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Abstract
mRNA expression profiling has suggested the existence of multiple glioblastoma subclasses, but
their number and characteristics vary among studies and the etiology underlying their development
is unclear. In this study, we analyzed 261 microRNA expression profiles from the Cancer Genome
Atlas (TCGA), identifying five clinically and genetically distinct subclasses of glioblastoma that
each related to a different neural precursor cell type. These microRNA-based glioblastoma
subclasses displayed microRNA and mRNA expression signatures resembling those of radial glia,
oligoneuronal precursors, neuronal precursors, neuroepithelial/neural crest precursors or astrocyte
precursors. Each subclass was determined to be genetically distinct, based on the significant
differences they displayed in terms of patient race, age, treatment response and survival. We also
identified several microRNAs as potent regulators of subclass-specific gene expression networks
in glioblastoma. Foremost among these is miR-9, which suppresses mesenchymal differentiation
in glioblastoma by downregulating expression of JAK kinases and inhibiting activation of STAT3.
Our findings suggest that microRNAs are important determinants of glioblastoma subclasses
through their ability to regulate developmental growth and differentiation programs in several
transformed neural precursor cell types. Taken together, our results define developmental
microRNA expression signatures that both characterize and contribute to the phenotypic diversity
of glioblastoma subclasses, thereby providing an expanded framework for understanding the
pathogenesis of glioblastoma in a human neurodevelopmental context.
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Introduction
Glioblastoma is the most common and most malignant intrinsic brain tumor (1, 2). Because
of the extremely unfavorable prognosis of glioblastoma (median survival of 14 to 16
months), it is important to develop more effective diagnostic and therapeutic strategies that
are based on a biologically and clinically relevant disease subclassification system (3).
Recent studies have proposed at least two mRNA-based classification systems for
glioblastoma: ‘proneural – proliferative –mesenchymal’ (4) and ‘proneural – neural –
classical – mesenchymal’ subtypes (5). These studies differ regarding the number of
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subclasses, their relationship to neural differentiation, and whether they have prognostic
value. Although there is a consensus that the expression signature of one of the subclasses
resembles that of a ‘proneural’ precursor cell (4, 5), the relationship of other glioblastoma
subclasses to neural differentiation is less clear. Moreover, there is disagreement regarding
the relationship of the subclasses to patient survival (4, 5).

MicroRNAs are short, non-coding RNAs that are key regulators of neural development and
cancer. Previous studies suggest that expression-based clustering using microRNAs may
yield more accurate histological and prognostic sample classification than clustering based
on mRNA expression (6, 7). The recently published Cancer Genome Atlas (TCGA) data set
for glioblastoma includes the expression profiles of microRNAs as well as data for mRNA
expression, somatic mutations and copy number changes for tumors from more than 260
glioblastoma patients (8). In this study, we use microRNA expression-based clustering to
identify five clinically and genetically distinct glioblastoma subclasses, each of which
corresponds to a specific neural precursor cell type. We describe the genetic and clinical
features of each glioblastoma subclass, and we show that microRNAs help to establish these
subclasses by regulating neurodevelopmental growth and differentiation programs.

Materials and Methods
Consensus clustering of microRNA expression profiles

MicroRNA expression profiling was performed using Agilent 8 × 15K Human microRNA-
specific microarrays in The Cancer Genome Atlas (TCGA) pilot study (8). Processed (level
3) microRNA expression data as well as the clinicopathological annotations for 261
glioblastoma patients were downloaded from TCGA portal
(http://cancergenome.nih.gov/dataportal/). We first removed viral origin microRNAs. The
expression data for the remaining 470 microRNAs were mean centered, and the standard
deviation was normalized to one per array. We then filtered those with low variability in
expression level (median absolute deviation or MAD < 0.1). We used three additional
criteria to further select a group of highly informative microRNAs (Supplementary Fig. S1
and Table S1). These criteria included (i) microRNAs showing highly variable expression
(MAD > 1.0; n = 45), (ii) patient survival-related microRNAs (significance in univariate
Cox model < 0.1; n = 58) and (iii) neurodevelopment-related microRNAs (n = 57) which
were manually curated from the published literature (Supplementary Table S2).
Supplementary Table S1 also lists the regression coefficients and P values for these
microRNAs, which were estimated using a univariate Cox regression model. The resultant
group of 121 microRNAs was used for sample- and microRNA-clustering using a consensus
clustering algorithm (9). Consensus clustering was performed using the hierarchical
clustering method with average linkage and 1 minus the Pearson's correlation coefficient as
the distance measure. A total of 100 permutation tests were performed with a subsampling
ratio of 0.8. Consensus clustering was performed both for glioblastoma (n = 261 patients)
and microRNA (n = 121 microRNAs) subgrouping. The optimal number of glioblastoma
and microRNA subgroups was determined using a consensus clustering cumulative
distribution function (CDF) and consensus matrices (Supplementary Fig. S2).

