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Abstract
We present and discuss new importance sampling schemes for the approximate computation of the
sample probability of observed genetic types in the infinitely many sites model from population
genetics. More specifically, we extend the ‘classical framework’, where genealogies are assumed
to be governed by Kingman’s coalescent, to the more general class of Lambda-coalescents and
develop further Hobolth et. al.’s (2008) idea of deriving importance sampling schemes based on
‘compressed genetrees’. The resulting schemes extend earlier work by Griffiths and Tavaré
(1994), Stephens and Donnelly (2000), Birkner and Blath (2008) and Hobolth et. al. (2008). We
conclude with a performance comparison of classical and new schemes for Beta- and Kingman
coalescents.
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1. Introduction
1.1. Aims and outline of the paper

In the present paper we derive and discuss importance sampling schemes for the
approximate computation of the sampling probability of observed genetic types in the
infinitely many sites model (ISM), which is used for the analysis of DNA sequence data
sampled from a population.

In particular, we extend earlier results on this classical problem of likelihood estimation in
mathematical genetics in two directions.
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First, we consider genealogies which may be governed by any member of the rather general
class of Lambda-coalescents instead of restricting to the classical Kingman’s coalescent
framework only. These genealogies offer more flexibility in the modeling of ‘exceptional
genealogical events’ like extreme reproduction and selective sweeps, see e.g. [BB08] for a
brief discussion. In particular, we derive the analogues of the ‘Kingman-scenario’ based
importance sampling schemes of Griffiths and Tavaré [GT94], Stephens and Donnelly
[SD00] and Hobolth, Uyenoyama and Wiuf [HUW08].

For the second direction of our investigation, observe that both the schemes derived by
Ethier and Griffths and Stephens and Donnelly do not take any specific information about
the genealogical distance of types (which is provided by the infinitely many sites model)
into account. Indeed, the latter proposal has been explicitly derived by means of optimality
for parent-independent mutation models which in particular do not provide information
about genealogical distance. Hobolth et. al. [HUW08] proposed a scheme which can be
regarded as a starting point to overcome this simplification. Indeed, for their proposal
distribution, they ‘compress’ the observed genealogical tree to a tree where only one
segregating site remains, derive optimal proposals for this compressed tree, and show how to
combine them to obtain a proposal for the original tree. We show how to extend this method
to compressed trees with two (and, in principle more) segregating sites, which retain
information about the topology of the original tree and the genealogical distance of the types
of the sample, leading to further improved importance sampling schemes (also in the
Lambda-coalescent scenario). We ‘pay’ for this additional genealogical information with an
increase of complexity in the derivation and of the proposal scheme. Along the way, we
discuss the optimality of the analogue of the Stephens and Donnelly proposal for the
Lambda-coalescent in the infinitely many alleles model.

The paper is organised as follows. In Section 1.2 we discuss in detail the combinatorial
framework of samples in the infinitely many sites model. In Section 1.3 we formulate
various recursions which form the basis of our importance sampling schemes. Section 2.1
and Section 2.2 discuss the creation of sample histories and the basic framework for
importance sampling. We will also briefly discuss the notion of optimality. In Section 2.3
we extend earlier and derive new important sampling schemes, whose performance we will
analyse in Section 3. In the appendix, we will provide an algorithm for generating sample
histories (Appendix A.1), derive some auxiliary results on the combinatorics of the infinitely
many sites model (Appendix A.2) and briefly discuss computational aspects (Appendix A.3)
as well as estimation of event times, given the observed data (Appendix A.4).

1.2. Genealogies and samples in the infinitely many sites model
We consider samples taken from a large panmictic population of constant size evolving due
to random mating and mutation according to the infinitely many sites model. We study the
distribution of (neutral) genetic variation at a single locus and may therefore assume that the
genealogy of the sampled genes is described by an exchangeable coalescent process.
Extending the classical framework of [EG87], we consider in particular genealogies
governed by so-called Lambda-coalescents, hence allowing multiple, but not simultaneous
multiple collisions.

Recall that Pitman ([P99]) and Sagitov ([S99]) introduced and discussed coalescents in
which more than just two blocks may merge at a time. Informally, a Lambda-coalescent is a
partition-valued Markov process, whose dynamics is as follows: Whenever there are b ∈ ℕ
blocks in the partition at present, each k-tuple of blocks (where 2 ≤ k ≤ b ≤ n) merges to
form a single block at rate λb,k, where the the rates are given by
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(1)

for some finite measure Λ on the unit interval. Further, denote by

(2)

the total rate at which mergers happen while there are b blocks present.

Note that the family of Lambda-coalescents is rather large, and in particular cannot be
parametrised by a few real parameters. Important examples include Λ = δ0 (Kingman’s
coalescent) and Λ = δ1 (leading to star-shaped genealogies, i.e. one huge merger into one
single block). Later, we will also be concerned with an important parametric subclass of Λ-
coalescents, namely the so-called Beta-coalescents, where Λ has a Beta(2 − α, α)-density for
some α ∈ [1, 2]. Note that such coalescents occur as limits of genealogies of population
models, where single individuals may occasionally be able to produce almost
instantaneously a non-negligible fraction of the total population size, see e.g. [BB09] for a
review. W.l.g. we assume that Λ([0, 1]) = 1.

We now introduce detailed notation to describe samples in the infinitely many sites model.
Note that we represent our data in the form presented in [EG87] resp. [GT94]. A discussion
of how to transform actual DNA sequence data into this format can be found e.g. in [BB08,
Section 2.1] (assuming known ancestral types for each segregating site). Although the
notation for the description of samples in the infinitely many sites model under various
equivalence classes seems to be relatively standard, we chose to provide full details here,
including several formulations of the recursions for observed type probabilities, since the
treatment of the combinatorics of samples is somewhat inconsistent across the literature
(see, e.g., Remark 1.2 for some of the subtleties).

We represent a sample of size n by a vector x = (x1, …, xn) of n genetic types, where each
type xi is given as a list of positive integers representing mutations

(3)

Such an x is called a tree if

1. for fixed i ∈ {1, …, n} the coordinates xij are distinct for all j ∈ ℤ+,

2. whenever for some i, i′ ∈ {1, …, n}, j, j′ ∈ ℤ+, xij = xi′j′ holds, then xi,j+l = xi′,j′+l
holds for all l ∈ ℤ+,

3. there exist j1, …, jn ∈ ℤ+ such that x1j1 = x2j2 … = xnjn.

The space of all trees of size n is denoted by Tn.

Next, we introduce an equivalence relation ‘~’ on Tn, where two trees x, y ∈ Tn are said to
be equivalent if there exists a bijection ζ : ℤ+ → ℤ+ such that yij = ζ(xij) holds for all i ∈ {1,
…, n} and j ∈ ℤ+. Denote by (Tn/~) the set of equivalence classes under the relation ~ and
by (Tn/~)0 the restriction of this set to those classes where xi ≠ xj if i ≠ j. The number of
segregating sites s is given as the number of different xi,j that appear in at least one but not
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all elements in x. Note that this does not depend on the actual representative of the class.
Denote by (Ts,n/~) the set of equivalence classes representing a tree of size n with s
segregating sites. Note that for simplicity, we will always assume xij ∈ {0, 1, …, s}. Recall
that the complexity of a sample of size n with s segregating sites is defined to be n + s − 1.
Elements of (Tn/~) are called unlabelled trees in [EG87, p. 528, l. -10]. We will sometimes
emphasise the fact that the order of the samples (equivalently, of the types in the case of
distinct entries) plays a role by calling them ordered unlabelled trees.

A type configuration x = (x1, …, xn) ∈ (Tn/~) can be represented by a pair (t, a) of a tree t ∈
(Td/~)0 of the different types that occur in x and an ordered partition a = (A1, …,Ad) that
specify at which position in the sample the corresponding type occurs (i.e. we think of
ordered types). The number of distinct types is denoted by d = |{xi : i = 1, …, n}|.

Furthermore, Ai = {j : ti = xj}, Ai ∩ Aj = 0̸ ∀i ≠ j and  holds. Note that this
notation introduces an artificial order of the occurring types. In the sequel the actual sample
numbers of the types will play no role, but rather the multiplicities. For this purpose define
n(a) := (|A1|, …, |Ad|), the vector containing the sizes of the sets in a. We denote by

(where n = n(a)) an ordered type configuration with multiplicities. Note that for a given (t,
n) with d types, there are n!/(n1! ⋯ nd!) different choices of a consistent with n.

