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Abstract
The D2/D3 receptor agonist pramipexole has clinical efficacy as an antidepressant, but its neural
mechanisms are unknown. We used 18FDG-PET to investigate the cerebral metabolic effects of
pramipexole augmentation of mood stabilizers in bipolar II depression. Fifteen bipolar II
depressed patients on mood stabilizers were imaged at baseline and following 6 wk of
pramipexole (n=7) or placebo (n=8) augmentation. Relative to placebo, pramipexole treatment
was associated with reductions in normalized metabolism in bilateral orbitofrontal cortex, left
ventrolateral prefrontal cortex (PFC), and right anteromedial PFC. Voxel-wise analyses
additionally showed decreased normalized metabolism in the left inferior parietal cortex and
medial frontopolar cortical (BA 10P) area of the anteromedial PFC following pramipexole
treatment. These pramipexole-induced effects on regional metabolism suggest a mechanism of
antidepressant action distinct from that previously reported under serotonin reuptake inhibitor
treatment and appear compatible with evidence that the central dopaminergic system plays a role
in the pathophysiology of bipolar depression.
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Introduction
Pramipexole, a dopamine receptor agonist with high selectivity for the D2 dopamine
receptor family (D2,D3, D4 receptor subtypes) and preferential affinity for the D3 receptor
subtype, has shown antidepressant efficacy as an augmentation strategy for treatment-
resistant unipolar and bipolar depression (with effect sizes relative to placebo ranging from
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0.6 to 1.1; Aiken, 2007; Zarate et al. 2004). However, the neural mechanisms underlying
pramipexole's antidepressant effects are unknown. In the current study, 18F-
fluorodeoxyglucose-positron emission tomography (18FDG-PET) imaging was used to
assess the cerebral metabolic effects of pramipexole in depressed subjects with type-II
bipolar disorder (BD-II). We previously demonstrated, in BD-II depression, abnormally
elevated limbic-cortical-striatal activity (Mah et al. 2007), which has been hypothesized to
partly reflect the effects of deficient mesostriatal dopaminergic input on striatal outflow
(Drevets et al. 1992; Hasler et al. 2008; Mah et al. 2007; Swerdlow et al. 1987). We
therefore expected that the post-synaptic D2/D3 receptor agonist effects of pramipexole in
BD-II depression would result in reduction of normalized limbic-cortical-striatal metabolic
activity (regional/global tissue radioactivity).

Methods
Participants

Fifteen subjects (12 females, mean age=43±11 yr) with BD-II in a current major depressive
episode (according to DSM-IV criteria) underwent PET imaging at baseline and after 6 wk
of either pramipexole (target range 1.0–3.0 mg/d; maximum dose 4.5 mg/d) or placebo
administration in combination with a mood stabilizer. Subjects were a subset of the
treatment-refractory BD-II sample studied in a larger clinical trial of pramipexole
augmentation of mood stabilizers (Zarate et al. 2004). Patients were treated with lithium or
divalproex sodium (VPA) for o4 wk with at least two weekly blood levels within therapeutic
range (lithium, 0.6–1.2 meq./l; VPA, 50–125 mg/ml) prior to the baseline scan and
subsequent randomization to pramipexole (n=7; three lithium, four VPA) or placebo (n=8;
four lithium, four VPA). Patients were maintained on mood stabilizers to minimize the risk
of development of hypomania or mania. No other psychotropic medications were permitted
within the 2 wk (5 wk for fluoxetine) preceding the baseline scan. Subjects scored ≥20
(moderate to severe level of depression) on the clinician-rated Montgomery-Asberg
Depression Rating Scale (MADRS; Montgomery & Asberg, 1979) at screening and baseline
evaluations. Subjects were excluded if they had a major medical or neurological disorder,
substance abuse within 3 months or dependence within 12 months, rapid cycling, psychosis,
serious suicidal risk, current pregnancy, or were breastfeeding. Subjects provided written
informed consent as approved by the National Institute of Mental Health Institutional
Review Board.