Genomic alterations in GBM subclasses
The mutation profiles as well as the genomic alteration profiles for glioblastoma were
downloaded from TCGA portal. For mutation analyses, we first collected 1320 validated
somatic mutations for 147 TCGA glioblastoma samples (8). We further selected 1065 non-
silent mutations for 140 TCGA glioblastomas that were available for microRNA-based
cluster membership. The significance of mutation frequency across the five microRNA-
subclasses was calculated using a two-sided Fisher's exact test. For each gene, the
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significance was calculated as the probability of observing the mutation frequency in each
microRNA subclass given the total number of mutations for that gene and the number of
samples in each subclass. In calculating the significance, we ignored the mutations present
in the seven hypermutation samples (annotated in a previous publication) (8). The mutation
frequency of the top 23 most frequently-mutated genes is available in Supplementary Table
S3.

For copy number profiles, we used the circular binary segmentation (CBS) smoothed copy
number profiles of Agilent 244K array comparative genomic hybridization profiles (10).
Significant copy number changes for the five microRNA subclasses were identified using
GISTIC software (11). The significantly recurrent amplifications and deletions (false
discovery rate or FDR < 0.25) were considered as microRNA-based glioblastoma subclass-
specific alterations. Subclass-unique alterations were further identified by filtering
significant alterations in one glioblastoma subclass with those in the remaining 4
glioblastoma subclasses. Genes belonging to unique alterations occurring in each
microRNA-based glioblastoma subclass are provided in Supplementary Table S4.

For gene expression data analysis, we used unified expression profiles across three different
gene expression microarray platforms (Affymetrix U133A, Affymetrix Exon, and Agilent
custom 244K expression) as available in the published literature (4). The unified expression
level of 11861 genes was used for expression analysis across 197 TCGA glioblastoma
samples that were available for the microRNA-based five cluster membership. Annotations
for the four mRNA-based glioblastoma subclasses (proneural, neural, classical and
mesenchymal) were also downloaded from the published literature (4) and correlated with
the microRNA-based glioblastoma subclasses.

We obtained the promoter methylation status of the MGMT gene, which was profiled using
the Illumina DNA Methylation Cancer Panel I (8). The calculated methylation values (β
value) of two CpG dinucleotides located at 281bp and 271bp upstream of the MGMT
transcription start site were rescaled as previously described (8). The 59 glioblastoma cases
with MGMT promoter methylation (rescaled β > 0.25) were selected and compared with the
remaining cases for survival differences in each microRNA-based glioblastoma subclass.

Combined analysis with mRNA expression profiles
To examine the expression-level association of microRNA and mRNA signatures, we used
module and gene set matrix analysis (12-14). First, we collected 7 gene sets (mRNA
signatures) whose gene members show higher expression in different types of differentiated
neural cells (4 gene sets) or stem cells (3 gene sets). For the differentiated neural cell types,
we obtained expression profiles representing mouse neurons, oligodendrocytes or (cultured)
astrocytes (15). Four neural cell types were distinguished according to the original tissue
descriptions in the dataset (GEO accession, GSE9566), and these distinctions were further
confirmed by hierarchical clustering. We next used a t-statistic to select the top 500 up-
regulated genes for each of the four neural cell types, and subsequently used these genes as
representative gene sets for the four differentiated neural cell types. We also obtained 3
stemness-related gene signatures from MSigDB database (16) representing up-regulated
genes in human embryonic, hematopoietic and neural stem cells
(STEMCELL_EMBRYONIC_UP, _HEMATOPOIETIC_UP and NEURAL_UP,
respectively). The correlation (Pearson's correlation coefficient) between individual genes in
each gene set and the expression of individual microRNAs was determined. The mean
correlation level in each gene set was then converted into a Z-score and shown in a heatmap
(Fig. 1). In the heatmap, a higher Z-score indicates that the expression level of the
microRNA in question is highly correlated with gene expression in the gene set across the
glioblastoma samples. Lower Z-scores are indicative of negative correlations between the
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expression of the microRNA and that of the gene set in the context of the glioblastoma
samples. For Supplementary Fig. S4, the 7 gene sets were measured for the extent of
enrichment in individual glioblastoma samples by calculating the Z-score as the normalized
mean expression intensity of genes in the corresponding glioblastoma sample.

