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genes with subtle gene-environment interaction patterns. 

 Conclusion:  The joint meta-analysis is an attractive ap-

proach to discover markers which may have been missed by 

initial GWASs focusing on marginal marker-trait associations. 
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 Introduction 

 There is considerable enthusiasm for genome-wide 
gene-environment interaction studies, in part because 
such studies may uncover causal loci which marginal 
tests have low power to detect  [1] . However, standard sta-
tistical tests for gene-environment interaction, based on 
departures from additivity on some scale, also require 
large sample sizes to have reasonable power. Some re-
searchers have developed statistical methods to increase 
the power of these standard tests by leveraging addition-
al assumptions, such as gene-environment independence 
in the sampled population  [2–4] . We have proposed a 
joint test of both the genetic main effect and gene-envi-
ronment interaction parameters that can be more power-
ful than either the marginal or standard interaction tests 
when the genetic effect is weak in one exposure stratum 
but strong in another  [5] .
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 Abstract 

  Background:  There is growing interest in the study of gene-

environment interactions in the context of genome-wide as-

sociation studies (GWASs). These studies will likely require 

meta-analytic approaches to have sufficient power.  Meth-
ods:  We describe an approach for meta-analysis of a joint 

test for genetic main effects and gene-environment interac-

tion effects. Using simulation studies based on a meta-anal-

ysis of five studies (total n = 10,161), we compare the power 

of this test to the meta-analysis of marginal test of genetic 

association and the meta-analysis of standard 1 d.f. interac-

tion tests across a broad range of genetic main effects and 

gene-environment interaction effects.  Results:  We show 

that the joint meta-analysis is valid and can be more power-

ful than classical meta-analytic approaches, with a potential 

gain of power over 50% compared to the marginal test. The 

standard interaction test had less than 1% power in almost 

all the situations we considered. We also show that regard-

less of the test used, sample sizes far exceeding those of a 

typical individual GWAS will be needed to reliably detect 
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  Still, regardless of the test used, the sample sizes re-
quired to reliably detect what are likely to be subtle ef-
fects will be quite large – larger than typically available 
in any single study. Hence, detecting gene-environment 
interactions will likely require a meta-analytic approach, 
as has been necessary for the identification of smaller 
and smaller marginal genetic effects. Meta-analysis of
a single gene-environment interaction parameter is 
straight-forward: just as with meta-analyses of marginal 
additive effects, one could use an inverse-variance 
weighted fixed-effect approach, for example  [6, 7] . Meta-
analysis of multiple parameters, required for the joint 
test, is less well known. Here we derive a general ap-
proach to simultaneously estimate global fixed effects for 
multiple parameters and test whether they are identical-
ly null. Specifically, we consider models with genetic 
main effect plus gene-environment interaction parame-
ters, or, equivalently, models with separate genetic effect 
parameters for each exposure stratum. We also present a 
computationally simpler version of this approach in the 
special case where the exposure is categorical. Using sim-
ulation we show that this meta-analysis approach pro-
vides valid tests of the null hypothesis that a marker is 
not associated with a trait in any exposure stratum. We 
also explore the power of this test over a wide range of 
models consistent with genetic effects that have been 
 observed in recent genome-wide association studies 
(GWASs).

  Methods 

 Let �̂  i   = ( � ̂  g .  i ,  �̂  g    e.  i ) �  be the vector of estimated genetic main 
and gene-environment interaction effects from study  i , obtained 
from fitting the generalized linear model:

   g (E[ Y ]) =  �  +  �  g  G  +  �  e  E  +  �  g   e  G   !   E .                                  [A]

  For example, for a continuous outcome, the link function  g ( x ) =  x  
is equivalent to standard linear regression, and for a binary out-
come, the link  g ( x ) = log( x /(1 –  x )) is equivalent to logistic regres-
sion. For ease of exposition, the genotype is assumed to be coded 
additively (0, 1, or 2 copies of the minor allele) and the exposure 
is assumed to be binary, so that  �̂  g   e.  i  is a scalar. The results are 
easily extended to categorical exposure with three or more levels, 
for example. 

