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MicroRNAs (miRNAs) are small 21–25 nucleotide-long non-coding RNAs that have 

emerged as key negative post-transcriptional regulators of gene expression [1, 2]. 

Currently there are more than 700 mammalian miRNAs that can potentially target up 

to one-third of protein-coding human genes [1] involved in diverse physiological and 

pathological processes, including cancer [3, 4]. Indeed, aberrant levels of miRNAs 

have been reported in all major human malignancies [5, 6]. In tumors, altered expres-

sion of miRNAs has been demonstrated to inhibit tumor suppressor genes or inap-

propriately activate oncogenes and has been associated with every aspect of tumor 

biology, including tumor progression, invasiveness, metastasis, and acquisition of 

resistance by malignant cells to chemotherapeutic agents [3, 4, 7, 8]. These observa-

tions lead to the suggestion that aberrant expression of miRNAs may contribute to 

tumorigenesis [9]. However, most of the tumor-miRNA-related studies are based on 

expression analysis of miRNAs in tumors in comparison with corresponding adjacent 

normal tissues [4–6]. The altered expression of any given miRNA in neoplastic cells is 

not sufficient to address conclusively the role of these changes in tumorigenesis [10]. 

Additionally, despite the established biological significance of miRNA dysregulation 

in neoplastic cells, there is a lack of knowledge on the role of miRNAs during early 

stages of tumor development, especially if variations in the expression of specific 

miRNAs are associated with differences in the susceptibility to tumorigenesis.
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In light of these considerations, the goals of this study were to: (1) define the role of 

miRNA dysregulation in early stages of liver carcinogenesis, and (2) determine how 

these alterations in miRNA expression may be mechanistically linked to the patho-

genesis of liver cancer induced by dietary methyl deficiency.

Materials and Methods

Animals, Diets and Experimental Design

Male C57BL/6J and DBA/2J mice (Jackson Laboratory, Bar Harbor, Me., USA) were housed in ster-

ilized cages in a temperature-controlled  room (24°C) with a 12-hour light/dark cycle, and given ad 

libitum access to purified water and NIH-31 pelleted diet (Purina Mills, Richmond, Ind., USA). At 8 

weeks of age, the mice from each strain were allocated randomly into 2 groups, 1 control and 1 

experimental. The mice in the experimental group were maintained on a low methionine (0.18%) 

diet, lacking in choline and folic acid (Dyets Inc, Bethlehem, Pa., USA) for 12 weeks. The mice in the 

control group received a diet supplemented with 0.4% methionine, 0.3% choline bitartrate and 2 

mg/kg folic acid. Diets were stored at 4°C and given ad libitum, with twice a week replacement. Five 

experimental and 5 control mice were sacrificed at 12 weeks after diet initiation. The livers were 

excised, frozen immediately in liquid nitrogen, and stored at –80°C for subsequent analyses. All 

animal experimental procedures were carried out in accordance with the animal study protocol 

approved by the National Center for Toxicological Research Animal Care and Use Committee.

RNA Extraction and miRNA Microarray Expression Analysis

Total RNA was extracted from the liver tissue using miRNAeasy Mini Kit (Qiagen, Valencia, Calif, 

USA) according to the manufacturer’s instructions. The miRNA microarray analysis was per-

formed by LC Sciences (Houston, Tex., USA), as reported previously in detail [11].

miRNA Expression Analysis by Quantitative Reverse Transcription Real-Time PCR

Total RNA (200 ng) was used for qRT-PCRs of the miR-29c, miR-34a, miR-122, miR-155, miR-192, 

miR-200b, miR-203 and miR-221, utilizing TaqMan miRNA assays (Applied Biosystems, Foster 

City, Calif., USA), according to the manufacturer’s instructions. snoRNA202 was used as an endog-

enous control. The relative amount of each miRNA was measured using the 2–ΔΔCt method [12]. All 

qRT-PCR reactions were conducted in triplicate and repeated twice.

Gene Expression Analysis by qRT-PCR

Total RNA (10 μg) was reverse transcribed using random primers and a high-capacity cDNA 

archive kit (Applied Biosystems), according to the manufacturer’s protocol. The expression of the 

α-smooth muscle actin (α-Sma) gene was measured by qRT-PCR, using Taqman® gene expression 

assay (Mm00725412_s1; Applied Biosystems).

Western Blot Analysis of Protein Expression

The levels of cyclin G1 (Ccng1), cyclogenase 2 (Cox2), E2F transcription factor 3 (E2f3), and 

CCAAT enhancer binding protein beta (C/ebp-β) proteins were determined by Western immuno-

blot analysis [13].