For extended functional correlation analysis, we used gene ontology (GO) categories. Gene
sets representing GO categories were downloaded from MSigDB
(http://www.broadinstitute.org/gsea/msigdb/; c5 GO categories). We further selected 1268
GO terms with ≥ 5 genes and ≤ 500 genes. We first performed parametric gene set
enrichment analysis (PAGE) for 1268 GO sets across 121 microRNAs (17). The correlations
between 121 microRNAs and 11861 mRNAs were then measured and used to calculate a Z-
score. Then, the significance of the degree of enrichment (the Z-score) was calculated by
PAGE algorithm for individual microRNA and GO category pairs (17). We further selected
1190 GO categories that showed significant enrichment (FDR < 0.05) with at least one
microRNA. A matrix was constructed across 1190 GO categories and 121 microRNAs by
placing the Z-score only for GO category/microRNA pairs with significant (FDR < 0.05)
enrichment. In Fig. 5, hierarchical clustering was performed on the Z-score matrix, and the
Dynamic Tree Cut software program was used to group the 1190 GO categories into 15
functional categories according to the correlation similarities (18).

Co-expression network and microRNA regulon analysis
The expression profiles of 121 microRNAs and 11861 genes were separately prepared and
merged across 197 glioblastoma samples for which both microRNA and mRNA expression
data was available. Pearson's correlation coefficients were measured for all possible
combinations of entries in a pairwise manner, excluding self-to-self comparisons. The
distribution of correlations for three different combinations (microRNA-vs-microRNA,
microRNA-vs-gene and gene-vs-gene) is shown in Supplementary Fig. S9. To identify the
cutoff of significant correlation for microRNA-vs-gene pairs, we performed 100 permutation
tests in which the Pearson correlation was measured for label-permuted expression profiles.
The distribution of Min and Max correlation levels in each permutation test is shown in
Supplementary Fig. S9. The correlation cutoff for positive and negative correlations between
microRNA-vs-gene pairs was set to be the lowest value of upper 5 percentile of Max
correlation (+0.60) and the highest value of lower 5 percentile of Min correlation (-0.40),
respectively. Applying these cutoffs, we obtained 8752 significant correlations between 74
microRNAs and 2822 mRNAs. We measured the connectivity (i.e., the number of directly
connected mRNAs) for individual microRNAs. In the case of miR-9, we collected the
predicted miR-9 target genes from 3 different algorithms (miRanda, PicTar and TargetScan).
The miRanda miR-9 targets (n = 1283) and TargetScan miR-9 targets (n = 629) were
obtained from their websites (http://www.microrna.org and http://www.targetscan.org,
respectively) (19, 20). The PicTar (21) miR-9 targets (5-way conserved n = 191 and 4-way
conserved n = 491) were obtained from the UCSC Genome Browser
(http://genome.ucsc.edu/). Significant enrichment of miR-9 predicted target genes among
the total number of genes correlated with miR-9 expression was determined by Fisher's
exact test.

Cell culture and reagents
The human U251 glioblastoma cell line was authenticated by and obtained from the
American Tissue Type Culture Collection (ATCC) within the last ten years. The cells were
expanded by culturing for less than two passages, and were subsequently frozen in liquid
nitrogen for storage. For experiments, low passage cells were thawed and used within four
months. Primary human CD133+ glioblastoma cancer stem cells were isolated from surgical
specimens and expanded as tumorspheres in serum-free medium for less than three passages
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as described (22), and were subsequently frozen in liquid nitrogen for storage. For
experiments, low passage cells were thawed and used within four months. Methods for
lentivirus construction, immunoblotting, BrdU proliferation assays and the use of
microRNA mimics, inhibitors and controls (100 μM) were as described (22). Antibodies
used were STAT3, phospho-STAT3 (Cell Signaling); JAK1, JAK2, JAK3, CD44, GCM1,
CEBP-β and β-actin (Abcam).

Results
Consensus clustering using microRNA expression profiles

We obtained microRNA expression profiles for 261 glioblastomas from The Cancer
Genome Atlas portal (8). We selected for analysis 121 microRNAs (Supplementary Fig. S1
and Table S1) that demonstrated highly variable expression, were related to patient survival
or were previously associated with neural development (23-28) (see Materials and
Methods). Consensus clustering of 261 glioblastomas using these 121 microRNAs identified
five microRNA clusters and five distinct glioblastoma subclasses (Fig. 1A; Supplementary
Fig. S2 and Fig. S3).

A review of published literature (Supplementary Table S2) revealed that four of the five
microRNA clusters were enriched for microRNAs expressed in oligoneuronal precursors,
multipotent neural precursors, neuronal precursors or astrocytes, respectively (Fig. 1A;
middle panel). The remaining cluster contained microRNAs that regulate differentiation and
metabolism in both neural and mesenchymal tissues. For example, miR-206, a muscle-
enriched microRNA that is also highly expressed in the cerebellum and dorsal root ganglion,
inhibits oligodendrocyte and osteoblast differentiation and promotes muscle differentiation
(25, 29, 30). MiR-451 is expressed in the cortex and in dorsal root ganglion, regulates
invasion and metabolism in glioblastoma and promotes erythroid differentiation (25, 31, 32).