Finally, we define the equivalence relation ‘≈’ by saying that

(4)

holds if there exist a bijection ζ : {1, …, s} → {1, …, s} and a permutation σ ∈ Sd such that
xij = ζ(xσ(i)j) and n(a) = (n(a))σ, where x is representative of the class t and σ is applied to the
vector componentwise. Note that under this equivalence class the order of the types is lost.
We denote such an equivalence class by [t, n] = [t, n(a)] and call it an unnumbered
unlabelled sample configuration with unordered types, sample configuration, or genetree,
because it accounts for the fact that in a sample obtained from a population, the numbering
of the types and mutations is artificially imposed. Summarising, in the following we will
consider equivalence classes

(5)

Note that [t, n] in our notation denotes [Φn(t)] in the notation of [EG87], with [·] referring to
the equivalence class under ≈.

However, one should be warned that there are several combinatorial conventions present in
the literature, see Remark 1.2 for a discussion of some of the ensuing subtleties.

Remark 1.1—Note that by ignoring the tree structure given by t and just considering the
partition n one can map a sample under the infinitely many sites model to a sample in the
infinitely many alleles model. This observation underlies some of the importance sampling
schemes discussed below, see Section 2.3.1. However, the additional information provided
by the infinitely many sites model can be exploited to find more efficient proposal
distributions, see Section 2.3.2.
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1.3. Recursion for tree probabilities
In this section we recall from [BB08] recursions which allow the computation of the
probability of observing a given type configuration (t, a). In the sequel, we always think of
randomly ordered types.

Indeed, with the above notation, the probability of obtaining a given sample (t, a) from the
stationary distribution of the population under the infinitely many sites mutation model
satisfies the recursion

(6)

with the boundary condition p((0), ({1})) = 1. Here, xi0 unique means that mutation xi0
occurs only in type i. The operator s(x) [the operator si(t)] removes the outmost mutation
[from type i] and ri(t) removes the i-th component of the vector t. By a − (k − 1)ei we mean
a partition obtained from a by removing k − 1 elements from the set ai (with implicit
renumbering of the samples so that the result is a partition of {1, …, n − k + 1}). Note that
by symmetry, the type probability p will not depend on the actual choice. Finally, a + ej
denotes the partition obtained from a by adding an arbitrary element of ℕ to the set aj that is
not yet contained in any other set al, l = 1, …, d.

(6) can be seen by conditioning on the most recent event in the coalescent history (or,
equivalently, in the lookdown-construction into which the so-called ‘Λ-Fleming-Viot
process’, describing the population forwards in time, can be embedded), see [BB08, Section
4] and [S09, Section 3.3.2] for details and proofs.

Note that in the ‘Kingman-case’, i.e. Λ = δ0, this essentially reduces to the recursion
provided by Ethier and Griffiths in [EG87, Corollary 4.2] (see also Remark 1.2 below). The
relation between the sampling probabilities of ordered numbered samples p(t, a) and the
probabilities of the corresponding unordered unnumbered samples p[t, n] is given by

(7)

Here, n = n(a), n!/(n1! ⋯ nd!) is the number of ordered partitions of {1, …, n} into d subsets
with the given sizes, corresponding to the d types and

(8)

where nσ = (nσ(1), …, nσ(d)). There are d! possible orders for the types if the mutations carry
distinct labels, each of which is equivalent to c(t, n) others if mutation labels are
disregarded. Thus, there are d!/c(t, n) different re-orderings of the types that cannot be
transformed into each other by re-labelling the mutations, explaining (7).

Note that c(t, n) = c([t, n]) depends in fact only on [t, n]. For a constructive way to evaluate
c(t, n), see Lemma Appendix A.1.
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Recursion (6) can be combined with relation (7) to obtain a recursion for the unordered
sampling probabilities p[t, n]:

(9)

for the sampling probability of the unordered sample [t, n]. Again, we have the boundary
condition p((0), (1)) = 1. In terms of samples with ordered types (t, n), the recursion reads

(10)

with the usual boundary condition.

Remark 1.2—Note that the recursion given by Ethier and Griffiths in [EG87, Corollary
4.2] closely resembles our recursion (6) in the case Λ = δ0, r = θ/2, up to a missing factor 1/d
in the last term on the right-hand side. This subtle discrepancy can be resolved as follows.

As before, let (t, a) denote an unlabelled ordered sample of d (ordered) types stored in t
together with an ordered partition a = (A1, …,Ad) and let [t, n] be the corresponding sample
with d unordered types stored in t and multiplicity vector n = (n1, …, nd). Recall that we
have

where p([t, n]) solves Recursion (6) and p(t, a) solves (9). In contrast, let 〈t, a〉 denote a
sample with d (unordered) types and type partition a = {A1, …,Ad}, where the types in the
vector t ∈ (Td/ ~)0 are ordered by appearance in the sample (any other deterministic recipe
of deriving an order on the types from the sample would work equally well). Then, we have

which corresponds to (4.12) in [EG87] and is consistent with the displayed equation on p.
86, l. -13 of [GT95], and
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If one interprets the notation (T, n) of [EG87, Corollary 4.2] as a canonical representative of
〈t, a〉, then p〈t, a〉 solves recursion (4.4) in [EG87] without additional factor 1/d in front of
the last term.

While all the above recursions yield probability weights (resp. likelihoods), for practical
purposes it is often easier to multiply (9) by c(t, n) and thus derive from (9) a recursion for
p0[t, n] := c(t, n)p[t, n]. This is the recursion given by [BB08, Corollary 1], and it is also the
recursion implemented by genetree2 (for the Kingman case) and MetaGeneTree3. However,
one should be aware that the p0[t, n] may not always be interpreted as probability weights
(for example consider the star-shaped tree t = ((1, 0), (2, 0), …, (d,0)) with n = d, n = (1, …,
1); for d = 22, with Λ = δ0 and r = 7, genetree yields p0[t, n] ≈ 2.26)). Still, this method can
be used to compute maximum likelihood estimators, and the correct probability can be
recovered by dividing by c(t, n).

2. Derivation of importance sampling schemes
2.1. Simulating sample histories

In the sequel, we will always parametrise a sample as an unlabelled tree with ordered types
(t, n). Recursion (10) can be used directly to calculate sampling probabilities for a given
sample configuration (t, n), noting that the sample complexity is reduced by each step.
However, for practical purposes this naive approach is only tractable for samples of rather
small complexity due to the huge number of terms involved (the coefficient matrices of the
righthand sides of (6), (9), resp. (10) are substochastic, hence numerical stability itself is not
an issue).

One way to deal with this problem is to consider importance sampling using so-called
(coalescent-)histories. Informally, describing samples via ordered types with multiplicities,
such a history

is the chronologically ordered sequence of the τ (different) states in T* one observes when
tracing the coalescent tree with superimposed mutations from the root to its leaves (see, e.g.,
[BB08, Steps (i)–(vii) in Section 3]), where H−τ+1 = ((0), (1)) is the root and H0 = (t, n) is
the observed sample.

A computationally efficient way of generating samples is described in Appendix A.1,
adapting [BB08, Algorithm 1]. Let θ = (r, Λ) be the underlying ‘parameter’ of our model
(mutation rate and Lambda-coalescent). For a given sample size n, this algorithm constructs
the path of a Markov chain with law ℙθ,n in T* terminating in a sample of size n. Its
transition probabilities are given by (as usual, denoting |n′| by n′)

(11)

2Version 9.0, available from http://www.stats.ox.ac.uk/~griff/software.html
3Version 0.1.0, available from http://metagenetree.sourceforge.net
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Here, (t′, n′) denotes the current state (with d types), i denotes the type that is involved in
the transition event with 1 ≤ i ≤ d, and

The function ai(t′) attaches a mutation to the type i. The operator ei,j (t′) copies type i,
attaches a mutation and inserts the resulting type at position j in the vector t. The expression
ej(n′) denotes the vector

Note that for given (t′, n′) and a type i ∈ {1, …, d}, it is in principle possible that the values
(t″, n″) = (ei,j(t′), ej (n′ − ei)) are identical for several choices of j. The number of such j
equals

(‘nio’ stands for ‘number of immediate offspring’). The  are the transition rates of the
time-reversed block counting process of the underlying Lambda-coalescent, see Appendix
A.1. Finally, ∂ denotes a cemetery state. Once reached, the sample has been generated and is
given by the penultimate state (t′, n′) (from which the cemetery state had been reached).