Statistical Analysis

Results are presented as mean ± SD. Statistical analyses were conducted by 1-way ANOVA, using 

treatment and weeks as fixed factors. Pair-wise comparisons were conducted by the Student-

Newman-Keuls test. p values <0.05 were considered significant.
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Results and Discussion

Dysregulation of miRNAs in the Livers of C57BL/6J Mice Fed a Methyl-Deficient Diet

miRNA microarrays were used to analyze the miRNA expression profiles in the livers 

of control C57BL/6J mice and C57BL/6J mice fed a methyl-deficient diet that causes 

a liver pathological state similar to human nonalcoholic fatty liver disease [14]. We 

identified 74 miRNAs (40 up-regulated and 34 down-regulated) that were differen-

tially expressed (p < 0.05), including miR-15a, miR-29c, miR-30a, miR-34a, miR-101a, 

miR-107, miR-122, miR-155, miR-200b, miR-200c, miR-221, miR-222 and miR-224 

in the livers of the C57BL/6J methyl-deficient mice (fig. 1a). The results obtained by 

miRNA microarray analysis were confirmed by qRT-PCR (fig. 2a).

Functions of Dysregulated miRNAs

Dysregulated miRNAs are known to affect cell proliferation, apoptosis, lipid metabo-

lism, oxidative stress, DNA methylation and inflammation. These processes are sub-

stantially compromised in pathological states associated with hepatocarcinogenesis. 

Specifically, it is well-established that altered lipid metabolism, oxidative stress, apop-

tosis and epigenetic alterations may directly trigger hepatic steatosis, a condition that 

has been shown to progress to hepatocellular carcinoma [15–17].

Among the down-regulated miRNAs, miR-15a, miR-30a, miR-101a and miR-122 

are of particular interest. Previously, we and other investigators have demonstrated 

a substantial down-regulation of liver-specific miR-122 during liver carcinogenesis 

and in primary hepatocellular carcinomas [18–21]. Recently, a significant decrease 

in miR-122 expression has been observed in individuals with non-alcoholic steato-

hepatitis [22]. The down-regulation of miR-122 in the livers of C57BL/6J mice fed a 

methyl-deficient diet was accompanied by increased level of Ccng1 protein (fig. 1b). 

The altered expression of CCNG1 [19] and other confirmed targets of miR-122, such 

as fatty acid synthase [22, 23], sterol regulatory element-binding protein-1c [22, 23], 

cationic amino acid transporter (CAT1; SLC7A1) [24], and BCL-W, an anti-apoptotic 

member of BCL2 family member [25], has frequently been observed during hepato-

carcinogenesis and has been attributed to the pathogenesis of liver cancer.

Feeding C57BL/6J mice a methyl-deficient diet for 12 weeks resulted in decreased 

expression of miR-101a and miR-101b (fig. 1a). One of the confirmed targets for 

miR-101a is Cox-2 [26], which is substantially up-regulated in the livers of mice 

exposed to the methyl-deficient diet (fig. 1b). The increased expression of COX-2 

has been detected during human and rodent liver tumor development [27, 28] and is 

currently considered as an attractive target for chemoprevention during early stages 

of hepatocarcinogenesis. Additionally, recent evidence has demonstrated that miR-

101 targets FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene [29], 

a key component of the liver oncogenic network [30].

Another down-regulated miRNA in the livers of mice fed the methyl-deficient 

diet is miR-15a, one of the first miRNA’s discovered to be dysregulated in cancer [31]. 
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Fig. 1. Dysregulation of miRNA expression in the livers of C57BL/6J mice fed a methyl-deficient diet 

for 12 weeks. a Hierarchical clustering of the differentially expressed miRNA genes (as determined by 

ANOVA) in the livers of control and methyl-deficient (MD) mice. Rows show miRNA, while columns 

show independent biological replicates. For each miRNA red indicates high expression levels and 

green indicates low expression levels. Each miRNA listed is significantly differentially expressed (p < 

0.05; n = 3). b Western blot analysis of Ccng1 (miR-122), COX-2 (miR-101a), E2f3 (miR-34a and miR-

200b) and Cebp/β (miR-155) proteins in the livers of control and methyl-deficient mice. c qRT-PCR 

analysis of α-Sma gene in the livers of control and methyl-deficient mice (mean ± SD; n = 5). d 

Apoptotic cell death in the livers of control and methyl-deficient mice as detected by TUNEL assay 