A highly orchestrated and unique progression of microRNA expression accompanies each
stage of development. We therefore examined the correlation between the expression of
individual microRNAs and several differentiation-related mRNA signatures across the
glioblastoma samples, and subsequently rendered these correlations as a heatmap (Fig. 1A;
right panel). mRNA signatures representing four murine neural cell types and three human
stem cell types were used (see Materials and Methods). MicroRNA expression in the
oligoneuronal precursor microRNA cluster correlated with mRNA signatures from
oligodendrocytes, embryonic stem cells and neural stem cells. The multipotent precursor
cluster was associated with the mRNA expression patterns of astrocytes as well as
hematopoietic, embryonic and neural stem cells. The neuronal precursor microRNA cluster
was associated with neuronal and oligodendrocyte mRNA expression patterns. The
neuromesenchymal microRNA cluster was associated with the mRNA signature of cultured
astrocytes and, to a lesser degree, embryonic and neural stem cells. The astrocytic
microRNA cluster was accompanied by mRNA patterns characteristic of cultured astrocytes
and neural/hematopoietic stem cells. Thus, both the microRNA and mRNA signatures
associated with each microRNA cluster corresponded to a specific stage of neural precursor
differentiation.

These five differentiation-related microRNA clusters contributed in various combinations to
define five subclasses of glioblastoma, suggesting a relationship between each subclass and
a distinct stage of neural differentiation. We therefore examined the expression of mRNAs
for stage-specific markers of neural differentiation in each microRNA-based glioblastoma
subclass (Fig. 1B). Subclass I, which was dominated by expression of the oligoneuronal
precursor microRNA cluster, showed increased oligodendrocyte/neuronal precursor markers
such as NKX2-2, OLIG2, SOX2, SOX10, SLC1A1 and ASCL1. Subclass II showed increased

Kim et al. Page 5

Cancer Res. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



expression of the astrocytic, oligoneural and multipotent precursor microRNA clusters and
expressed numerous radial glia markers, including PAX6, SOX2, NES, FABP7, SLC1A3,
GFAP and others. Subclass III displayed increased expression of the neuronal precursor
microRNA cluster and expressed neuronal markers such as TBR1, SLCA1 and NEUROD2.
Subclass IV showed increased expression of the neuromesenchymal microRNA cluster, was
enriched for SOX1, PAX2, PAX9 and HAND1, and displayed modest upregulation of radial
glia markers. SOX1 inhibits the differentiation of neuroectoderm into radial glia (33).
HAND1, PAX2 and PAX9 are expressed in cephalic neural crest precursors (34-37) and
regulate their neuromesenchymal differentiation repertoire (i.e. neurons, glia, melanocytes,
osteocytes, chondrocytes and myofibroblasts). Subclass V showed increased expression of
the astrocytic microRNA cluster and astrocyte markers such as GCM1 and REST (38, 39).
Furthermore, sample-wise gene expression in the five glioblastoma subclasses was closely
related to the expression signatures of the differentiated progeny of the parent neural
precursors (Supplementary Fig. S4). Based upon these findings, we have named each
glioblastoma subclass according to its associated stage of neural precursor cell
differentiation, i.e. ‘oligoneural’, ‘radial glial’, ‘neural’, ‘neuromesenchymal’, and
‘astrocytic’.

Clinical characteristics of GBM subclasses
When compared to the glioblastoma subclasses identified using mRNA consensus clustering
(4), the microRNA-based oligoneural, radial glial and astrocytic subclasses were enriched in
tumors from the mRNA-based proneural, classical and mesenchymal subgroups,
respectively (Fig. 2A). However, 20 to 50% of the tumors in the mRNA-based subclasses
were reclassified into other groups using microRNA expression. The neural and
neuromesenchymal subclasses contained a mixture of tumors from all four mRNA-based
glioblastoma subclasses.

We observed that microRNA-based consensus clustering yielded robust survival differences
among glioblastoma subclasses (Fig. 2B, P = 0.009, Logrank). Patients with oligoneural
glioblastomas lived significantly longer than patients with radial glial (P = 0.018, Logrank),
neural (P = 0.006, Logrank) or astrocytic tumors (P = 0.002, Logrank), and those with
neuromesenchymal glioblastomas showed a trend toward longer survival (P = 0.084,
Logrank) when compared to patients with astrocytic tumors (Fig. 2B). In contrast to our
findings, previous reports using mRNA-based consensus clustering failed to identify
significant survival differences among glioblastoma subclasses (4, 40). Consistent with these
reports, we also do not observe significant survival differences among mRNA-based
glioblastoma subclasses (Fig. 2C). Detailed analysis revealed that the difference derives
primarily from a 50% increase in median survival for the microRNA-based oligoneural
subclass when compared to the median survival for the mRNA-based proneural subclass
(see Fig. 2B and Fig. 2C). When the proneural subclass was further divided into those
samples that were also categorized as oligoneural and those that were not, we observed a
significant survival advantage for proneural tumors that were also designated as oligoneural
(P = 0.039, Logrank; Supplementary Fig. S5). Furthermore, we continued to observe
significant survival differences between glioblastoma subclasses when clustered using only
the highly variable (n = 45; Logrank P = 0.001), survival-related (n = 58; Logrank P =
0.002) or neurodevelopment-related (n = 57; Logrank P = 0.043) microRNA subsets as
independent data sets (Supplementary Fig. S6).