It is straightforward to read off the transition probabilities from (11), observe in particular
that

if (t″, n″) = (ei,j(t′), ej(n′ − ei)). (No such ambiguities arise for the transitions in the first
three lines of (11).)

We have

(12)

were the sum extends over all different histories (of possibly different lengths) with terminal
state H0 = (t, n). Recursion (10) is just a way to enumerate all consistent histories and
compute the sum in (12). An obvious ‘naive’ approach to estimating p(t, n) is via direct
Monte Carlo: Indeed,

(13)

where H(1), …,H(M) are independent samples from ℙθ,n(·), is an unbiased estimator of p(t,
n). Unfortunately, even for small sample sizes, the variance of (13) is typically too high for
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(13) to be of practical value, since p(t, n) can easily be of the order 10−15 (see Table 2 for
examples).

2.2. Importance sampling and the optimal proposal distribution
Importance sampling is a well-known approach to reducing the variance of estimators of the
form (13). In the following, we will think of a fixed sample size n and will thus lighten
notation by denoting ℙθ := ℙθ,n. Consider a proposal distribution Qθ(·) on the space of
histories satisfying

(14)

and use it to rewrite equation (12) as

(15)

This shows that

(16)

where H(1), …,H(M) are independent samples from Qθ(·), is also an unbiased (and consistent
as M → ∞) estimator of p(t, n). Denote by

(17)

the importance sampling weight or IS weight of the history H(i). Our goal now is to derive
proposal distributions for which the variance of the estimator (16) is small.

The optimal proposal distribution , for which this variance vanishes, is given by

(18)

the conditional distribution on the histories given the observed data. Under , the
importance weight ω(H) equals p(t, n) for all histories H compatible with the data. Hence,
the (consistent) estimator (16) becomes deterministic, and its variance is thus zero.

Since for a given H, ℙθ(H) is straightforward to evaluate, we see from (18) that explicit
knowledge of the optimal proposal distribution is equivalent to knowing p(t, n), so not
surprisingly  cannot be given explicitly in general. This also applies to the Kingman case
except for so-called parent-independent mutation models, as observed in [SD00].

It is natural to consider proposal distributions Qθ under which the time-reversal of the
history is a Markov chain starting from the observed configuration (t, n) and ending at the
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root ((0), (1)), thus guaranteeing that the weights in (17) are strictly positive. Indeed, by
elementary properties of Markov chains,  has this property.

Let

(19)

denote the associated Green function, that is the expected time the Markov chain with
transition probabilities (11) (for samples of size n) spends in the state (t′, n′). Note that by
the special structure of the transitions in (11) which increase the sample complexity in each
step, we in fact have (for n ≥ |n′|)

(20)

Lemma 2.1—For (t, n) with |n| = n we have

(21)

More generally, for (t′, n′) with |n′| = n′ < n,

(22)

where g(n, n′) is the Green function of the block counting process of the underlying Lambda-
coalescent, see (A.2).

Proof: (21) follows from (20) and the fact that under ℙθ,n when the chain is currently in a

state with sample size n it terminates with probability , see the second case in
Step 2 of Algorithm 1 in Appendix A.1.

We see from (A.6) and (11) that the probabilities for transitions between states with at most

n′ samples agree under ℙθ,n and ℙθ,n′ except for terms involving  resp. . Using (A.8)
on the product of these terms yields

(23)

Using (20), (21) and observing , we obtain
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which is (22).

Lemma 2.2—The time-reversed history H under  is a Markov chain started in H0 = (t,
n) with transition probabilities given by

(24)

where the transition matrix under ℙθ,n is described in Section 2.1 and n = |n|. The chain is
absorbed in the root ((0), (1)). The transition probability in (24) is independent of n
(provided n ≥ |n″|).

Sketch of proof: The optimal proposal distribution is the distribution of histories simulated
with Algorithm 1 in Appendix A.1 with transition (11) conditioned on observing (t, n) as the
penultimate state before hitting the ‘cemetery’ ∂. Nagasawa’s formula can thus be applied to
obtain the transition probabilities (24) of the time-reversed chain (see e.g. [RW87], Sect. III.
42).

The fact that (24) does not depend on the target sample size n stems from the consistency
properties of Lambda-coalescents and is made explicit in the following Remark 2.3.

Remark 2.3: By Lemma 2.1, we may express the transition probabilities of the time-
reversed history under  explicitly via p as follows (with notation as above):

(25)

Proof: For the last three lines in the righthand side of (25) note that by (22), G(n)(t′, n′)/
G(n)(t″, n″) = p(t′, n′)/p(t″, n″) if |n′| = |n″|, for the first line observe
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if n′ = n″ − l (see (A.5)).

Remark 2.4: Lemma 2.2 can be seen as a starting point for importance sampling: Any
(quite possibly heuristic) approximation of G(n)(t″, n″)/G(n)(t′, n′) leads via (24) to an
approximation of  which can be used as a proposal distribution. This is the ‘Λ-coalescent
equivalent’ of Stephens & Donnelly’s [SD00, Thm. 1] observation that the optimal
distribution in the Kingman context can be characterised in terms of the conditional
distribution of an (n + 1)-st sample given the types of n samples.

2.3. Importance Sampling Schemes

We have shown that the optimal proposal distribution  is a Markov chain and derived
expressions for the transition probabilities in terms of the Green function (19). Since
recursive evaluation of the Green function is equivalent to evaluating the likelihood, this is
more of theoretical than direct practical value.

Still, in the remaining sections we will present several proposal distributions based on
Markov chains that approximate the optimal proposal distribution in reasonable ways so that
the variance of the estimator (16) is small. We discuss separately situations in which the
proposal distribution does not take any information about ‘genealogical distance’ between
types (which is in principle provided by the IMS model) into account, and situations in
which at least some of this information is retained.

2.3.1. Importance sampling schemes without regard of ‘genealogical distance’
between types
Griffiths & Tavaré’s scheme for Lambda-coalescents: Griffiths and Tavaré in [GT94]
introduced a Monte Carlo method to estimate the likelihoods of mutation rates under
Kingman’s coalescent. This method was generalised in [BB08] to the multiple merger case
and can be interpreted, as observed by Felsenstein et. al. [F99], also as an importance
sampling scheme.

Indeed, it is easy to derive a proposal distribution from recursion (10), recovering the
scheme derived in [BB08]. For a given configuration (t, n) with complexity greater than 1
(i.e. excluding the root), define (with the usual convention n = |n|, rn = λn + nr)

(26)

and put fθ((0), (1)) := 1 for the root.

Definition 2.5 (Proposal distribution ): We denote by  the law of a Markov
chain on the space of histories with transitions, given a state (t, n), as follows:
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(27)

To see why this yields a suitable Monte Carlo estimate, let τ denote the random number of
steps that our Markov chain performs until it hits the root configuration. Then, a simple
calculation shows (see e.g. [BB08, Lemma 6]) that we may write

(28)

where the expectation is taken with respect to  started in (t, n).

Remark 2.6: This Monte Carlo method can be interpreted as an importance sampling
scheme by choosing the proposal weights w(H) according to

Note that this method is a special case of general Monte Carlo methods for systems of linear
equations with non-negative coefficients. It is therefore referred to as the ‘canonical
candidate’ by [GT97] in the Kingman case and will serve us as a benchmark in Section 3.

Stephens & Donnelly’s scheme for Lambda-coalescents: Stephens and Donnelly [SD00]
motivate and study a proposal distribution in a general finitely many alleles model under
Kingman’s coalescent. One can efficiently sample from their proposal distribution by
choosing an individual from the current sample uniformly at random and then decide on the
transition for the type of this individual. This is indeed optimal in the case of parent-
independent mutations (see [SD00], Prop. 1). This procedure is adapted by Stephens and
Donnelly to the infinitely many sites model in their Section 5.5. Here, not all types are
eligible for a transition – only those whose multiplicity is at least two (which will then
merge) or whose outmost mutation, say xk0, is unique. Denote the number of eligible
individuals of a configuration (t, n) by

Under Kingman’s coalescent, choosing (uniformly) an eligible individual is equivalent to
proposing a transition step. Either a singleton is chosen, where the only possible most recent
event is the removal of the outmost mutation, or an individual with a type that occurs at least
twice in the sample is chosen leading to a binary merger.