 We note that for continuous exposures, both standard and 
joint tests can be invalid when the exposure main effect is mis-
specified  [8, 9] . Using the Huber-White robust ‘sandwich’ esti-
mate of the variance-covariance matrix of �̂  i   yields valid tests 
even when the continuous exposure is not modeled accurately. 
These robust covariance matrices are currently available from 
some software packages (e.g. ProbABEL  [10] ), but not others (e.g. 
PLINK  [11] ). Alternatively, breaking the continuous variable into 

categories (e.g. a binary indicator for high versus low exposure) 
also yields valid tests  [8] .

  Following the exposition in van Houwelingen et al.  [12]  and 
assuming the sample size in every study is large enough so that
�̂  i   is multivariate normal with variance-covariance matrix  �  i , we 
can write the log likelihood for the observed �̂  i   as:  

T
11 ˆ ˆ .

2 i i il k� � � � �

  One can solve for the maximum likelihood estimate �̂    using 
the score estimating equation  

1 ˆ 0.i i� � �U

  This leads to the weighted least square solution: 

11 1ˆ ˆ .i i i� �

   Given �̂     , the Wald test of the joint null  �  = 0 is �̂    T  I �̂   , where 

1

iI
   is the Fisher information. 

 The score test also has a simple form:  

T
1 1 1ˆ ˆ . i i i iI� �                                                  [B]

  Both of these tests have a non-central  �  2  distribution with
2 d.f. under the null hypothesis. (The assumption of normality is 
used here to motivate the estimation procedure; the test remains 
valid if the estimates  �̂     i   and  �  i  are unbiased but not normally dis-
tributed. Due to the consistency and asymptotic normality of 
maximum likelihood estimates, the study-specific estimates are 
likely unbiased and normally distributed when the individual 
sample sizes are ‘large enough’. Care should be taken when some 
studies have relatively small sample sizes, e.g. under 100 subjects.) 

 Although in principle this procedure yields valid and efficient 
tests of the joint null, in practice it may be difficult to implement, 
as it requires the covariance of �̂g .  i  and  �̂g   e.  i . Standard packages 
for the analysis of GWAS data such as PLINK  [11]  or  glu  (http://
code.google.com/p/glu-genetics/) do not report this covariance 
without custom modification. (The --robust option in ProbABEL 
 [10]  will produce estimates of the variance-covariance matrix.) To 
avoid this complication, one might conduct a stratified analysis 
in each study, i.e. estimate the genetic effect in the exposed sub-
jects  �̂   g

e
.   
x
i 
p   and the effect in unexposed  �̂   ug.

n   i 
exp  separately. Since 

these estimates are uncorrelated (they are constructed using non-
overlapping sets of subjects), the score test simplifies to: 

2
exp exp unexp un

g. g. g. g.

exp

g.

ˆ ˆ
i i i i

i

w w
w

� �
2

exp

unexp

g.

,  
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                                           [C]

   where  
1

exp exp

g. g.
ˆˆvari iw �

    
and

1
unexp unexp

g. g.
ˆˆvar .i iw �

Note that expression [C] is simply the sum of the usual fixed-effect 
(inverse-variance weighted) tests for    �̂   eg

xp    = 0 and  �̂   ug
nexp    = 0. 
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 To demonstrate this approach, we used genotype data from 
five GWASs conducted using European-ancestry subjects: case-
control studies of breast cancer (BRCA), type 2 diabetes (T2D) 
and coronary heart disease (CHD) in the Nurses’ Health Study 
(NHS), and case-control studies of T2D and CHD in the Health 
Professionals Follow-up Study (HPFS)  [13, 14] . For each subject in 
each GWAS, a continuous phenotype  Y  was simulated as a func-
tion of two single nuclear polymorphisms (SNP) and one binary 
environmental exposure:

   Y  =  a  +  b  E   E  +  b  G1   G 1 +  b  G2   G 2 +  b  G2E   G 2  !   E  +  � 

  where  G 1 was the (observed) count of minor alleles for rs505922 
(frequency from 34.1 to 35.8% in these studies),  G 2 was the (ob-
served) count of minor alleles for rs1219648 (frequency from 39.6 
to 42.0% in these studies), the exposure  E  was a Bernoulli 0-1 vari-
able with expectation 0.3, and the residual variation  �  was nor-
mally distributed with mean 0 and standard deviation  � .  E  and  �   
 were independent of each other as well as  G 1 and  G 2; since 
rs505922 is on chromosome 9 and rs1219648 is on chromosome 
10,  G 1 and  G 2 were also effectively independent. We chose this 
model to examine the performance of the joint meta-analysis
(and the marginal and standard interaction meta-analyses) in two 
situations: one where the effect does not differ across the ex-
posure strata, and one where it does. The two SNPs were chosen 
arbitrarily, but are representative of the markers present on ge-
nome-wide genotyping platforms (rs505922 is on the Affymetrix 
Axiom and Illumina HumanHap550 arrays, among others, and 
rs1219648 is on the Affymetrix 6.0, Illumina HumanHap550, and 
Illumina OmniExpress arrays, among others). 

