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The potential for carcinogenic action of meat-related exposures, such as heterocy-

clic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs), and N-nitroso com-

pounds (NOCs) [1, 2], might explain positive associations between red and processed 

meat intake and colorectal neoplasia [3]. HCAs and PAHs are formed in meats cooked 

well-done at high temperatures [4] and produce intestinal tumors in rodents [5–7]. 

NOCs are some of the strongest known chemical carcinogens [2] and induce tumors 

in both the colon and rectum of numerous animal species [8]. Nitrate and nitrite, 

which are added to processed meats, can form NOCs [9]. NOCs can also form endog-

enously in the colon through the conversion of nitrate and nitrite [10], a reaction 

which is thought to be catalyzed by heme iron from red meat [11, 12].

HCAs, PAHs, and some NOCs are considered procarcinogens, as they require 

metabolic activation to attain full potential. Phase I and phase II xenobiotic metab-

olizing enzymes (XMEs) are involved in the activation and detoxification of these 

substrates [13–17]. Single nucleotide polymorphisms (SNPs) in genes that encode 

XMEs are hypothesized to alter enzyme expression and function [14], resulting in 

differential metabolism of xenobiotics between individuals [18]. A number of col-

orectal adenoma studies have evaluated interactions between XME genes and meat 

consumption with inconsistent results [19–30], but the majority of these investigated 

a limited number of genes. In addition, HCAs and PAHs from meat were estimated 

in just 2 studies [21, 22], while only 1 prior analysis evaluated nitrate/nitrite from 

processed meat [28].
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Utilizing detailed meat-cooking data, we investigated the interaction of HCAs, 

PAHs, and nitrate/nitrite from meat with several XME gene variants in relation to 

advanced colorectal adenoma. Examining these interactions with asymptomatic col-

orectal adenomas, precursors to colorectal cancer [31–33], is valuable as diet should 

not have been altered by disease. Our analysis expands on findings of increased risk of 

prevalent colorectal adenoma with well-done red meat and cooking-related mutagens 

in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial [34].

Materials and Methods

Study Population

The PLCO Cancer Screening Trial is a randomized, multi-center clinical trial investigating the 

efficacy of screening for prostate, lung, colorectal and ovarian cancer [35, 36]. Participants aged 

55–74 were recruited from 10 centers in the United States. Participants completed a self-adminis-

tered baseline risk factor questionnaire, a food frequency questionnaire (FFQ), and provided bio-

logical samples. The study was approved by the institutional review boards at the National Cancer 

Institute and the 10 study centers. All participants provided written informed consent.

Cases and controls for this study were selected from participants enrolled in the screening arm 

of the PLCO Cancer Screening Trial between 1993 and 1999 (n = 77,483). At baseline, participants 

in the screening arm underwent flexible sigmoidoscopy of the distal colorectum (60 cm). Those 

with neoplastic lesions were referred for full colonoscopic examination and diagnostic work-up by 

the participant’s personal physician. Trained abstractors obtained medical records and pathology 

reports pertaining to removed lesions, and lesions were coded according to location, size and 

morphology.

Participants were eligible for this study if they had: (1) undergone a successful sigmoidoscopy 

with insertion to at least 50 cm with > 90% of mucosa visible or a suspect lesion identified; (2) 

completed the baseline risk factor questionnaire, and (3) provided a blood sample for use in 

etiologic studies. Of the 42,037 participants meeting these criteria, 4,834 were further excluded due 

to self-reported history of Crohn’s disease, ulcerative colitis, familial polyposis, Gardner’s syndrome, 

colorectal polyps, or cancer (other than non-melanoma skin cancer). We randomly selected 772 of 

the 1,234 cases with at least 1 distal (descending colon and sigmoid or rectum) advanced colorectal 

adenoma for genotyping. Advanced adenomas were those with at least 1 of the following 3 

characteristics: (1) size of ≥ 1 cm; (2) high-grade dysplasia, or (3) villous components, including 

tubulovillous. Of the 26,651 controls with a negative sigmoidoscopy (no polyps or other suspect 

lesion detected), we selected 777 controls frequency-matched to cases by gender and ethnicity 

(non-Hispanic white, non-Hispanic black, and other). Participants with insufficient dietary data 

(missed 7 or more food items on the FFQ, n = 83) were further excluded, leaving a total of 720 

advanced colorectal adenoma cases and 746 controls.