To adapt this approach to the Lambda-case note that when choosing an eligible singleton
type the proposed step is unambiguous as in the previous case. However, the proposal needs
additional information if a type with multiplicity greater than two is chosen, since then
typically various multiple mergers of ancestral lines can occur. A natural approach to this
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problem is to choose the size of a merger with a probability proportional to the rates of the
block counting process of the Λ-coalescent (see e.g. [BB08, Section 7]). Based on this idea
we introduce the following proposal distribution.

Definition 2.7 (Proposal distribution ): The proposal distribution  is the
distribution of the Markov chain on the space of histories performing the transitions

(29)

where

(30)

for ni ≥ 2 is the probability derived from the block counting process (see Appendix A.1) that
in the most recent merging event k lineages coalesce.

Remark 2.8 (On optimality in the infinite alleles model): Hobolth et. al. showed in
[HUW08] that the proposal distribution of Stephens and Donnelly in the Kingman case is
the optimal proposal distribution in the infinitely many alleles model (IMA), which is the
prime example of a parent independent mutation model. A crucial step in the proof is
Ewens’ sampling formula, which provides an explicit expression for the probability of a
sample in the IMA. Since such an explicit formula is (at present) not available in the IMA
for Lambda-coalescents, we may express the optimal proposal distribution only implicitly
via a recursion of Möhle [M06]. Indeed, let c = (c1, …, ck, 0, …) ∈ (ℕ0)∞ denote an allelic
partition of a sample in the IMA, that is, ci is the number of types that occur i times in the
sample. Then, the sampling probability q(c) satisfies

(31)

with n = Σi ici. The boundary condition is q((1, 0, …)) = 1 and we set q(c) = 0 if any entry in
c is negative. Further, let ϕ : (t, n) ↦ c be the function which maps a sample (t, n) in the
infinitely many sites model, which we think of being generated by Algorithm 1 (the ‘Λ-
Ethier Griffths Urn’), to the corresponding allelic partition c in the infinite alleles model (i.e.
where ci = #{types k with nk = i}, i = 1, 2, …). Let PΛ−EGU be the image measure of the
sample distribution under ϕ. Then, using conditional probabilities, the optimal sampling

distribution  in the infinite alleles model has transitions

(32)

where c′ = c − e1 or c′ = c + ej − ej+i for some i, j ∈ {1, …, n − 1} are the only possible
transitions. Unfortunately, unlike the Kingman case (where the Ewens sampling formula is
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at hand), there is no explicit closed solution to the recursion (31). However, for a given
sample size, the solution to (31) could be precomputed and stored in a large database (this is
much easier than in the case of our original recursion for (t, n) since no explicit type
configurations t need to be stored). This would yield a perfect sampler (given a suitable
database) for the infinite alleles model in the Lambda case. Still, since a lot of information is
lost via our map ϕ, it is unclear if this would lead to a good sampler for the infinitely many
sites case. We refer to [M06] and [DGP06] for a more thorough investigation of the
infinitely many alleles model in the Λ-coalescent case.

2.3.2. Schemes based on compressed genetrees—In the following, we will
abbreviate the transition matrix of the time-reversed history under  by

for any (t′, n′), (t″, n″) ∈ T*, which is well-defined irrespective of the ‘target’ sample size n
appearing in ℙθ,n (see Lemma 2.2).

In this section, our goal is to derive proposal distributions for the infinitely many sites
model, where at least partial information about the structure of the type configuration t is
retained.

In the simplest case the idea (due to [HUW08]) is to subsequently focus on a single mutation
in the genetree and then to consider the corresponding “compressed” genetree, in which this
is indeed the only mutation at all. For such a simple compressed tree, the optimal transition
probabilities can be computed explicitly (at least numerically). Summing over the mutations,
these probabilities are then composed to a proposal for the original tree.

This approach will be explained and extended to the Lambda-coalescent in the next
subsection. After that, we will show how to extend this framework to retain more
information about the tree, in particular taking pairs of mutations (and potentially even
more) into account.

Hobolth, Uyenoyama & Wiuf’s Scheme for Lambda-coalescents: Let (t, n) be a sample
with ordered types. Since we will consider individual mutations, for the purposes of this
section, we think of a fixed representative under the mutation relabelling relation ~ from
Section 1.2.

Pick a segregating site, say s′ ∈ {1, …, s}. We first introduce the ‘compressed genetree’ of
[t, n] with regard to the mutation at the segregating site s′. Denote by

the number of individuals in the sample bearing a mutation at the segregating site s′. Let

(33)

be the genetree where d individuals bear a mutation and n − d do not. Note that
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(34)

is the configuration where all n individuals share the same type. See Figure 1.

Definition 2.9 (compressed genetree): Let (t, n) be a sample of size n with s ≥ 1
segregating sites. Let s′ ∈ {1, …, s}. Then, we define the ‘compressed genetree’ (t, n)(s′)
with respect to the segregating site s′ as

where d(s′) is the number of individuals carrying mutation s′ in the sample.

We now explain how to derive from the optimal proposal distribution for the corresponding
compressed trees a proposal distribution for the original genetree. To this end, fix s′ ∈ {1,
…, s} and let pθ(n, d) be the probability that the most recent mutation in (t, n) affected an
individual out of the d = d(s′) individuals exhibiting a mutation at segregating site s′, that is

(35)

In the first case the most recent event was a merger of any size involving individuals bearing
the mutation, whereas in the second case the last event was the origin of the mutation.
Further, define

(36)

Note that ni/d is the fraction of genes of type i among those genes carrying a mutation at

segregating site s′, thus  would be the exact probability that the most recent event in
the history involves type i if s′ were the only segregating site.

Definition 2.10 (Eligible types): Let (t, n) be a genetree with d types. We say that the k-th
type, where k ∈ {1, …, d}, is eligible for transition (or short: eligible), if either nk ≥ 2 or nk
= 1 and xk0 is unique.

We are now ready to state a Lambda-coalescent extension of the [HUW08] proposal
distribution (for Λ = δ0, it agrees with that from [HUW08]).

Definition 2.11 (Proposal distribution ): We denote by  the law of a
Markov chain on the space of (time-reversed) histories H, starting from samples of size n, if
its transition probabilities from a state (t′, n′) can be described as follows:

• Pick a type, say k, from the set of eligible types of (t′, n′) at probability
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• If the multiplicity of the chosen type k is one remove the outmost mutation.

• If the multiplicity  is larger than one, perform a merger inside this group. The
size of the merger is determined as follows:

– If type k does not bear a mutation, then, an l+1 merger, for 1 ≤ l < nk,

happens with probability proportional to , where

 is the probability of jumping to the
terminal state.

– If type k bears at least one mutation, let s′ be the segregating site
corresponding to its outmost mutation xk0. Let d(s′) be the number of
individuals in the sample bearing a mutation at this segregating site.
Then, an l + 1 merger, for , happens with probability proportional

to .

Remark 2.12
i. The quantities pθ(n, d) and the proposal of the merging size involve the optimal

proposal distribution for samples with at most one segregating site so these
quantities can be easily computed numerically and kept in a lookup table.

ii. Hobolth et. al. showed in [HUW08, Theorem 2] that if the sample is of size 2, then
the optimal proposal distribution chooses one of the two types proportional to the
number of mutations it differs from the root of the genetree. They note in [HUW08,
Remark 3] that their proposal distribution equals the optimal one in that case. The

same statement is true for , since the dynamics of a sample of size two does
depend on Λ only through the total mass. For more general samples this effect
should also favour types that have a large number of mutations.

Figure 2 depicts a sample configuration and all corresponding compressed genetrees with
one mutation. Hobolth et. al. provide in [HUW08] explicit formulae for the optimal
transition probabilities for samples with just one visible mutation if the underlying
genealogy is given by Kingman’s coalescent.

Schemes regarding Pairs of Mutations: We now extend the approach of [HUW08] to
consider compressed genetrees which allow two mutations. First note that there are two
kinds of structurally distinct genetrees with two mutations.