(mean ± SD; n = 5).
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miR-15a targets multiple oncogenic pathways, including BCL2, cyclin D1 (CCND1) 

and WNT3A signaling [31], a pathway that triggers the activation of hepatic stel-

late cells and progression of hepatic fibrosis [32]. miR-107 [20] and let-7a and let-

7d [33], which are down-regulated (miR-107) and up-regulated (let-7a and let-7d) 

in the livers of methyl-deficient mice (fig. 1a), have also been associated with the 

pathogenesis of hepatic steatosis, fibrosis and hepatocarcinogenesis. Indeed, figure 

1c shows an increase in expression of the α-Sma gene, a marker of hepatic stellate 

cell activation and fibrosis development [34] in the livers of mice fed the methyl-

deficient diet.
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Fig. 2. qRT-PCR analysis of differentially expressed miRNAs in the livers of control C57BL/6J (a) and 

DBA/2J mice (b) and mice fed a methyl-deficient diet (MD) for 12 weeks. * Significantly different from 

control mice. ** Significantly different from C57BL/6J methyl-deficient mice (mean ± SD; n = 5).
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miR-34a, miR-155, miR-200b and miR-221 were the most up-regulated miRNAs 

among the differentially expressed miRNAs in the livers of methyl-deficient C57BL/6J 

mice (figs. 1a and 2). The transcription factor E2f3, a critical regulator of the p53 network, 

is one of the targets for these miRNAs as reported in Targetscan 5.1 (www.targetscan.org) 

and in other reports [35, 36]. Furthermore, there is a solid connection between miR-34 

and the p53 apoptotic pathway [37–39], which plays a pivotal role in the pathogenesis 

of liver injury regardless of its etiology, and especially in non-alcoholic hepatosteatitis 

[40, 41]. Figure 1d shows the increased apoptosis in the livers of C57BL/6J mice fed a 

methyl-deficient diet. Additionally, recent evidence has demonstrated the importance 

of miR-34a, not only in apoptosis, but also in non-apoptotic cell death in vivo [42].

The over-expression of miR-155 and miR-221 has been frequently detected dur-

ing tumor development [43, 44]. The up-regulation of these miRNAs has been 

associated with activation of the extracellular signal-regulated (ERK) and phosphati-

dylinositol 3-kinase (PI3)-AKT pathways, 2 pathways frequently disturbed during 

liver tumorigenesis. Furthermore, the results of a recent study have demonstrated 

that miR-221 targets and down-regulates pro-apoptotic BCL2-modifying factor dur-

ing human hepatocarcinogenesis [45]. It is well-established that one of the hallmarks 

of the carcinogenic process is a dysregulation of cell proliferation and apoptosis [46]. 

In this context, the altered expression of miR-34a, miR-155, miR-200b and miR-

221 in the livers of methyl-deficient mice illustrates the critical role of miRNA in 

the disruption of the delicate balance between cell division and apoptosis during 

carcinogenesis.

In a previous study [17], we demonstrated that feeding DBA/2J mice a lipogenic 

methyl-deficient diet resulted in more prominent pathomorphological and molecular 

changes in the livers, including DNA hypomethylation, a greater severity of steatosis 

and necrosis, and oval cell proliferation, as compared to C57BL/6J mice. Interestingly, 

we detected strain-specific significant differences in the expression of miR-29c, 

miR-34a, miR-155 and miR-200b in the livers of C57BL/6J (fig. 2a) and DBA/2J 

methyl-deficient mice (fig. 2b). Specifically, the expression of miR-34a, miR-155 and 

miR-200b in the livers of DBA/2J mice fed the methyl-deficient diet was, respectively, 

4.9, 5.9 and 3.0 times greater than in methyl-deficient C57BL/6J mice. Likewise, the 

livers of C57BL/6J mice were characterized by a more pronounced down-regulation 

of miR-29c. The aberrant expression of these miRNAs is associated with an altered 

DNA methylation status (miR-29c), increased cell death (miR-34a and miR-200b), 

and liver steatosis and fibrosis (miR-155). miR-155, which was the most differentially 

expressed miRNA in the livers of DBA/2J and C57BL/6J mice fed the methyl-defi-

cient diet, activates the AKT signaling pathway [47], triggering oval cell proliferation 

[48], a fundamental event in hepatocarcinogenesis.

In conclusion, these findings demonstrate that alterations in expression of miRNAs 

are a prominent event during early stages of liver carcinogenesis induced by methyl 

deficiency and strongly suggest that differences in the susceptibility to liver carcino-

genesis may be determined by the variations in miRNA expression response. More 
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