Gene Selection and Genotyping

All genes and SNPs were selected a priori based on known or suggested functional relevance and a 

minor allele frequency of ≥ 5% in Caucasians (Appendix 1). DNA was extracted from stored buffy 

coat or whole blood samples using Qiagen standard protocols (QIAamp DNA Blood Midi or Maxi 

kit; www1.qiagen.com). All genotyping was conducted at the Core Genotyping Facility of the 

Division of Cancer Epidemiology and Genetics, National Cancer Institute, using TaqMan (Applied 

Biosystems, Foster City, Calif., USA; www.appliedbiosystems.com). All of the assays were validated 

and optimized and methods specific to GSTM1, GSTT1 and GSTP1 have been reported elsewhere 
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[37]. Internal laboratory quality controls were Coriell DNA samples consisting of homozygous 

major allele, heterozygous and homozygous minor allele genotypes for each polymorphism under 

investigation. In every 384 samples, there were 4 of each control type and 4 no template controls. 

External blinded quality controls from 40 individuals were also interspersed and showed > 99% 

interassay concordance. Genotyping data were obtained for > 90% of subjects, with data missing 

for the following reasons: insufficient DNA, genotyping failures, or fingerprint profile review show-

ing subject-specific ambiguities.

Dietary Data

Participants completed a 137-item FFQ with a detailed meat-cooking module on their usual diet 

during the previous year. Most (89%) participants in the trial completed the FFQ prior to or the 

same day as the sigmoidoscopy. Using the Computerized Heterocyclic Amines Resource for Research 

in Epidemiology of Disease (CHARRED; www.charred.cancer.gov) software application [4], we gen-

erated intake estimates of 2 HCAs (ng/day): 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline 

(MeIQx), and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), as well as benzo[a]

pyrene (B[a]P). We estimated nitrate and nitrite from processed meats using a nitrate/nitrite data-

base based on laboratory measured values of these compounds from 10 types of processed meat 

samples that represented 90% of the processed meat consumed in the United States [4].

Statistical Analysis

We evaluated departure from Hardy-Weinberg equilibrium among the controls using Pearson’s χ2 

tests. ORs and 95% CIs for the association between genotypes and advanced colorectal adenoma 

were calculated using unconditional logistic regression, adjusting for gender, ethnicity (non-His-

panic white, non-Hispanic black, other), and age (continuous). To evaluate the association between 

hypothesized gene pathways and colorectal adenoma, we included all the SNPs for genes poten-

tially involved in the metabolism of each substrate in a model and compared it to a null model. We 

also conducted gene-specific global tests of association by including all of the SNPs in a given gene 

in a model and compared that to a null model that included none of the SNPs [38]. SNPs were 

coded with 2 dummy variables corresponding to the variant genotypes. The likelihood-ratio test 

for the gene-specific global test had 2k degrees of freedom (k representing the number of SNPs for 

the gene). Tests for linear trend were based on assigning ordinal values (0, 1 and 2) to the most 

prevalent genotypes in order of homozygous for the common allele, heterozygous and homozygous 

for the rare allele.

We evaluated effect modification of the associations between the meat-related exposure and 

colorectal adenoma by each of the XME genotype variants. We compared models with all of the 

cross product terms (diet on the continuous scale by genotype) to null models that included only 

the main effects. If this likelihood ratio test was statistically significant at the 0.05 level, we examined 

the effect of the dietary variable as a continuous measure stratified by genotype. Finally, to account 

for multiple comparisons, we corrected the p values for interactions using the False Discovery Rate 

[39].