Definition 2.13: Let

(37)

be the genetree where the two mutations are on different branches. The number of
individuals carrying mutation m is dm. Denote by

Birkner et al. Page 17

Theor Popul Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(38)

the sample configuration where the mutations are on the same branch. The number of
individuals carrying only mutation 1 is d1 − d2 and both mutations are carried by d2
individuals.

The two possible types of genetrees are depicted in Figure 3.

Remark 2.14: (i) Note that  (as equivalence classes under ≈) holds for d1 + d2

≤ n. Furthermore, note that  with d1 + d2 = n,  and  denote valid genetrees
with two mutations (even though for the latter two, mutation 1 is then not segregating),
whereas by a slight abuse of notation  and  denote genetrees with
only one segregating site. We denote by  the sample of size n with no
segregating sites.

We now introduce the notion of a compressed genetree with regard to pairs of mutations.

Definition 2.15 (compressed genetree): Let [t, n] be a genetree with s ≥ 2 segregating
sites. Let s′, s″ ∈ {1, …, s}. Then, we denote the ‘compressed genetree’ with respect to the
segregating sites s′, s″ by [t, n](s′, s″), where

if there is no type in [t, n] which carries mutations at both s′ and s″, and

if there is at least one type in [t, n] which carries mutations at both s′ and s″, and there is no
type which carries a mutation at s″ but not at s′.

To consider pairs of mutations determining the probabilities of performing a step involving
type k in a general sample configuration (t, n) it is necessary to know the relation of the
outmost mutation xk0 of type k (if it carries a mutation at all) to the given pair of mutations
(resp. the corresponding segregating sites) in the genetree. In other words, the type in the
compressed genetree corresponding to type k needs to be determined. Based on this
information the appropriate most recent event in the history of the compressed tree can be
chosen. Figure 4 shows two examples of compressed genetrees for two given segregating
sites. By symmetry, this relation can be described by one of five distinct cases.

Definition 2.16: Let [t, n] be a genetree with s ≥ 2 segregating sites and let k ∈ {1, …, d}.
Let s′, s″ ∈ {1, …, s} be two segregating sites. Then, we distinguish the following cases:

Case I if type k bears mutations at s′ and s″,

Case II if type k bears a mutation at s′, but not at s″, and there exists a type carrying both mutations,

Case III if type k bears a mutation at s′, but not at s″, and there exists no type carrying both mutations,

Case IV if type k does not bear any mutation at s′ or s″, and there exists a type carrying both mutations,

Case V if type k does not bear any mutation at s′ or s″, there exists no type carrying both mutations.
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The five cases are depicted in Figure 5.

Again, we will now derive proposal distributions based on optimal proposals for the
compressed trees. To this end, note that the optimal transition probabilities for samples with
two mutations can be calculated numerically. To determine the transitions of the proposal
Markov chain until it hits the root configuration corresponding to  the transition
probabilities for the cases with one mutation or zero mutations also have to be precomputed.
Thus, we shall set the probability weights for transitions involving samples with at most two
mutations equal to the optimal weights in all the proposal distributions defined below (at no
extra computational cost).

Fix a sample [t, n] with d different types and at least two segregating sites s′, s″. Note that a
possible transition of the proposal Markov chain can be characterised by a pair (i, l) with 1 ≤
i ≤ d and 0 ≤ l ≤ ni−1, where i denotes the type that is involved in the most recent event and
l denotes the amount by which the multiplicity is decreased. Denote by l = 0 the case that the
outmost mutation of type i is removed from the genetree (if type i is an eligible singleton).

Now define, for l ≥ 1, the quantity

(39)

For l = 0 let

(40)

Note that in Case I, III and IV the order of the mutations in the compressed tree  is

determined by their order in the original genetree. Analogous to (36),  would be
the optimal probability weight of transition (i, l) if only the two mutations s′ and s″ existed
in the data.

Finally, we define for each type i, 1 ≤ i ≤ d, and segregating sites s′, s″,
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(41)

We will now use these quantities as probability weights for the event that in the compressed
genetree [t, n](s′, s″), the last event in the history involved type k (under our new proposal
distributions).

Definition 2.17 (Probability weights for picking eligible types): Given [t, n] with d types
and s ≥ 2 segregating sites, let, for each eligible k ∈{1, … d},

If k is not eligible, put .

This distribution can be used to propose a type to be involved in the most recent event. In a
second step one may then choose the size of the possible merger, similar as before in that
again the probabilities of the merger sizes in a specific sample, now with two mutations, are
considered.

Definition 2.18 (Proposal distribution ): We define a distribution  on the
space of histories H as the law of a Markov chain with transitions as follows. Let [t, n] be a
sample configuration with st least s ≥ 2 segregating sites and d ≥ 1 types.

• Choose a type i ∈ {1, …, d} to be involved in the most recent event in history
according to  from Definition 2.17.

• If ni = 1, remove the outmost mutation of type i (noting that a.s. only eligible types
can be chosen).

• If ni ≥ 2, and i bears at least one mutation, let s′ be the segregating site
corresponding to the outmost mutation of type i. Reduce the multiplicity of type i by

l with probability . If type i is the root type, reduce

the multiplicity by l with probability .

Alternatively, one may consider all mutations present in the sample.

Definition 2.19 (Proposal distribution ): We define a distribution  on the
space of histories H as the law of a Markov chain with transitions as follows. Let [t, n] be a
sample configuration with at least s ≥ 2 segregating sites and d ≥ 1 types.

• Choose a type i ∈ {1, …, d} to be involved in the most recent event in history
according to  from Definition 2.17.
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• If ni = 1, remove the outmost mutation of type i (noting that a.s. only eligible types
can be chosen).

• If ni ≥ 2, choose to decrease ni by l with probability proportional to

(42)

where the sum extends over all pairs of segregating sites present in the current
sample.

It might appear artificial to consider choosing transition by such a two-step procedure
instead of choosing all at once. Indeed, the method of [HUW08] can be extended in another
direction by choosing the type involved in the most recent event and the size of the possible
merger in one step. We present two proposal distributions that let pairs of mutations valuate
all possible transitions and then the most recent step is chosen proportionally to these
weights.

Definition 2.20 (Proposal Distribution ): We define a distribution  on the
space of histories H as the law of a Markov chain with transitions as follows. Let [t, n] be a
sample configuration with at least s ≥ 2 segregating sites and d ≥ 2 types. We propose the
event (i, l) for 1 ≤ i ≤ d and 0 ≤ l ≤ ni − 1 to be the most recent evolutionary event with
probability proportional to

(43)

Note that in a given sample (t, n), by (40) the contribution of the presence of a pair of
mutations at {s′, s″} to the event (i, 0) of removing the outmost mutation of a leaf type i is
zero if the corresponding d(s′) resp. d(s″) is greater than one. In a generic genetree this case

appears rather frequently and thus we argue that the proposal distribution 
underrates mutation events. This effect is illustrated in Figure 6.

To circumvent this problem, one may modify the proposal distribution by summing only
over those pairs of mutations where one of the mutations coincides with the outmost
mutation of the current type. This should reduce the number of pairs that put too much
emphasis on the merging events and establish a more balanced proposal distribution.

Definition 2.21 (Proposal Distribution ): We define a distribution  on the
space of histories H as the law of a Markov chain with transitions as follows. Let [t, n] be a
sample configuration with at least s ≥ 2 segregating sites and d ≥ 2 types. We propose the
event (i, l) for 1 ≤ i ≤ d and 0 ≤ l ≤ ni − 1 to be the most recent evolutionary event with
probability proportional to

(44)
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where si is the segregating site corresponding to the outmost mutation xi0 of type i.

Remark 2.22
i. Another positive side effect of this method is that it reduces the complexity of

proposing a step from quadratic to linear in the number of mutations.

ii. In Hobolth & Wiuf [HW09], Section 4, explicit expressions for the sampling
probabilities in the case of Kingman’s coalescent for samples with two (nested)
segregating sites are presented. The authors note in Section 7 that their results
‘could potentially be used to further improve the proposal distribution for inference
in coalescent models.’ Indeed, via Remark 2.3, their results can be applied to derive

explicit formulas for the quantities  that govern the proposal distributions
regarding pairs of mutations (for Λ = δ0).

iii. Note that the idea to let mutations valuate all possible transitions can also be
applied for the case when just one mutation at a time is considered in the sense of

.