The age at diagnosis was significantly different (P = 0.011, one-way ANOVA) among
glioblastoma subclasses. On average, patients with oligoneural glioblastomas developed
disease at a younger age (Fig. 2D; Supplementary Fig. S7) (4, 5). Additionally, we observed
significant racial differences across microRNA-based glioblastoma subclasses (P = 0.021,
Fisher's exact) (Fig. 2E; Supplementary Fig. S7). An increased percentage of non-Caucasian
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patients was observed among the neural and astrocytic subclasses when compared to the
radial glial subclass (P = 0.03, Proportion test).

For each subclass, we compared the clinical response of patients treated with radiation (at
least 54 Gy) and temozolamide (2 or more cycles administered separately or concurrent with
radiation) to that of patients treated with all other regimens (Fig. 3A). A significant survival
benefit of radiation and temozolamide was observed for patients with tumors in the
astrocytic subclass, but not for those with tumors in the oligoneural, neural or
neuromesenchymal subclasses. A trend toward improved survival was observed in the radial
glial subclass (P < 0.085, Logrank), and this trend became significant (P < 0.014, Logrank)
after exclusion of a single long-surviving outlier.

We also analyzed the relationship between MGMT promoter methylation and patient
survival in each of the microRNA subclasses (Fig. 3B). Overall, we observed that tumors
harboring MGMT promoter methylation have a more favorable prognosis (P = 0.045,
Logrank). However, individual subclasses showed differential patterns of survival with
respect to MGMT promoter methylation. In particular, a significant association between
MGMT promoter methylation and longer survival was observed in the neuromesenchymal
glioblastoma subclass (P = 0.046, Logrank).

Mutation and copy number profiles of GBM subtypes
Each microRNA-based glioblastoma subclass displayed a distinct pattern of somatic
mutations, some of which were observed in studies using mRNA for glioblastoma
subclassification (Fig. 4A; Supplementary Table S3) (4). The oligoneural subclass was
enriched for IDH1 and PIK3R1 mutations, but lacked NF1 mutations. Interestingly, six of
seven “hypermutator” tumors (8) were grouped into the oligoneural subclass. EGFR
mutations were more common in the radial glial subclass. The neuromesenchymal subclass
was enriched for PTEN and FKBP9 mutations but lacked RB1 mutations, while the
astrocytic subclass was enriched for PTEN and RB1 mutations.

Each subclass also displayed a unique pattern of copy number alterations (Fig. 4B and 4C;
Supplementary Fig. S8 and Table S4). For example, MYC, PIK3CA, WT1, and MYCN were
amplified in the oligoneural, radial glial, neuromesenchymal, and astrocytic subclasses,
respectively, while loci containing CASP3 and NF1 were deleted primarily in the
neuromesenchymal subclass.

Integrative functional analysis using microRNA and mRNA profiles
To identify pathways activated in each glioblastoma subclass, we measured the extent of
correlation between the expression of individual microRNAs and that of mRNAs in 1190
curated GO categories. The GO categories were further grouped into 15 modules based upon
hierarchical clustering of the correlation matrix linking the individual microRNAs with their
putative functions (Fig. 5A). From this analysis, we inferred upregulation of proliferative
and neurodevelopmental pathways in the oligoneural, radial glial and neural subclasses, and
downregulation of RNA and DNA metabolism in the neuromesenchymal and astrocytic
subclasses. Importantly, the neuromesenchymal and astrocytic subclasses displayed
upregulation of the NFKB and JAK/STAT pathways.