Results

Cases and controls were similar with respect to the matching factors of gender and 

ethnicity (table 1). Cases tended to be older and were more likely to be current smok-

ers and to have a first-degree relative with colorectal cancer. Cases also had fewer 

years of education and lower levels of physical activity compared to controls.
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Table 1. Baseline characteristics of subjects in a nested case-control study of advanced colorectal adenoma in the 

PLCO Cancer Screening Trial (n = 1,466).

Characteristics Cases

(n = 720)a

Controls

(n = 746)a

p valueb

Age, years 63.1 ± 5.2 61.9 ± 5.2 <0.01

Gender, n (%) 0.74

 Male 501 (69.6) 513 (68.8)

 Female 219 (30.4) 233 (31.2)

Ethnicity, n (%) 0.81

 Non-Hispanic white 681 (94.6) 704 (94.4)

 Non-Hispanic black 15 (2.1) 19 (2.6)

 Other 24 (3.3) 23 (3.1)

Study center, n (%) <0.01

 Colorado 65 (9.0) 84 (11.3)

 Georgetown 36 (5.0) 43 (5.8)

 Hawaii 14 (1.9) 13 (1.7)

 Henry Ford Health System 61 (8.5) 90 (12.1)

 Minnesota 136 (18.9) 173 (23.2)

 Washington 77 (10.7) 75 (10.1)

 Pittsburg 112 (15.6) 58 (7.8)

 Utah 62 (8.6) 38 (5.1)

 Marshfield 130 (18.1) 156 (20.9)

 Alabama 27 (3.8) 16 (2.1)

First degree family history of colorectal cancer, n (%) 90 (12.5) 67 (9.0) 0.03

Education, n (%) 0.04

 12 years or less 245 (34.0) 217 (29.1)

 At least some college 475 (66.0) 528 (70.9)

Body mass index (kg/m2) 27.9 ± 4.8 27.5 ± 4.6 0.09

Physical activity (h/week) 2.5 ± 1.8 2.8 ± 1.8 <0.01

Regular use of NSAIDs, n (%) 418 (58.1) 449 (60.2) 0.42

Smoking status, n (%) <0.01

 Never 243 (33.8) 300 (40.2)

 Former cigarette smoker 344 (47.8) 353 (47.3)

 Current cigarette smoker 98 (13.6) 50 (6.7)

 Never cigarettes, but pipe and cigar 34 (4.7) 43 (5.8)

Alcohol (g/day) 14.5 ± 25.1 12.6 ± 24.0 0.27

Total caloric intake (kcal/day) 2,114 ± 834 2,168 ± 827 0.17

Red meat (g/day) 86.8 ± 64.3 87.7 ± 67.6 0.88

MeIQx (ng/day) 37.0 ± 51.8 35.8 ± 43.7 0.86

PhIP (ng/day) 203.1 ± 461.4 205.8 ± 458.6 0.83

B[a]P (ng/day) 30.7 ± 57.1 31.5 ± 53.3 0.92

Data are means ± standard deviations unless otherwise indicated. 

NSAIDs = non-steroidal anti-inflammatory drugs.
a Numbers may not sum to total due to missing values
b p values are for χ2 test for categorical variables and Wilcoxon rank sum test for continuous variables.
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Our investigation of XME pathways, in which we identified the multiple genes 

hypothesized to be involved in the metabolism of HCAs, PAHs and NOCs, yielded 

no statistically significant findings in relation to colorectal adenoma (table 2). Our 

results for EPHX1, GSTM1, GSTM2, GSTT1, NAT1 and NAT2 were similar to previ-

ously published results in the larger advanced colorectal adenoma PLCO case-control 

subset [37, 40–42] (data not shown). Expanding upon these earlier analyses, in our 

gene-specific global tests, we found associations for GSTM1 (p value for global test 

= 0.03) and NAT1 (p value for global test = 0.05) with advanced colorectal adenoma 

(data not shown). For individual genes and SNPs, we did not find any statistically 

significant associations between CYP1A1, CYP1B1, CYP2A6, CYP2C9, CYP2E1, 

CYP3A4, NQO1, SULT1A1, or SULT1A2, and advanced colorectal adenoma in this 

population (data not shown).