Our last proposal distribution combines the single-mutation approach with the pair
approach. Indeed, note that the complexity of the proposal distributions regarding pairs of
mutations is quadratic in the number of mutations, whereas the proposal distributions
regarding all mutations have linear complexity. We will see in Section 3 that the real-time to
compute steps for the distributions differ. However, we find that the method determining the

size of the merger in proposal distribution  from Definition 2.18 performs well.
Thus a promising candidate concerning speed and performance should be given by the
combination of proposing a type in the first step considering all mutations separately and

then choosing the merging size in the second step by the method from .

Definition 2.23 (Proposal Distribution ): We define a distribution  on the
space of histories H as the law of a Markov chain with transitions as follows. Let (t, n) be a
sample configuration with at least s ≥ 2 segregating sites and d ≥ 2 types. Choose type i to
be involved in the most recent event considering all mutations according to the same method

used for the distribution  from Definition 2.11. If a singleton type is chosen, remove
the outmost mutation, whereas in the case of a non-singleton type i with ni ≥ 2 the

multiplicity is decreased by l with probability , where 1 ≤ l ≤
ni − 1.

Remark 2.24: For the analysis of a sample of size n, the proposal schemes from (2.18, 2.19,
2.20, 2.21, 2.23) all require the numerical computation of the solution of (10) for all samples
of size m ≤ n with at most two segregating sites. This can be precomputed, but should be
kept in the computer’s main memory during the (many) repeated runs. Thus, memory
requirements can be a limiting factor prohibiting the analysis of large samples.

Since in a sample of size m ≤ n with at most two mutations under the IMS there are at most
three types (of several possible multiplicities), memory of the order n3 will be required. For
further speedup one could also store the transition probabilities for all possible moves for
each sample, which would result in a requirement of the order n4.
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3. Performance Comparison
In this section we investigate and compare the performance of the different proposal
distributions, introduced in Section 2.3, in various scenarios by means of a (not necessarily
comprehensive) simulation study.

Such a study faces two particular issues which need to be addressed. First, one needs to
identify (preferably parametric) sub-families of Lambda-coalescents which might be of
biological relevance (i.e. arise from microscopic modelling of the behaviour of the
underlying population). We will focus our attention to so-called Beta-coalescents, recalled
below. A second issue is owed to the fact that tractable sample complexities are still in the
low three-digit numbers (≈ 100). If one wishes to compare the performance of our sampling
schemes one has to use either a few less generic scenarios where the samples have relatively
large complexities or many samples of small complexity

This section can be outlined as follows: First, we introduce and discuss the class of Beta-
coalescents. Then, we measure empirically the total variation distance between our proposal
distributions and the optimal distribution for a small sample complexity. Next, we compare
the concrete performance of our schemes for several randomly generated samples of small
size for various scenarios, and for several relatively large real DNA sequence data samples.
Finally, we will discuss our results and try to come up with recommendations for the
practitioner.

3.1. Beta-coalescents
Recall that our ‘parameter’ θ = (r, Λ) consists of the mutation rate r and the underlying
Lambda-coalescent with coalescent measure Λ. The case where Λ = δ0 is the classical
Kingman case describing populations with constant population size and reproduction events
which are small when compared to the total population size. Here, we will consider the case
where Λ = B(2−α, α), with α ∈ (0, 2), that is, so-called ‘Beta-coalescents’ introduced by
[S03], whose density is given by

Note that the Kingman-coalescent corresponds to the weak limit as α → 2. See, e.g., [S03]
or [BB09] and the references there for a discussion of possible biological motivations of this
class.

3.2. Distance to the optimal proposal distribution
For small sample complexities, it is possible to solve our recursions (6), (9) and (10)
numerically and hence to compute optimal proposal weights directly. It is therefore natural
to measure the distance between the optimal proposal distribution and our candidate
distributions for such small complexities. We consider a selection of parameter values for
the Beta-coalescent (including the Kingman-coalescent) in Table 1 and present the total
variation distance of the optimal weights of the possible steps and the weights given by the
candidate distribution averaged over all possible samples of complexity 15. In enumerating
all these samples, viewed as trees, we have found algorithms from [K05] very helpful.

The relative ranking of the different candidates implied by the total variation distance is
similar when using the mean-squared distance or the relative entropy (data not shown). The
respective minimisers are printed in bold.
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The best results are consistently provided by methods based on compressed genetrees with

two mutations, namely ,  and . This is true not only for the Beta-
coalescent, but in particular for Kingman’s coalescent, so that our new methods seem to
outperform even the classical methods known so far, at least with respect to this rather
theoretical criterion.

3.3. Performance comparison for different specific tree structures
In this subsection, we aim to investigate strengths and weaknesses of our methods
depending on the structure of the genetrees encoded by the datasets.

To this end, we simulated 500 genetrees under given parameters (for Beta-coalescents) of
sample size 15. Note that the corresponding tree complexities vary and can be much bigger
than 15. From these 500 trees, we a) uniformly pick one tree with an ‘average’ number of
mutations (note that the distribution of the number of mutations can easily be computed
recursively) and b) choose a tree with a number of mutations according to the empirical 80%
quantile of the 500 simulated trees (i.e. a tree with ‘many’ mutations). Sample trees chosen
according to other criteria of ‘atypically high sample complexity’ yielded similar results to
those from case b (data not shown). The computations were carried out using MetaGeneTree
on computers with a standard performance (using AMD Opteron CPUs with 2.6 GHz).

We begin with a), an average tree (with respect to number of mutations, for the given
parameters), and investigate the performance of our methods for three different parameter
values. Figure 7 shows the genetrees and the respective parameters used for its generation.
Figure 9 shows the respective number of runs and computing time needed so that the relative
empirical error of the likelihood estimate becomes smaller than 1%. Again, our proposal
distributions based on compressed genetrees fare rather well, with the notable exception of

.

b) Our next set of genetrees corresponds to the 80% quantile with respect to the number of
mutations on the tree (i.e. trees with an exceptionally large number of mutations, and
therefore relatively high tree complexity). Figure 8 shows the genetrees and the respective
parameters and Figure 10 gives the number of runs and computing time needed so that the
relative empirical error of the likelihood estimate becomes smaller than 1%. As expected,
the average computational time, due to increased complexity, increases significantly in
comparison to an ‘average’ tree. The relative performance of our methods, however, remains

similar – in particular,  performs best.

3.4. Average performance over many samples
We simulated 100 samples under a given pair of parameters and estimated the likelihood of
these samples for the same parameters. Whereas for the analysis in the previous section we
provided the exact number of runs, we now cumulated additional simulation runs until the
relative error dropped below 1%, increasing the number of new runs by a factor of 4 in each
step. Density plots for the number of runs needed to achieve this are given in Figure 11 (a)
for the parameters (1, 1.5) and in Figure 12 (a) for the parameters (1, 2) for selected proposal
distributions.

As before, we also measured the time required to achieve a relative error below 1% in term
of the actual computing time in seconds. The base-10 logarithms of the corresponding times
are given in Figure 11 (b) and Figure 12 (b) for selected proposal distributions. Since one
simulated sample for α = 2 showed no mutations, we assumed a duration of zero. For α = 1.5

(Figure 11) the proposal distribution  again performs better than the others.
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However, for α = 2 (Figure 12) performances are very similar with even a slight

disadvantage for  in terms of computing time.

3.5. Performance on real data sets
So far we have only dealt with simulated datasets of relatively small complexity. We now
analyse the performance of our methods on various real datasets.

We begin with a famous and well-studied dataset consisting of mitochondrial data sampled
by Ward et. al. ([WFDP91]) from the North American Nuu Chah Nulth tribe. The
corresponding genetree is given in Figure 13. These samples were analysed in a framework
similar to ours in [GT94] and [HUW08], and we use the data in the form edited by Griffiths
and Tavaré in [GT94,Figure 3]. We first estimated the maximum likelihood values for the
mutation rate r and the parameter for the Beta-coalescent α on a discrete grid. The values are
given in Table 2. Details of this method and possible biological implications will be
discussed elsewhere. We then used the estimated parameters to perform the same analysis as
in Section 3.3, that is we determined the number of independent runs and the computing
time to estimate the likelihood value at this point in the parameter space with a relative error
below 1%. The result is given in Figure 16 (cf. the symbol related to [GT94]). Again the
proposal distributions using pairs of mutations show good performance when the number of
runs is considered. However, this advantage almost vanishes when the total computation

time is considered. Still,  performs best.