MicroRNA contribution to subclass phenotype
Analysis of microRNA-mRNA correlations (41, 42) revealed significant correlations
between 74 microRNAs and 2822 genes (Supplementary Fig. S9). Some microRNAs (such
as miR-9, miR-9* and miR-222) displayed disproportionately high connectivity (Fig. 5B and
5C), suggesting that they might serve as core regulators of subclass-specific gene expression
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in glioblastoma. To investigate this possibility, we focused on miR-9, which was
upregulated in the oligoneural subclass and identified as the microRNA with the largest
correlated gene expression network. Genes correlated with miR-9 showed significant
enrichment for predicted miR-9 target genes (Supplementary Fig. S9). Importantly, miR-9
promotes neural stem cell differentiation and cooperates with miR-124a to inhibit STAT3
phosphorylation in neural stem cells by an unknown mechanism (24). We used microRNA
target prediction algorithms (http://www.targetscan.org; http://www.microrna.org) to
identify putative binding sites for miR-9 in the 3′-UTR of JAK1, JAK2 and JAK3, all of
which phosphorylate STAT3. MiR-9 was anti-correlated with JAK2 and JAK3 mRNA
expression in glioblastoma (Pearson's correlation coefficient or PCC of -0.34 and -0.56,
respectively), and a miR-9 mimic decreased expression of luciferase mRNA fused to the
JAK1 or JAK2 3′-UTR (Supplementary Fig. S10). In human U251 glioblastoma cells or in
CD133+ glioblastoma cancer stem cells (GCSCs) obtained from surgical specimens,
exposure to a miR-9 mimic (100 μM) or lentiviral-mediated overexpression of miR-9
decreased JAK1, JAK2 and JAK3 protein expression (Fig. 6A). Furthermore, miR-9 alone
(but not miR-124a) (25) decreased STAT3 phosphorylation in U251 glioblastoma cells and
in primary human CD133+ glioblastoma stem-like cells, and it also decreased expression of
the STAT3 transcriptional target, CEBP-β, in CD133+ glioblastoma cells (Fig. 6B). An
essential role for STAT3 and CEBP-β in maintaining the mesenchymal phenotype in
glioblastoma has been reported (43). Accordingly, the miR-9 mimic decreased expression of
astrocytic/mesenchymal markers (GCM1, CD44 and GFAP), increased expression of the
neuronal marker, TuJ1 (Fig. 6C) and inhibited GCSC proliferation (Fig. 6D).

Other developmentally-regulated microRNAs also contribute to glioblastoma subclass
maintenance. For example, we identified miR-124a as a hub microRNA in the neural
glioblastoma subclass (see Fig. 5B). This microRNA has been reported to play an instructive
role during neuronal differentiation of neural precursors (25), and we and others find that it
induces neuronal differentiation and inhibits growth in GCSCs (44).

Discussion
MicroRNAs reveal a greater diversity of glioblastoma subclasses than previously
recognized. We identified five glioblastoma subclasses with concordant microRNA and
mRNA expression signatures corresponding to each major stage of neural stem cell
differentiation. This marked degree of correspondence provides some of the strongest
evidence yet in humans that glioblastomas arise from the transformation of neural
precursors, as suggested by animal studies (45). Importantly, the signatures correspond to
neural precursors at multiple stages of differentiation, suggesting that glioblastomas can
arise from cells at each of these stages. Our finding that the largest glioblastoma subclass
displays a neuromesenchymal signature resembling that of early neuroepithelial or cephalic
neural crest precursors is supported by reports of neuromesenchymal differentiation in
CD133+ GCSCs from recurrent glioblastomas (46). The latter result raises the possibility
that this signature results from oncogenic reprogramming to a neuromesenchymal-like state
(5, 44, 46).

These observations place previously reported effects of microRNAs on glioblastoma growth
(23, 32, 44, 47) into a neurodevelopmental context, and reveal that microRNA-dependent
regulation of growth and differentiation programs contributes significantly to glioblastoma
diversification and patient outcome. The importance of this phenomenon is underscored by
the fact that microRNA-defined glioblastoma subclasses display robust differences in
genetic alterations, patient demographics, response to treatment and patient survival
(Supplementary Fig. S11).
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Consistent with previous reports (4, 40), we observed that mRNA-based glioblastoma
subclasses do not exhibit significant survival differences. In contrast, microRNA-based
glioblastoma subclasses showed robust survival differences among them. Although the
mRNA-based proneural subclass has been associated with longer survival (5), our data
shows that patients with proneural tumors can be further segregated into two subgroups with
significant survival differences using microRNA-based consensus clustering. These findings
indicate that the mRNA-based proneural subclass represents a heterogeneous population in
terms of survival. This observation is supported by a recent study examining DNA
methylation in glioblastoma, which identified a subpopulation of proneural tumors with a
hypermethylation phenotype and prolonged survival (40). Such heterogeneity may be
partially responsible for the previous inability to build a prognostic model using mRNA
expression data (4, 40).

