of the miRNAs
and their respective mRNA targets will be necessary to
confirm the findings from this study. In addition, given
that nearly half of the miRNAs that were differentially
altered were not even represented on the miRNA platform
analyzed, evaluation of these miRNAs may prove fruitful
when new data becomes available. It should also be noted
that miRNA target prediction approaches and algorithms
are constantly evolving and increasing number of miRNA-
mRNA interactions being experimentally validated, poten-
tially revealing important target genes that are not currently
implicated. Finally, since the MGH/Sanger collaboration
aims to generate drug response profiles for a large number
of chemotherapeutics in over 1000 cancer cell lines, as
more data becomes available, our approach could identify
candidate miRNAs that are associated with multiple drugs
which have similar mechanisms of action. Moreover, our
strategy could also be repeated in a more specific and
clinically relevant manner, which could ultimately lead to
the identification of prognostic biomarkers and therapeutic
indicators for better disease management and patient out-
come.
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