Currently, evolutionary mechanisms to describe actual biological populations which might
give rise to Lambda-coalescent like genealogies (see e.g. [EW06]) are being discussed. In
this subsection we will further compare the performance of our methods on the datasets
considered in [A04], namely mitochondrial cytochrome b DNA variation data sampled from
various subpopulations of Atlantic Cod (Gadus Morhua). These datasets, depicted in Figure
14 and Figure 15, are taken from [AP96], [APP98] (only from the Baltic transition area),
[APKS00] (only the Greenland subsample), [CM91], [PC93] and [SA03] (only cyt b data).

Again, we estimated the maximum likelihood values for the mutation rate r and the
parameter for the Beta-coalescent α on a discrete grid and proceeded in a similar way as for
the Nuu Chah Nulth data. The estimated parameter values are given in Table 2 and Figure
164 and Figure 17 show the results of the runtime analysis.

Again the proposal distributions using pairs of mutations show a strong performance when
the number of runs is considered. However, this advantage vanishes when the computation

time is considered, where for some samples  and  even perform better. To some
extend this can be attributed to the increased effort the proposal distributions using pairs of
mutations have to invest in the precalculation.

3.6. Conclusion and guidelines for the practitioner
Table 1 shows that for a wide range of parameters and samples with complexity 15, the
proposal distributions using pairs of mutations are typically closer to the optimal proposal
distribution than the proposal distributions using less detailed information from the sample.
The distribution  performs better then the ‘standard’ , but is in turn outperformed

by . This relative ranking of distributions in principle holds throughout the

4The analysis for [GT94] under  showed a relative error of 7 % after 27 million runs taking 32 days.
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subsequent analysis in Sections 3.3, 3.4 and 3.5. The proposal distributions using pairs of
mutations perform consistently better than the others when the number of independent runs

is considered. Note that  is an exception to this rule (this fits to the observation

from p. 18 that  underrates mutation events).

However, when considering overall computation time, this clear picture changes. Though
the methods using compressed genetrees still outperform  and  in most cases,

 shows a performance comparable to our methods using pairs of mutations. On the
one hand this can be attributed to the actual implementation, on the other hand the
computational complexities per proposal step for different proposal distributions do differ,

ranging from constant (  and ) to linear (  and ) or quadratic in the
number of segregating sites. When real computation time is considered, the proposal

distribution  seems to make up for the lack in accuracy by smaller computation time
for each step when compared to the pair-wise methods.

A further increase in the runtime of the proposal distributions regarding pairs of mutations
needs to be attributed to the fact that they require precalculation of all steps in all samples
with up to two segregating sites. When analysing the more complex real data sets of the
previous section, this precalculation becomes a substantial component of the total computing
time. For example, our current implementation needed about 38 seconds for the
precalculation of samples of size 50, but this rapidly increases to 4250 seconds for samples

of size 100. In contrast, the proposal distribution  only requires precalculations for
samples with one or zero segregating sites, which is negligible for samples of size 100.

Still, if a sample configuration can be analysed by the proposal distribution , then
this proposal distribution yields a good performance. Furthermore, when several datasets are
to be analysed, the program MetaGeneTree allows to save computing time by storing the
precalculated optimal proposal weights in a file.

In conclusion one can say that the methods using compressed genetrees present an
improvement over the ‘canonical candidate’  or the heuristic generalisation of Stephens
and Donnelly’s idea for the Lambda-case, . For small to moderate sizes the pair-wise

methods perform rather well with  outperforming every other method.

In general, which proposal distribution works best in terms of real-time requirements
depends on the particular data set and the parameters. Thus, for larger datasets, we
recommend a small preparatory study to test the performance of the various methods. This
can easily be done with MetaGeneTree.

Appendix A

Appendix A.1. Generating samples: Details
The following is adapted from [BB08, Section 7]. Let {Πt}t≥0 be a Λ-coalescent. We denote
by {Yt}t≥0 the corresponding block counting process, i.e. Yt = #{blocks of Πt} is a
continuous-time Markov chain on ℕ with jump rates
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The total jump rate while in i is of course . We write

(A.1)

for the jump probabilities of the skeleton chain, noting that (pij) is a stochastic matrix. Note
that in order to reduce i classes to j classes, an i − j + 1-merger has to occur. Let

(A.2)

be the expected amount of time that Y, starting from n, spends in m. Decomposing according
to the first jump of Y, we find the following set of equations for g(n,m):

(A.3)

(A.4)

Let us write Y(n) for the process starting from . Let  be the time
required to come down to only one class, and let

be the time-reversed path, where we define , some cemetery state, when t ≥ τ.

With the above definitions, Ỹ(n) is a continuous-time Markov chain on {2, …,n} ⋃ {∂} with
jump rates

(A.5)

and , where g(n,m) is as in (A.2). The starting distribution of Ỹ(n) is given by
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for each k. We write , and denote .

Note that

(A.6)

i.e., the total jump rate of Ỹ(n) in state k ≤ n does not depend on n. (A.6) follows from the
observation that by monotonicity of paths, the set of times that Y(n) (and thus Ỹ(n)) spends in
a given state k is a.s. an interval (possibly empty), thus

because the hitting probability and the length of the time interval spent in k are the same for
the path Y(n) and its time-reversal.

Let  be the skeleton chain of the time-reversed block counting process. We

parametrise time for Ȳ(n) in such a way that  and . Thus, Ȳ(n) is a Markov

chain on {1, 2, …, n} ⋃ {∂} with transition matrix  (2 ≤ k ≤ n), 

(2 ≤ j < i ≤ n), .

The time-reversed block counting processes corresponding to different ‘target’ sample sizes
are related as follows: For n1 < n2 and any l0 = 1 < l1 < ⋯ < lm ≤ n1, we have

(A.7)

in particular, for l ≤ n1 ≤ n2,

(A.8)

To see (A.7) note that for 1 = l0 < ⋯ < lm ≤ n

dividing both sides by  gives
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The law of the sequence (Z0 := ([(0)]~, ({1})),Z1, …,Zc) generated by the following
Algorithm 1 is that of the sample histories described in Section 2.1. Note that it agrees with
[BB08, Algorithm 1] except for the way the ordering of the types is generated.

Algorithm 1
1.

Draw K according to the law of , i.e. Pr{K = k} = g(n, k)qk1. Begin with the a
single ‘ancestral type’ with multiplicity K, i.e. t = (x1), x1 = 0, n = (K), and so d =
1. Set s := 1.

2. Given Zc = (t, n) with d types, let k := |n|, and draw a uniform random variable U
on [0, 1].

•

If , then draw one type, say I, according to the present
frequencies.

– If nI = 1, Zc+1 arises from Zc by replacing xI by (s, xI0, …,
xIj(I)). Increase s by 1.

– If nI > 1, Zc+1 arises from Zc as follows: Copy Zc, decreasing
nI by one. Then define a new type x′ = (s, xI0, …, xIj(I)), draw
J uniformly from {1, …, d + 1} and insert x′ with
multiplicity one into Zc+1 just before the previous type J
(with the convention that the new type is placed at the end of
Zc+1 when J = d + 1). Increase s and d each by one.

•

If , then:

– If |n| = n, stop.

–
Otherwise, pick J ∈ {k+1, …, n} with .
Copy Zc+1 from Zc. Choose one of the present types I
(according to their present frequency), and add J − |n| copies
of this type, i.e. replace ni := ni + J − |n| in Zc+1.

3. Increase c by one, repeat 2).

Appendix A.2. A discussion of the combinatorial factor c(t, n) appearing in
(7)

Let t, a, n(a) = n, and thus also the sample size n = |n|, the number of segregating sites s and
the number of different types d visible in the sample be given. We evaluate c(t, n) more
explicitly, using ideas from Griffiths [G87].