Image acquisition and processing
PET images were acquired using a GE Advance PET scanner in 3D mode (GE Medical
Systems, USA; 35 slices 4.25-mm thick; axial resolution=5.3 mm full-width half-
maximum). Subjects received 4.5 mCi of 18FDG following a fasting period of at least 6 h.
Dynamic PET imaging of the heart in 2D mode for a total of 35 min followed, with
concurrent serial venous blood sampling beginning 15-min post-tracer injection. A 10-min
static emission scan was acquired 45-min post-tracer injection, followed by an 8-min
transmission scan to attenuation-correct the emission scan (Carson et al. 1988). MRI scans
were acquired to provide an anatomical framework for PET image analysis (3.0 T GE Signa
Scanner; MP-RAGE sequence : TE=2.98 ms, TR=7.5 ms, inversion time= 725 ms, voxel
size=0.85×0.85×1.2 mm).

The cerebral metabolic rate for glucose (CMRGlu) was quantitatively measured using a non-
invasive method that combined left cardiac ventricular chamber time-activity imaging with
venous blood sampling to generate the input function, a method previously validated against
the more invasive approach of sampling arterial blood (Moore et al. 2003). This approach
was well-tolerated by all subjects. However, because of the technical difficulties involved in
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performing serial venous blood sampling through an intravenous cannula during PET
scanning, the input function was incomplete for some subjects' pre- or post-treatment
studies. Consequently, a complete set of pre- and post-treatment quantitative CMRGlu data
was available for only a subset of patients. Since the sample size of this subset was
insufficient to generate meaningful statistical analyses, the available quantitative CMRGlu
values are provided as Supplementary material (Supplementary Table S1, available online),
and only the normalized metabolic results (regional/ global tissue radioactivity) – which
were available for all scan sessions – are reported here.

Clinical data analysis
The number of pramipexole responders [defined, according to convention, as individuals
whose baseline MADRS score decreased ≥50% by study end (Zarate et al. 2004)] was
compared to the number of placebo responders using a x2 test. Between-group differences in
the change in MADRS ratings pre- vs. post-treatment were assessed using an independent t
test.

Region-of-interest (ROI) analysis—Each subject's PET and MRI scans were co-
registered using MEDx (Medical Numerics Inc., USA). The whole-brain tissue radioactivity
was measured within an MRI-based template to permit global normalization of the regional
data. Regional tissue radioactivity was extracted from ROIs defined a priori on an MRI
template image and then positioned individually on each subject's MRI scan, as described in
Neumeister et al. (2004) (see also Supplementary material). The ROIs were defined in
regions reported to have abnormal metabolism in depression (Brody et al. 2001; Drevets,
1999; Drevets et al. 1992; Mah et al. 2007; Mayberg et al. 1999): the orbitofrontal cortex
(OFC), dorsolateral pre-frontal cortex (dlPFC), perigenual anterior cingulate cortex
(pgACC), ventrolateral prefrontal cortex (vlPFC), anteromedial PFC (amPFC), amygdala,
ventral striatum, and anterior insula (anatomical definitions for these ROI appear in Cannon
et al. 2006; Drevets et al. 2002b; Neumeister et al. 2004; and also in the online
Supplementary material). effect sizes were calculated using Cohen's d (Cohen, 1988) to
assess the magnitude of the effects of pramipexole, relative to placebo within ROIs. effect
sizes of ≥0.8 were considered large, independent of sample size. Between-group differences
in metabolic change within ROIs following pramipexole or placebo treatment were assessed
using independent t tests. Associations between clinical improvement on the MADRS,
baseline metabolism, and treatment-associated metabolic changes were assessed post-hoc
using Spearman's rho only in predefined ROIs with significant post-treatment change in
metabolism. Fisher's Z transformation was used to assess differences in correlation
coefficients between treatment groups (Rosenthal, 1991).