We found a suggestive interaction between intake of PhIP and variation in CYP1B1 

(rs10012 p for interaction = 0.019; rs1056836 p for interaction = 0.019) and NQO1 (p 

for interaction = 0.007) with advanced colorectal adenoma (table 3). We also found 

evidence of interaction with intake of B[a]P for variation in CYP1B1 (p for interac-

tion = 0.005) and CYP3A4 (p for interaction = 0.021). In addition, there was a pos-

sible interaction with intake of nitrate/nitrite and CYP1A1 (p for interaction = 0.022). 

However, when we corrected for multiple comparisons, none of the resulting p values 

for interaction fell below a False Discovery Rate threshold of 0.20. When stratified 

by genotype, for CYP1B1 rs10012, there was a statistically significant increased risk 

of colorectal adenoma with increasing intake of PhIP for participants with either the 

CG/GG genotypes (OR = 1.53; 95%CI = 1.02–2.30) and risk was also elevated among 

those with the CC genotype for CYP1B1 rs1056836 (OR = 1.86; 95%CI = 1.07–3.22).

Discussion

Overall, we observed evidence of possible interactions between intake of meat-related 

HCAs, PAHs, and nitrate/nitrite and genetic variants in CYP1A1, CYP1B1, CYP3A4, 

Table 2. Meat exposure XME gene pathways in relation to advanced colorectal adenoma

Meat 

exposure

Genes p valuea

HCAs CYP1A1, NAT1, NAT2, SULT1A1, SULT1A2 0.312

PAHs CYP1A1, CYP1B1, CYP3A4, EPHX1, GSTM1, GSTP1, GSTT1, NQO1, SULT1A1, SULT1A2 0.172

NOCs CYP2A6, CYP2C9, CYP2E1, GSTM1, GSTT1, GSTP1, NAT1, NAT2, NQO1 0.225

a Global pathway test based on inclusion of all SNPs for a given pathway compared to a model without any SNPs.
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and NQO1 with risk of advanced colorectal adenoma in the PLCO Cancer Screening 

Trial. Yet, when stratified by genotype, strong variation in risk of colorectal adenoma 

with increasing intake of the meat-related exposures was not obvious and correc-

tion for multiple comparisons indicated our findings may be due to chance. We did 

not observe any statistically significant main effects for CYP1A1, CYP1B1, CYP2A6, 

CYP2C9, CYP2E1, CYP3A4, NQO1, SULT1A1 or SULT1A2 on risk of advanced col-

orectal adenoma. Our gene-based analyses for GSTM1 and NAT1 support previously 

reported SNP based analyses in PLCO [37, 41].

Table 3. ORs and 95% CIs for the association between dietary variables and advanced colorectal adenoma stratified by 

genotype. 

Dietary 

intake

Gene Locus Genotype Cases/

controls

ORa pinteraction
b Correctedc 

pinteraction

PhIP per

1,000 

ng/day

CYP1B1 rs10012 CC 344/375 0.81 (0.58–1.12) 0.019 0.384

CG 293/296 1.47 (0.93–2.30)

GG 71/59 1.76 (0.60–5.21)

CG/GG 364/355 1.53 (1.02–2.30)

CYP1B1 rs1056836 CC 232/250 1.86 (1.07–3.22) 0.019 0.384

CG 337/344 0.86 (0.64–1.15)

GG 137/137 0.82 (0.33–2.08)

CG/GG 474/481 0.85 (0.64–1.13)

NQO1 rs1800566 CC 416/474 1.03 (0.76–1.40) 0.007 0.340

CT 244/225 0.99 (0.60–1.61)

TT 25/17 –

CT/TT 269/242 0.80 (0.52–1.24)

B[a]P 

per 100 

ng/day

CYP1B1 rs10012 CC 344/375 0.74 (0.55–1.00) 0.005 0.340

CG 293/296 1.25 (0.94–1.68)

GG 71/59 1.66 (0.73–3.81)

CG/GG 364/355 1.29 (0.99–1.68)