 To illustrate the validity of the meta-analytic joint test, we con-
ducted a GWAS of a single realization of  Y . This GWAS included 
2,543,290 genotyped or imputed SNPs distributed along the 22 
autosomal chromosomes that were available for all of the five 
studies. Because most of these SNPs are not in linkage disequilib-
rium with  G 1 or  G 2 and hence are not associated with the simu-
lated phenotype, results from tests of the phenotype can be used 
to estimate the type I error rate of the meta-analytic approaches. 
For this example, the parameters  b  = ( b  E ,  b  G1 ,  b  G2 ,  b  G2E )’ and  �  
were chosen so that the marginal test of  G 1 would have high pow-
er at the 5  !  10 –8  level in the total sample (n  =  10,161), and the 
joint gene-environment test of  G 2 would have high power in the 
total sample, while the marginal test of  G 2 would have modest or 
low power. The values  b  = (0.05, 0.12, 0.05, 0.10)   and    �  = 1.00 sat-
isfied these criteria. Under this model, the genetic variants ex-
plained 0.9% of the variation in  Y  (0.7% for  G 1 and 0.2% for  G 2). 
We estimated subsequently the power of the meta-analytic joint 
test (and the marginal and standard interaction meta-analyses 
test) to detect  G 1 and  G 2 in this specific situation, by generating 
100,000 realizations of  Y  with these parameters.

  To further exemplify the power of the meta-analytic joint test 
relative to meta-analytic marginal and standard 1 d.f. interaction 
tests across a broad range of situations, we simulated 1,000 real-
izations of  Y  under each of 320 different parameter settings. We 
kept the values of  b  G1 , and  �  fixed at their values in the previous 
simulation (0.12 and 1.00, respectively), while we varied  b  E ,  b  G2  
and  b  G2E  across a grid defined by  b  E   D  {0.05, 0.1, 0.5, 1, 2},  b  G2   D  
{0.01, 0.04, 0.07, 0.1}, and  b  G2E   D  {–0.15 to 0.15 by 0.2 step}.

  As these studies were conducted using different genotyping 
platforms (the Illumina 550k for the breast cancer study and Af-

fymetrix 6.0 for the other four studies), we imputed missing ge-
notypes using MACH  [15]  and the HapMap (rel22) CEU data. We 
conducted GWAS for SNPs associated with  Y  using ProbABEL, 
which takes the dosage files from MACH as input. We compared 
three tests. In the first test, we estimated the marginal effect of 
each SNP in each study, and then combined these estimates using 
standard fixed-effect meta-analysis. In the second, we estimated 
the usual product interaction term in each study (adjusting for 
SNP and exposure main effects), and then combined the esti-
mates of these parameters using fixed-effect meta-analysis. In the 
final test, we estimated SNP effects stratified by study and expo-
sure, and calculated the overall joint test using expression [C] 
above. We also investigated the effect of conditioning on a main 
effect for  E  (but not including a  G   !   E  interaction term) on the 
performance of the marginal tests for  G 1 and  G 2.

  Results 

 Estimated type I error derived from the genome-wide 
association of more than 2.5 million SNPs with a single 
realization of  Y  are presented in  table 1 . This table shows 
the observed and the expected count of false positive tests 
for seven different p value thresholds. The observed 
counts are very close to those expected under the null hy-
pothesis of no association. For example, for a p value 
threshold of 0.001, we expect a total of 2,537 false posi-
tives for the joint test and we observed 2,550, which is 
equivalent to an empirical p value of 0.001005.  Figure 1  
summarizes these results using quantile-quantile plots 
for the marginal, joint, and standard interaction tests. 
SNPs not in strong linkage disequilibrium with  G 1 or  G 2  
 show no systematic inflation in type I error rate ( fig. 1 b; 
the genomic control inflation factor  �  GC  is smaller than 
1.02 for all tests). Points corresponding to marginal or 
joint tests of SNPs in strong linkage disequilibrium with 
 G 1 or  G 2 lie above the expected  y  =  x  line ( fig. 1 a), in ac-
cordance with the fact that the null hypothesis of no as-
sociation does not hold for these SNPs.  Table 2  summa-
rizes the results from this realization for the three differ-
ent analyses involving  G 2 by study and overall.