We observed that all of the initial microRNA subsets used in this study (i.e. highly variable
(n = 45), neurodevelopmental (n = 57) and survival-related (n = 58) microRNA) yield
significant survival differences among glioblastoma subclasses when used independently to
cluster the glioblastoma samples (Supplementary Fig. S6). This analysis also revealed that
each of the five microRNA-based glioblastoma subclasses was distinguished in at least one
of the three alternative clustering paradigms, and four of the five subclasses were identified
in at least two of the clustering paradigms, despite the fact that roughly one half to one third
the original number of microRNAs was used each time (Supplementary Fig. S6). The neural
subclass was only identified clearly using the neurodevelopmental microRNA subset.
Importantly, clear evidence for the newest subclass of glioblastoma (neuromesenchymal)
was obtained using either the survival-related or the neurodevelopment-related microRNA
subsets alone for clustering glioblastoma samples. Thus, the survival and development-
related differences observed in our study are not due solely to the inclusion of one (i.e.
survival-related or development-related) of the microRNA subsets.

The difference in racial composition observed among glioblastoma subclasses is of
particular interest, given the existence of racial differences in the overall incidence of
gliomas. Similarly, the finding that only a subset of glioblastoma subclasses responds to
standard treatment (i.e. radiation and temozolamide) agrees with a previous report (4) and
has significant clinical implications for treatment. We also observed that, overall, MGMT
promoter methylation is associated with a more favorable prognosis. This effect is most
pronounced in the neuromesenchymal subclass of glioblastoma, and may contribute to the
relatively prolonged median survival observed in this glioblastoma subclass. Surprisingly,
however, this subclass did not demonstrate responsiveness to temozolamide and radiation.
The reasons for this discrepancy are unclear. One possibility is that, in addition to increasing
the response to standard therapy, MGMT promoter methylation may be associated with the
presence of other molecular changes that contribute to improved survival. Indeed, MGMT
methylation is known to promote the acquisition of specific types of mutations that regulate
growth in glioblastoma (8).

Although genomic alterations involving microRNAs and their upstream regulators occur in
glioblastoma (22), our findings indicate that developmental programs underlie the overall
framework of microRNA expression in this cancer. Numerous reports have described
important roles for microRNAs in regulating the growth of glioblastoma and other cancers
(22, 31, 44, 47). Until now, these reports were interpreted independently. However, our data
reveal that many of these “aberrant” microRNA expression patterns and microRNA-target
interactions derive from highly coordinated, differentiation-related microRNA expression
programs. Importantly, we find that miR-9 downregulates the JAK/STAT pathway and
serves as a switch that regulates oligoneural versus mesenchymal decisions in glioblastoma.
In addition, we and others have found a role for miR-124 (which is highly expressed in the
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neural glioblastoma subclass) in promoting neuronal differentiation and decreasing growth
in glioblastoma. Thus, our findings reveal a new role for microRNAs in organizing and
maintaining the phenotypic and molecular architecture of glioblastoma subclasses.