Recall that an unordered unlabelled sample configuration with unordered types [t, n] is
equivalent to a non-planted rooted unlabelled graph-theoretic tree τ with n leaves and s + 1
internal vertices (a rooted graph-theoretic tree is called planted if the root node has degree
one and non-planted otherwise), see [G87, Theorem 1]. In this parametrisation, the leaves of
τ = τ([t, n]) correspond to the (unnumbered) samples, the internal nodes to segregating sites
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(except for the root of τ) and types to internal nodes with at least one subtended leaf. By
contrast, a given (t, n) with d ordered types can be viewed as such a tree in which the d
internal nodes with at least one subtended leaf carry distinct numbers from {1, …, d},
namely the type numbers.

The basic observation behind the following lemma is that removing the root node (and
connecting edges) from a rooted tree leaves a number of (possibly planted) rooted trees that
can be grouped into classes of isomorphic trees.

Lemma Appendix A.1
Order the types in [t, n] in some arbitrary fashion, yielding (t, n). Let the root of τ = τ ([t,
n]) have k > 0 descendants, 0 ≤ l ≤ k of which are leaves. Group the subtrees founded by the
descendants which are not leaves into isomorphy classes (isomorphy as rooted trees). Write
r for the number of non-leaf classes and g1, …, gr for their sizes (in some arbitrary
ordering). Necessarily g1+⋯+gr = k−l. Call representatives of the r different classes τ1, …,
τr. There are

(A.9)

permutations of the type numbers that do not change τ, with the empty product interpreted
as 1, and c(t, n) is defined in (8).

Proof—We prove the statement by induction on the number of nodes in τ (equivalently, the
sample complexity). For a tree with 3 nodes, corresponding to a sample of size 2 with no
mutations, Equation (A.9) yields the correct answer 1.

Now consider τ, where the root has k − l non-leaf descendants in r classes of sizes g1, …, gr.
For each i = 1, …, r there are c(τi) ways to permute the type names without changing τi
(viewed as an unnumbered unlabelled sample with ordered types). Since there are gi
representatives of this class attached to the root, this yields c(τi)gi possibilities. Additionally,
we can interchange the complete set of type names between the subtrees in class i, giving
another factor gi!. Since the type name changes in a given class do not affect the changes in
the other classes, the factors from each class have to be multiplied to obtain the result.

Remark Appendix A.2
1. See Figure 18(a), 18(b) for two representations of

which has c(t, n) = 2.

2. When implementing the recursion (A.9) on a computer, one obviously has to
compute isomorphy classes of subtrees of a given tree. There, we have found it
useful to pass to planar representatives of the given graph-theoretic rooted trees and
implement a total order on such trees (for which there are various possibilities).
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Appendix A.3. Speed-up: Precomputations and multiple parameter sets
Assume that for some A ⊂ T*, pθ(t′, n′) is (numerically) known for all (t′, n′) ∈ A. In
practice, this can be achieved by including in A only such samples for which (10) can be
solved numerically on the given computer architecture.

Figure A.18.
The effect that reordering does not change the tree visualised in both corresponding
representations.
This information can be combined with importance sampling schemes as discussed above by
running the proposal chains only until they hit A, thus reducing the variance of the
estimators: Let H ̃ = (H ̃i) := (H−i) be the time-reversed history, (t, n) ∈ T with |n| = n be
given and let Q be a proposal distribution (compatible with (14)) under which (H ̃i) is a
Markov chain, starting from H ̃0 = (t, n). Then we have

(A.10)

where τA := min{i : H ̃i ∈ A} and |H ̃τA| denotes the number of samples in H ̃τA. Analogous to
(16), by averaging the term inside the Q-expectation in (A.10) over independent draws from
Q, this yields an unbiased estimator of pθ(t, n) whose variance will be smaller than that of
(16).

For given (t, n) = h0, h1, …, hs ∈ T* with hi ∉ A, i = 0, 1, …, s − 1, hs ∈ A, we have

by the Markov property under ℙθ,n, thus (A.10) follows from (20), Lemma 2.1 and the
Markov property under Q.

Note that (16) and the analogous estimator built from (A.10) can be used to simultaneously
estimate pθ(t, n) for various values of θ from the same runs under a given Q (of course,
yielding correlated estimators). This can be computationally more efficient for example
when computing likelihood surfaces. See, e.g., [TZ04], Sect. 6.3 on how to combine
estimators from different runs.

Appendix A.4. Estimating times and aspects of the genealogy given the
data

The time-reversed history (H ̃i) = (H−i) describes the skeleton chain of a(n n-)Λ-coalescent
with mutations according to the IMS model. It is straightforward to augment this with ‘real
times’ (on the coalescent time scale): Given H ̃ = (H ̃0, …, H ̃τ−1), the coalescent process will
spend time Vi in the i-th state, where the Vi are conditionally independent with L(Vi∣H ̃) =
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Exp(r|H ̃i| + λ|H ̃i|), thus Ti := V0 + ⋯ + Vi−1, the time of the i-th event, can be readily
simulated given H ̃. Furthermore, for any function f ((H ̃i), (Ti)) of the reversed history and its
(coalescent) time embedding, we have

(A.11)

for any proposal distribution Q satisfying (14), where implicitly, the conditional law of (Ti)
given H ̃ = (H ̃i) is the same under Q and under ℙθ,n. Thus, in analogy with (16),

(A.12)

is an unbiased and consistent estimator of (A.11), where H ̃(1), …, H ̃(M) and the

corresponding  are independently drawn from Q.

For example, using f ((h̃i), (ti)) = t1 +⋯+ tτ−1 or f ((h̃i), (ti)) = 1(t1 +⋯+tτ−1 ≤ x), combined
with an estimate of pθ(t, n), this approach can be used to estimate the conditional mean or
even the conditional distribution of the time to the most recent ancestor of the sample, given
the observed data. Similarly, the conditional age of a particular mutation can be estimated
(when undoing the equivalence relation ~). This extends the line of thought from [GT94] to
the Lambda-coalescent context.
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Figure 1.
The sample configurations  and . The sample has one segregating site
respectively no segregating site.
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Figure 2.
A sample configuration is depicted on the left and a type i is marked. On the right all
possible compressed genetrees are listed. The type corresponding to i is marked in the
compressed genetrees. Either type i corresponds to the type carrying the mutation or not.
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Figure 3.
The two different sample configurations of size n with two segregating sites (or mutations).
di individuals carry mutation i, i = 1, 2.
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Figure 4.
Two examples of genetree compressions. The type i is identified with one of the three types
in the compressed sample by this procedure.
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Figure 5.
The five different cases of types being affected by the most recent event in the two genetrees

corresponding to configurations (Case III and V) and  (Case I, II and
IV). The shaded node refers to the proposed type.
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Figure 6.
Type II has multiplicity one and is a descendant of type I. Thus all pairs of mutations that do
not include the outmost mutation of type II weigh the step removing the outmost mutation of

type two with zero. The table on the right shows that  is closer to the optimal

distribution than 
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Figure 7.
Trees showing an average number of mutations out of 500 simulated trees under the
respective parameters (leaf labels correspond to type multiplicities).
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Figure 8.
Trees showing a number of mutations that equals the empirical 80% quantile of 500
simulated trees under the respective parameters.
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Figure 9.
Number of runs and computing time needed to obtain a relative error below 1% for the
‘average trees’ given in Figure 7.
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Figure 10.
Number of runs and computing time needed to obtain a relative error below 1% for the trees
of high relative complexity given in Figure 8.
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Figure 11.
Empirical distributions for the number of runs and the real-time for 100 samples of size 15
with, simulated with r = 1 and α = 1.5. The likelihood was computed for the same
parameters.
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Figure 12.
Empirical distributions for the number of runs and the real-time for 100 samples of size 15
with, simulated with r = 1 and α = 2. Again, the likelihood was computed for the same
parameters.
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Figure 13.
The genetree corresponding to the dataset from [GT94].
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Figure 14.
The genetrees corresponding to the datasets from [AP96], [APP98] and [APKS00].
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Figure 15.
The genetrees corresponding to the datasets from [CM91], [PC93] and [SA03].
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Figure 16.
Number of runs and computing time needed to obtain a relative error below 1% for the
genetrees corresponding to the datasets from [GT94], [AP96] and [APP98] given in Figure
13 and 14.
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Figure 17.
Number of runs and computing time needed to obtain a relative error below 1% for the
genetrees corresponding to the datasets from [APKS00], [CM91], [PC93] and [SA03] given
in Figure 14 and 15.
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