  As estimated by simulation, the power of the margin-
al test for  G 1 in this situation was greater than 98.91%, 
and the power of the joint test for  G 1 was 97.72%. On the 
other hand, the power to detect  G 2 using the joint test was 
69.92%, while the observed power of the marginal test 
was 48.81%. The power of the standard test for  G 2- E  in-
teraction was only 0.86%. As expected, since we did not 
simulate a non-multiplicative joint effect for  G 1 and  E , 
none of 100,000 realizations of the standard  G 1- E  interac-
tion test were significant at the 5  !  10 –8  level.
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   Figure 2  shows how the power of these tests changes 
as more studies are included in a meta-analysis. Gener-
ally, power increased non-linearly in the number of 
studies (reflecting the increase in the total sample size), 
while the power for any individual study was below 1% 

for all tests of  G 1 and  G 2 (from 0.05% for the marginal 
test of  G 2 to 0.002% for the standard  G 2- E  interaction 
test, and from 0.5% for the marginal test of  G 1 to 0% for 
the standard  G 1- E  interaction test). In particular, using 
fewer than all five available studies led to a concerning 

Table 1.  Observed and expected count of false positives

p value threshold Marginal test of G (1 d.f.) Standard G-E interaction test (1 d.f.) J oint G-E test (2 d.f.)

observed expected observed expected observed expected

1.0 2,541,289 2,541,289 2,537,479 2,537,479 2,537,479 2,537,479
0.05 130,489 127,064 126,212 126,874 128,273 126,874
0.01 26,482 25,413 25,290 25,375 26,000 25,375
0.001 2,618 2,541 2,474 2,537 2,550 2,537
0.0001 383 254 200 254 287 254
0.00001 24 25 21 25 22 25
0.000001 3 3 0 3 3 3
0.0000001 0 0 0 0 0 0

The  counts of false positives have been done for a single realization of Y. Trait values have been simulated using the model Y = bG1G1 
+ bG2G2 + bEE + bG2E G2 ! E + ε, where bG1 = 0.12, bG2 = 0.05, bE = 0.05, and bG2E = 0.1. The observed count of false positives is the 
count of tests for which the observed χ2 value is equal or lower than the χ2 corresponding to the p value threshold. 1,000 SNPs around 
each of the 2 causal markers, which are potentially in strong linkage disequilibrium with them, have been removed from the analysis.
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  Fig. 1.  Quantile-quantile plots for a single realization of  Y . Trait values have been simulated using the model
 Y  =  b  G1  G 1 +  b  G2  G 2 +  b  E  E  +  b  G2E   G 2 !  E +   � , where  b  G1  = 0.12,  b  G2  = 0.05,  b  E  = 0.05, and  b  G2E  = 0.1. The genet-
ic inflation factors  �  GC  of the marginal test, the standard interaction test and the joint test are equal to 1.019, 
1.001, and 1.007 (respectively) for  a , and 1.019, 1.001, 1.007 for  b . 
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decrease of the power for the marginal and joint tests of 
 G 2. The removal of one study nearly halved power to 
detect the  Y - G 2 association using either of these tests. 
(The standard  G 2  !   E  test had very low power even 
when using all five studies.) Tests of  G 2 using less than 

four studies had less than 10% power. The decrease in 
power to detect  G 1 when using fewer studies was small-
er than for tests of  G 2: the power of the marginal test for 
 G 1 was 85% when using four studies and 45% when us-
ing three studies.