Voxel-wise analysis—Exploratory voxel-wise analyses were conducted post-hoc using
SPM2 (Wellcome Department of Imaging Neuroscience, UK) to reduce Type-II error by
identifying metabolic changes located outside the predefined ROIs and to more specifically
localize the metabolic changes situated within the predefined ROIs. The co-registered PET
and MRI images were spatially normalized, and smoothed using a 12-mm Gaussian kernel.
Changes in metabolism following treatment were analysed in SPM2 using a randomeffects
model and paired t tests with proportional scaling global normalization. Between-group
changes were analysed using a multi-group conditions and covariates model in SPM2, with
proportional scaling global normalization. The threshold for statistical significance was set
at uncorrected p<0.001. Coordinates were converted to the stereotaxic array of Talairach &
Tournoux (1988).
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Results
At baseline the mean MADRS score did not differ between subjects randomized to
pramipexole (34±5.8) vs. those randomized to placebo (31±5.3; t13=1.1, p=0.31). Consistent
with results from the larger patient sample enrolled in the clinical trial (Zarate et al. 2004), a
greater number of BD subjects responded to pramipexole (5/7) than to placebo (1/8; χ2=5.4,
p= 0.041). The mean change on the MADRS was greater following pramipexole than
placebo (pramipexole: 19.0±11.4; placebo: 6.9±7.3; t13=−2.38, p=0.03).

The pre-treatment normalized metabolism did not differ between groups in any ROI.
Following pramipexole treatment, normalized metabolism decreased significantly relative to
placebo in the left OFC [Effect size (ES)=−1.22; t13=2.37, p=0.03; Table 1] and showed
non-significant trends towards decreasing in the right OFC (ES=−1.04; t13=2.01, p=0.07),
right amPFC (ES=−1.1; t13=2.13, p=0.053), and left vlPFC (ES=−0.91, p=0.10).

Lower pretreatment normalized metabolism in the left OFC predicted superior response to
pramipexole (ρ=−0.87, p=0.01; Supplementary Fig. S2). This correlation coefficient differed
significantly (Fisher's Z=−2.67, p=0.008) from the corresponding association observed in
the placebo group (ρ=0.43). However, the change in depression ratings was not associated
significantly with the change in normalized metabolism in the same region.

The post-hoc voxel-wise analysis identified areas where, under pramipexole, the normalized
metabolism decreased significantly in the medial frontopolar [Brodmann area (BA) 10P]
cortex of the amPFC, left inferior parietal cortex, and left vlPFC, and increased significantly
in the right posterior cingulate, posterior hippocampus, left motor and premotor cortices, and
accumbens (Supplementary Table S2). The reductions in metabolism under pramipexole
differed significantly from the metabolic changes under placebo in the left vlPFC, medial
frontopolar cortex, and left inferior parietal cortex (Fig. 1). Metabolism increased in the left
premotor cortex and supplementary motor area to a greater extent under pramipexole than
under placebo, and increased in the left middle occipital gyrus to a greater extent under
placebo than under pramipexole (Fig. 1).

We also used the voxel-wise analysis to more specifically localize the area within the OFC
where metabolic activity changed most significantly under pramipexole, since our
predefined ROI in this region encompassed both medial and lateral orbital gyri. Although no
regional change within the OFC reached our pre-specified significance threshold of p<0.001,
we observed two clusters within the OFC where changes in metabolism following
pramipexole treatment reached the more liberal threshold of p<0.01. These clusters were
located in the medial OFC (with the peak voxel t value situated at x=−14, y=34, z=−21;
Z=2.50, p=0.006, cluster size=108 voxels) and the lateral OFC (x=38, y=36, z=−4; Z=2.41;
p=0.008, cluster size=126 voxels; coordinates interpreted as in Supplementary Fig. S2).

Discussion
Clinical improvement with pramipexole augmentation in BD-II depression was associated
with a reduction in normalized regional metabolism in the OFC, amPFC, and vlPFC, regions
where cerebral metabolic activity is reportedly elevated in the depressed state of unipolar or
bipolar mood disorders (Drevets, 1999; Drevets et al. 1992; Mah et al. 2007). Post-hoc
voxel-wise analyses suggest that the reduction in metabolism found in the predefined ROI in
the OFC was driven by reductions in both left medial orbital and right lateral orbital cortex.
However, given our inability to exclude the possibility of shifts in global metabolism due to
the limited sample of quantitative cerebral metabolic data, we were unable to establish
whether the absolute CMRGlu also changed in the OFC, amPFC, and vlPFC. Nevertheless,
it is noteworthy that our findings of a reduction in relative metabolism (i.e. regional/global)
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in these areas following pramipexole treatment resemble the direction of metabolic changes
reported in unipolar depressives following treatment with antidepressant medications or
deep-brain stimulation (Drevets, 2007; Drevets et al. 2002a; Lozano et al. 2008). Further,
the metabolic changes we found in depressed patients under chronic pramipexole
administration appear compatible with PET data obtained in non-human primates which
showed that blood flow decreased in the OFC, frontal operculum (vlPFC), insula, and
cingulate cortex following acute pramipexole administration (Black et al. 2002).