CYP3A4 rs2242480 GG 558/579 1.02 (0.83–1.21) 0.021 0.384

GA 126/131 1.13 (0.69–1.85)

AA 12/14 –

GA/AA 138/145 0.89 (0.56–1.42)

Nitrate + 

Nitrite

per 0.5 

mg/day

CYP1A1 rs1048943 AA 646/684 1.03 (0.92–1.15) 0.022 0.384

AG 44/38 1.11 (0.75–1.59)

GG 2/3 –

AG/GG 46/41 1.14 (0.79–1.64)

Data are limited to SNPs with statistically significant tests for interaction before correction.
aAdjusted for age, gender and ethnicity.
bLikelihood ratio test for model with cross-product terms of dietary variables (coded as continuous) with the genotype vari-

ables (coded as dummy variables) compared to null model with only main effects for dietary variables and genotypes.
cBased on false discovery rate.
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A strength of this analysis was our substrate-oriented pathway-based approach, in 

which we assessed a range of XME genes involved in the activation and detoxifica-

tion of xenobiotics, and comprehensively examined interactions with meat-related 

intake of HCAs, PAHs and nitrate/nitrite. Our study was further strengthened by the 

inclusion of advanced colorectal adenoma cases, an outcome clinically relevant for 

progression to colorectal cancer. Importantly, since adenomas are largely asymptom-

atic, it is unlikely that cases would have changed their dietary habits. In addition, the 

majority of participants completed the FFQ prior to diagnosis, reducing the potential 

for recall bias. Our sample size is larger than many prior XME gene-meat interac-

tion studies of colorectal adenoma and few have quantitatively estimated intake of 

the specific potentially carcinogenic meat-related exposures, instead relying on meat 

cooking method or doneness level as proxies.

A limitation of our analysis, like other studies of gene-environment interactions, 

is limited power to observe small associations and the potential for chance findings 

due to multiple comparisons. To gain power, we used a method for testing gene-

environment interactions that assumes independence of the gene and the environ-

mental factor [43], but in general, we did not observe smaller p values (data not 

shown). Future research of XME gene-meat interactions should assess both activat-

ing and detoxifying XME genes and evaluate the more specific meat-related expo-

sures, rather than overall meat intake or meat cooking method/doneness. Yet these 

analyses can become complex, as there is a certain amount of error associated with 

the measurement of dietary exposures and their associated exposures. Finally, our 

measure of nitrate/nitrite is a proxy for processed meat-related exposure to NOCs 

and the nitrate/nitrite database does not contain data on the levels of these com-

pounds in other foods.

In our interaction analyses, there was variation in the association between the 

meat-related variables and advanced colorectal adenoma across the CYP1B1 geno-

types. CYP1B1 is involved in the metabolism of PAHs [14, 15, 44] and in fact, we did 

see a suggestive interaction with B[a]P, a known marker of PAHs [4]. Other studies 

have also found similar effect modification of the association between well-done red 

meat or total meat on colorectal cancer risk by combined CYP1B1 variants [45, 46]. 

However, specific functional data for this variant and PAH metabolism are lacking 

and further work is required to characterize the biological mechanism underlying 

this potential interaction.

We found increased risk of colorectal adenoma with increasing PhIP intake 

among participants with the less common allele of CYP1B1 rs10012 compared to 

the common allele and participants with the CYP1B1 rs1056836 common allele 

(CC). Functionality of these variants in relation to PhIP is not well-characterized 

and, thus far, has been studied only in combination with other SNPs for this gene 

[47]. Another possible reason for an interaction between PhIP and the CYP1B1 

rs10012 variant is the relatively high correlation between PhIP and B[a]P (0.58) in 

our population.
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Variation in the association between our dietary variables and risk of colorectal 

adenoma by CYP1A1, CYP3A4, and NQO1 was not straightforward. As hypothesized 

[48, 49], we did observe a suggestive interaction between CYP3A4 variants and B[a]P 

intake on risk of advanced colorectal adenoma, but there have been no other studies of 

interaction with meat intake to verify this observation. CYP3A4 is more common than 

other CYP3A isoforms in the intestine [50] and there is also wide range in expression 

levels of this enzyme across individuals [51], but little evidence as to which genetic vari-

ants control this variation [52]. One study of CYP1A1 noted increased risk of colorectal 

adenoma among those with high meat intake [27]; however, 3 studies of colorectal can-

cer did not observe effect modification by meat [45, 53] or HCA intake [54]. One other 

study of colorectal cancer observed a possible interaction between NQO1 phenotypes 

and red meat intake [55].