Table 2.  Example of estimates obtained for  G 2

Study Marginal test of G2 Standard test of G2!E 
interaction

Joint test of G2 in exposed and unexposed
subjects

all subjects all subjects unexposed subjects exposed subjects

n �G2 (SE) n �G2E (SE) n �G2 (SE) N �G2 (SE)

HPFS-CHD 1,311 0.13 (0.04) 1,311 0.12 (0.09) 923 0.09 (0.05) 388 0.21 (0.07)
HPFS-T2D 2,310 0.08 (0.03) 2,310 0.02 (0.07) 1,656 0.07 (0.04) 654 0.09 (0.06)
NHS-CHD 1,145 0.06 (0.04) 1,145 0.12 (0.10) 826 0.03 (0.05) 319 0.15 (0.08)
NHS-BRCA 2,285 0.11 (0.03) 2,285 0.23 (0.07) 1,615 0.04 (0.04) 670 0.27 (0.06)
NHS-T2D 3,110 0.06 (0.03) 3,110 0.09 (0.06) 2,247 0.03 (0.03) 863 0.12 (0.05)
Meta-analysis 10,161 0.09 (0.01) 10,161 0.11 (0.03) 7,267 0.05 (0.02) 2,894 0.16 (0.03)
Meta-analysis p value 4.10–8 6.10–4 9.10–10

HP FS = Health Professional Follow-up Study; NHS = Nurse Health Study; CHD = coronary heart disease; BRCA = breast cancer; 
T2D = type 2 diabetes. Trait values were simulated using the model Y = bG1G1 + bG2G2 + bEE + bG2E G2 ! E + ε, where bG1 = 0.12,
bG2 = 0.05, bE = 0.05, and bG2E = 0.1.
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  Fig. 2.  Power of the marginal, joint and interaction tests as more studies are included in the analysis. HPFS: 
Health Professional Follow-up Study, NHS: Nurse Health Study, CHD: coronary heart disease, BRCA: breast 
cancer, T2D: type 2 diabetes. Phenotypic data (100,000 realizations of  Y ) were simulated using the model  Y  = 
 b  G1  G 1 +  b  G2  G 2 +  b  E  E  +  b  G2E   G 2 !  E , where  b  G1  = 0.12,  b  G2  = 0.05,  b  E  = 0.05, and  b  G2E  = 0.1. 
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   Figure 3  shows the power of the three tests for  G 2 ob-
served when  b  E  = 0.05 and varying the values of  b  G2  and 
 b  G2E . The power of the joint test to detect  G 2 is often 
greater than that of the marginal test. The maximum dif-
ference between the power of the joint test and marginal 
test across these simulated scenarios is 55.46%. The min-
imum difference, on the other hand, is never more than 
–7.93%, suggesting that when the joint test has less power 
than the marginal test its power is not that much smaller. 
Since the joint test and the standard test of interaction 
take the environmental effect into account, variation of 
 b  E  had no effect on these two tests. However, the power of 
the marginal test of  G 1 and  G 2 decreased for values of  b  E  
over 0.1, and the difference of power of the joint test over 
the marginal test was increasing in the same proportion. 
Hence, the joint test of  G 2 was more powerful than the 

marginal test of  G 2 in all situation where  b  E  was over or 
equal to 0.5 and the joint test of  G 1 also was more power-
ful than the marginal test of  G 1 when  b  E  was over 1.0.

  Some of the biggest power gains for the joint test come 
in situations when the main effect of  G 2 ( b  G2 ) was small 
and the  G 2  !   E  interaction parameter ( b  G2E ) was large 
and in the same direction .  For example,   when  b  G2  = 0.04 
and  b  G2E  = 0.13, the power of the joint test was 83%, while 
the power of the marginal test was 46%. Large gains in 
power were also observed when the interaction parame-
ter had the opposite sign as the main effect of  G 2, and 
consequently the marginal association between  G 2 and  Y  
was weak. We note that for some of these situations the 
standard test of interaction has greater power than the 
marginal test, but it still can have considerably less power 
than the joint test.
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  Fig. 3.  Power comparison of the marginal tests of    G 1 and  G 2, the standard  G 2 -E  interaction test and the joint 
 G 2 -E  test. Phenotypic data (1,000 realizations of  Y  for each point) were simulated using the model    Y = b    G1  G 1  + 
b  G2  G 2  + b  E  E + b      G2E   G 2 .E +   � , were    b  G1 ,  b  E  and  �  were fixed and respectively equal to 0.12, 0.05 and 1, while we 
varied  b  G2  and  b  G2E  across a grid defined by  b  G2   D  {0.01, 0.04, 0.07, 0.1}, and  b  G2E   D  {–0.15 to 0.15 by 0.2}. 
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  The standard test of gene-environment interaction al-
ways showed very low power (under 20% in all simula-
tions), being slightly more powerful than the two other 
approaches only in some extreme cases, when gene ef-
fect was quite low and the interaction effect quite high 
and opposite to the gene main effect (e.g.  b  G2  = 0.04 and 
 b  G2E   6  –0.13).