In contrast to pramipexole's large effect sizes on normalized metabolic activity within the
OFC, amPFC, and vlPFC, we observed small, non-significant effects in some other regions
affected by selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants
(TCAs), such as the amygdala and pgACC (Drevets et al. 2002a; Fu et al. 2004; Kennedy et
al. 2001). However, negative findings are difficult to interpret in this small sample, e.g. the
post-hoc voxel-wise analyses showed a cluster in the left amygdala where metabolism
decreased under pramipexole treatment, but where the peak voxel t value corresponded to
p>0.001 (x=−20, y=−1, z=−17; Z=1.88, p= 0.03, k=4), raising the possibility of Type II
error.

The association between lower pretreatment metabolism in the OFC and superior response
to pramipexole is noteworthy in light of previous reports of inverse relationships between
OFC activity and depression severity in major depressive disorder (Drevets, 2007; Drevets
et al. 1992) and BD (Mah et al. 2007), reduced OFC activity in treatment-resistant
depression (Mayberg et al. 2000), and elevated risk for development of depression with
reduced OFC volume (Lai et al. 2000). These data, taken together with pre-clinical evidence
of modulatory effects of OFC over emotional expression, are consistent with hypotheses that
increased OFC activity reflects a compensatory response in depression (Drevets, 2007). The
inverse relationship between OFC metabolism and response to pramipexole suggests that
those least capable of mounting this compensatory response are most likely to benefit from
pramipexole.

A limitation to interpreting the specificity of our findings was that the sample size was too
small to establish whether pramipexole treatment significantly altered global CMRGlu,
particularly since technical problems precluded analysis of quantitative CMRGlu for some
subjects (see Methods section). Black et al. (2002) reported significant dose-related
decreases in whole-brain cerebral blood flow (CBF) following acute pramipexole
administration in healthy baboons (n=7, p<0.05), with a maximal change of −23 % at the
intermediate dose tested of 50 μg/kg i.v. It is unclear whether such an effect would be
expected under the experimental conditions of our study, in which pramipexole was
administered orally on a chronic basis to human subjects with BD. Moreover, while
CMRGlu and CBF are coupled under resting conditions, dopamine agonists may exert non-
specific vascular effects that could alter CBF without affecting CMRGlu. Nevertheless, if
chronic pramipexole administration similarly reduced global CMRGlu, then the reductions
in normalized metabolism we observed in the OFC, amPFC and vlPFC under pramipexole
would remain interpretable, since they would become more pronounced without global
normalization. In contrast, under this scenario the findings of increased normalized
metabolism in motor and premotor cortices, supplementary motor area, and accumbens area
(Supplementary Table S2) would be considered non-specific since they may have been
driven by a reduction in CMRGlu in other regions.

In summary, the present study suggests that the antidepressant efficacy of pramipexole
augmentation for bipolar depression may have neural mechanisms that are partly similar to,
and partly distinct from, those associated with other somatic antidepressant therapies.
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Further, the pramipexole-induced effects on regional metabolism provide additional support
for a role of the central dopaminergic system in the pathophysiology of bipolar depression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Regions of interest identified by voxel-wise analysis where changes in normalized
metabolism associated with pramipexole treatment differed from those associated with
placebo administration, as shown by (top left) horizontal section from the statistical
parametric map of voxel t values computed using SPM2, p<0.001; (top right) fitted
parameter estimates for regional/global metabolism (in which the mean value for individual
subject is set to 50) in left ventrolateral prefrontal cortex; (bottom) table of stereotaxic
coordinates of regions where changes in normalized metabolism associated with
pramipexole treatment differed from those associated with placebo administration. PFC,
Prefrontal cortex; L, left.
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