MicroRNAs are thus useful for subclassifying glioblastomas in a manner that allows for
more accurate prognosis and for the development of molecular-based treatment decisions.
Taken together, these findings support the adoption of a microRNA-based,
neurodevelopmental taxonomy for glioblastoma. The use of such a classification system
may aid in prognosis and in the selection of subclass-specific therapies that will improve
outcome for glioblastoma patients.
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Figure 1. MicroRNAs identify five neural precursor-related glioblastoma subclasses
(A) (left) Consensus clustering of 121 highly variable, survival-related or
neurodevelopmentally-related microRNAs from 261 glioblastomas revealed five
glioblastoma subclasses and five microRNA clusters (see also Supplementary Fig. S3). The
neurodevelopmental annotations of the five microRNA clusters are shown along with the
microRNAs contained within each cluster. Chart (middle) illustrates the association of
selected microRNAs with eight different stages of neural cell differentiation (see also
Supplementary Table S2). Heatmap (right) illustrates the extent of correlation between
microRNAs and the mRNA signatures of neurons, oligodendrocytes, astrocytes and
hematopoietic, embryonic or neural stem cells. Red and blue represent positive and negative
correlation, respectively. The order of 121 microRNAs in the chart (middle) and the heatmap
(left) is identical to that in the correlation heatmap (right). (B) The mRNA expression level
of 34 neural differentiation markers among the five microRNA-based glioblastoma
subclasses is illustrated in a heatmap.
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Figure 2. Distinct clinical characteristics define glioblastoma subclasses
(A) The relationship between the microRNA-based glioblastoma subclassification scheme
(vertical columns) and the previously published mRNA-based subclassification (horizontal
rows) is shown using the same tumors for analysis. (B) (left) Kaplan-Meier survival plots for
the five microRNA-based glioblastoma subclasses. (upper right) Table listing P values for
survival differences calculated in a pairwise manner between microRNA-based subclasses.
(lower right) The median survival of individual microRNA-based subclasses (error bar
represents standard error of the mean). (C) Kaplan-Meier survival plots are shown for four
mRNA-based glioblastoma subclasses (left) with the significance of survival differences
between subclasses (upper right) and median survival (lower right). (D) Box plot illustrates
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the mean age at diagnosis for five microRNA-based glioblastoma subclasses (P < 0.001,
ANOVA). (E) Graph illustrates percentage of Non-Caucasian (Asian and Black) patients in
each glioblastoma subclass (P = 0.021, Fisher's exact).
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Figure 3. Subclass-specific treatment response and the effect of MGMT methylation on survival
(A) Kaplan-Meier survival analyses for glioblastoma patients in each subclass or for the
entire cohort are shown. The survival of patients treated with radiation (at least 54 Gy) and
two or more cycles of temozolamide (red) versus all other regimens (green) are
distinguished. Survival was calculated from the date of diagnosis. The arrow in the radial
glial plot identifies a long-surviving outlier which, if excluded, P < 0.014, Logrank. (B)
Kaplan-Meier survival analyses for glioblastoma patients in each subclass or for the entire
cohort are shown. The survival of patients with tumors harboring MGMT promoter
methylation was compared to those with tumors lacking MGMT methylation in each
glioblastoma subclass. Black and grey lines represent the survival of patients with tumors
with or without MGMT methylation, respectively.
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Figure 4. Distinct genetic alterations characterize glioblastoma subclasses
(A) The distribution of somatic mutations is shown for 23 frequently mutated genes across
five glioblastoma subclasses (black bars). Genes with significant differences in mutation
frequency (P < 0.1, Fisher Exact test) are indicated in red. Each vertical column contains
data from a single tumor. The location of seven hypermutator tumors is indicated at the
bottom of the figure. Hypermutator mutations (gray bars) were excluded from significance
calculations. (B) Genome-wide copy number alterations for 261 glioblastomas across five
subclasses are illustrated in a heatmap. Red and green represent copy number gains and
losses, respectively. (C) (upper panel) Significant alterations (false discovery rate or FDR <
0.25) are shown for five glioblastoma subclasses. The significance of recurrent alterations
were measured using the GISTIC algorithm. (lower panel) Significant subclass-specific
DNA alterations exclusive to each glioblastoma subclass are shown.
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Figure 5. MicroRNAs regulate subclass-specific pathways
(A) The extent of correlation is calculated between 121 microRNAs and 1190 GO categories
and rendered as a heatmap (middle panel). Red and blue represent positive or negative
correlation between the corresponding microRNA and genes in the GO category,
respectively. The correlation heatmap (middle panel) is shown along with the microRNA
expression heatmap generated by consensus clustering (left panel, from Fig. 1A) for
comparison. The location of miR-9 is indicated by an arrow. The 1190 GO categories are
further separated into 15 modules with their respective functional annotations listed to the
right. (B) The number of significantly correlated genes is plotted for the top 20 most highly
connected microRNAs. The subclass-specific grouping of individual microRNAs is
indicated using different colors. (C) The total number of genes (n = 11,861) is sorted in
order of correlation with miR-9, placing the positively and negatively correlated genes at the
top and bottom of the list, respectively. The heatmap shows the differences in mRNA
expression of the sorted genes relative to the expression of miR-9. In the correlation plot, the
red and blue areas (arrows) contain 32 positively- and 1184 negatively-correlated genes,
respectively.
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Figure 6. miR-9 regulates subclass differentiation in glioblastoma stem cells
(A) (left and middle panels) Western blot demonstrating JAK1, JAK2 and JAK3 protein
expression in established U251 human glioblastoma cells or in primary human glioblastoma
cancer stem cells (GCSCs) after exposure to the miR-9 mimic, miR-9 inhibitor or
appropriate control oligonucleotides (100 μM). (right panel) JAK1, JAK2 or JAK3 protein
expression in GCSCs after transduction using control (V-Control) or pri-miR-9 (V-miR-9)
lentivirus. (B) (left panel) STAT3 and phosphorylated STAT3 in established U251 human
glioblastoma cells after exposure to miR-9 mimic or inhibitor. (right panel) STAT3,
phosphorylated STAT3 and CEBP-β protein expression in GCSCs after exposure to miR-9
or miR-124a mimic, inhibitor or oligonucleotide controls. (C) (left panel) Western blot
showing Gcm1 and CD44 protein expression in GCSCs transduced with a control (V-
Control) or pri-miR-9 (V-miR-9) lentivirus. (right panel) GFAP (green) and TuJ1 (red)
immunoreactivity in GCSCs after exposure to miR-9 mimic (100μM) or an oligonucleotide
control. (D) BrdU proliferation assay illustrating GCSC proliferation after exposure to
miR-9 mimic (100μM) or an oligonucleotide control (P = 0.04, unpaired t-test).
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