  Adjusting the marginal tests for  G 1 or  G 2 by including 
a main effect term for the exposure  E  did not substan-
tially alter the power of these tests: the difference in pow-
er between the adjusted and unadjusted tests was quite 
unchanged when the exposure effect ( b  E ) was equal or 
under 0.1. For exposure effect equal or over 1 the power 
of the unadjusted test for  G 2 decreases dramatically, 
while the power of the unadjusted test for  G 1 decreases
in the same range when the exposure effect is higher (i.e. 
 b  E   6  2).

  Discussion 

 We have proposed a simple and efficient method for 
meta-analyses of joint tests of genetic main effect and 
gene-environment interaction terms. We have shown 
that this method has an appropriate type I error rate and 
demonstrated its performance across a wide range of 
 alternative hypotheses via simulation studies. This meta-
analytic approach is appropriate for large-scale associa-
tion studies aimed at discovering markers having low 
 effects on a trait and differing according to an environ-
mental exposure.

  Similar to the single-study version of the joint test  [5] , 
the meta-analytic test has appropriate type I error rates 
under the null hypothesis of no association between the 
tested marker and a phenotype in any stratum defined by 
the environmental exposure, as long as the marker and 
the phenotype are uncorrelated in the sampled popula-
tion  [9, 16] . In many situations, including models where 
the genetic effect in each environmental strata was not 
null and in the same direction, this meta-analysis of joint 
test has greater power than either the meta-analysis of 
standard test for departures from a multiplicative odds 
ratio model, or the meta-analysis of marginal test for as-
sociation, making it an attractive test to discover markers 
which may have been missed by meta-analyses focusing 
on marginal marker-trait associations (e.g. most meta-
analysis of GWAS studies to date).

  We have shown that sample sizes far exceeding those 
of a typical individual GWAS will be needed to reliably 
detect genes with subtle gene-environment interaction 

patterns. In the first scenario we simulated, no single 
study had greater than 1% power to detect a marker whose 
effect differed across environmental strata ( G 2). On the 
other hand, the power of a meta-analysis combining five 
studies (more than a three-fold increase in sample size 
relative to the largest individual study) was 58.27 times 
greater than that of the largest single study; the power of 
the meta-analysis was greater than 80% for many situa-
tions of interest. The large increase in relative power for 
a smaller increase in relative sample size is due to the non-
linear nature of the power curve as a function of sample 
size. This suggests that meta-analyses incorporating 
gene-environment interactions may cross a sample-size 
‘tipping point’ and identify markers that have gone unde-
tected in individual studies. In the models we simulated, 
the combined genetic effects of  G 1 and  G 2 explained be-
tween 0.7 and 1.3% of the total variation in  Y , which leads 
to a high power of the joint and marginal test in the total 
sample of 10,161 subjects. For a smaller genetic effect, a 
larger sample size will be required to achieve similar 
power.

  Simulations across a range of genetic main effects and 
gene-environment interaction effects confirm that in a 
meta-analysis context, the joint test can be more power-
ful than either the marginal test of the gene or the stan-
dard test of interaction when the genetic effect is weak in 
one exposure stratum but strong in another, or when the 
main and interaction effects are in opposite directions (so 
that the marginal association between the tested marker 
and the phenotype is weak). However, the latter situation 
may be of less practical interest since (depending on the 
context) it may not be biologically plausible; there are few 
empirical examples of such ‘crossover’ interactions in ob-
servational studies  [17] . In the range of models we tested, 
the joint test was often more powerful than the marginal 
test of the gene, with an absolute gain of power over 50% 
in the best cases. In situations where the marginal test 
had better power than the joint test, the difference was 
small (less than 10% absolute power). The standard test 
for interaction had low power in all situations we consid-
ered; it had slightly greater power than the other two tests 
only in a few rare, extreme situations. Although we simu-
lated a continuous trait, because the meta-analysis proce-
dure relies on summary parameter estimates (which 
could be slopes from a linear regression or log odds ratios 
from a logistic regression), qualitatively similar results 
should hold for binary disease traits.

  Aside from increased power, another potential advan-
tage for the joint test is that it is scale-free. The power and 
interpretation of tests for the usual gene-environment 
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