In general, there is little consensus in the literature for XME gene-meat interac-

tions in relation to colorectal neoplasia for CYP2A6 phenotypes [28, 56], CYP2E1 [46, 

57, 58], EPHX1 [19, 25–27, 30, 55, 59], or SULT1A1 [20, 27, 45, 60–62]. In addition, 

there are limited data on CYP2C9 [46] and SULT1A2 [27]. Although we did not find 

evidence of effect modification by NAT1 or NAT2, studies of these genotypes or phe-

notypes point toward an increased risk of colorectal neoplasia for rapid acetylators 

with high intake of meat, HCAs or PAHs [21, 22, 63–65]. Overall, these varied results 

could be due to several reasons, including differences in study populations and the 

study of adenomas versus cancer.

Our approach focused on a wide range of genes involved in the metabolism of 3 

groups of potentially carcinogenic meat-related exposures: HCAs, PAHs, and nitrate/

nitrite. Given our sample size, these analyses were largely exploratory. The substrate-

focused pathway-based approach encompasses the multiple levels at which these 

potentially carcinogenic meat-related exposures are activated or detoxified in the 

body. With future consortial efforts, studies will have the opportunity to investigate 

potential effect modification of the association between meat-related exposures and 

colorectal adenoma by XME gene variants in greater detail.
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Appendix 1. XME genes included in main effect (pathway, gene and SNP) and/or 

interaction analyses

Gene Locus

CYP1A1 Ex7+129C>A (T461N; rs1799814)

Ex7+131A>G (I462V; rs1048943)a

CYP1B1 Ex2+143C>G (R48G; rs10012)

Ex3+251G>C (V432L; rs1056836)

CYP2A6 Ex3-15T>A (L160H; rs1801272)

CYP2C9 Ex3-52C>T (R144C; rs1799853)

CYP2E1 -332T>A (rs2070673) 

IVS4+23T>C (rs6413421)

CYP3A4 IVS10+12G>A (rs2242480)

EPHX1b Ex3-28T>C (Y113H; rs1051740)

Ex4+52A>G (H139R; rs2234922)

GSTM1c Ex4+10+>-  (rs1065411)

GSTP1c Ex5-24A>G  (I105V; rs1695)

Ex17-4C>T (H1085H; rs1799817) 

GSTT1c Ex5-49+>-  (rs4630)

NAT1a Ex3-177A>T (T1088A; rs1057126)

Ex3-170A>C (C1095A; rs15561)

IVS2-338C>T (C-334T; rs4986988)

IVS2-34A>T (A-40T; rs4986989)

NAT2a Ex2-367G>A (R268K; rs1208) 

Ex2-313G>A (G286E; rs1799931)

Ex2+288C>T (Y94Y; rs1041983)  

Ex2+347T>C (I114T; rs1801280)  

Ex2+487C>T (L161L; rs1799929) 

Ex2-580G>A (R197Q; rs1799930)

NQO1 Ex4-3C>T (R139W; rs4986998)

Ex6+40C>T (P187S; rs1800566)a

SULT1A1 Ex10+127A>G (G212G; rs6839)

SULT1A2 336bp 3’ of STP (rs3194168) 

a SNP main effects previously published for advanced colorectal adenoma in the 

PLCO Cancer Screening Trial.
b SNP main effects and interactions with red meat and dietary B[a]P previously 

published for advanced colorectal adenoma in the PLCO Cancer Screening Trial.
c SNP main effects and interactions with red meat, HCAs and B[a]P previously pub-

lished for advanced colorectal adenoma in the PLCO Cancer Screening Trial.
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