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Glucocorticoids are the most effective anti-inflammatory therapy for asthma yet are relatively ineffective in chronic obstructive
pulmonary disease. Glucocorticoids suppress inflammation via several molecular mechanisms. Glucocorticoids suppress the
multiple inflammatory genes that are activated in chronic inflammatory diseases, such as asthma, by reversing histone
acetylation of activated inflammatory genes through binding of ligand-bound glucocorticoid receptors (GR) to co-activator
molecules and recruitment of histone deacetylase-2 to the activated inflammatory gene transcription complex (trans-
repression). At higher concentrations of glucocorticoids GR homodimers interact with DNA recognition sites to activate
transcription through increased histone acetylation of anti-inflammatory genes and transcription of several genes linked to
glucocorticoid side effects (trans-activation). Glucocorticoids also have post-transcriptional effects and decrease stability of
some pro-inflammatory mRNA species. Decreased glucocorticoid responsiveness is found in patients with severe asthma and
asthmatics who smoke, as well as in all patients with chronic obstructive pulmonary disease. Several molecular mechanisms of
glucocorticoid resistance have now been identified which involve post-translational modifications of GR. Histone deacetylase-2
is markedly reduced in activity and expression as a result of oxidative/nitrative stress so that inflammation becomes resistant
to the anti-inflammatory actions of glucocorticoids. Dissociated glucocorticoids and selective GR modulators which show
improved trans-repression over trans-activation effects have been developed to reduce side effects, but so far it has been
difficult to dissociate anti-inflammatory effects from adverse effects. In patients with glucocorticoid resistance alternative
anti-inflammatory treatments are being investigated as well as drugs that may reverse the molecular mechanisms of
glucocorticoid resistance.
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Introduction
Glucocorticosteroids (also called glucocorticoids, corticoster-
oids or steroids) are the most effective anti-inflammatory
drugs available for the treatment of many chronic inflamma-
tory and immune diseases, including asthma. However, a
minority of patients with these diseases show little or no
response even to high doses of glucocorticoids. Several other
inflammatory diseases, including chronic obstructive pulmo-
nary disease (COPD), interstitial pulmonary fibrosis and
cystic fibrosis, appear to be largely glucocorticoid-resistant.

Both asthma and COPD involve chronic inflammation of the
respiratory tract, with the activation and recruitment of
many inflammatory cells and orchestrated by a complex
network of inflammatory mediators (Barnes, 2008a,b).
However, there are differences in the nature of this inflam-
mation and its inflammatory consequences between these
diseases and perhaps this is best demonstrated by the differ-
ing response to glucocorticoids, which is excellent in most
patients with asthma but very poor in most patients with
COPD. There is now a much better understanding of how
glucocorticoids suppress chronic inflammation in asthma
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and also why they fail to work in some patients with asthma
and most patients with COPD, despite the fact that inflam-
matory genes are activated in these two diseases by similar
molecular mechanisms. This has given insights into how
glucocorticoids might be improved in the future and how
glucocorticoid resistance may be overcome with new classes
of therapy (Barnes and Adcock, 2009).

Clinical use in asthma

The early use of inhaled corticosteroids (ICS) has revolution-
ized the management of asthma, with marked reductions in
asthma morbidity and mortality. ICS are now recommended
as first-line therapy for all patients with persistent asthma,
including children (Bateman et al., 2008). Several topically
acting glucocorticoids are now available for inhalation and
all have similar efficacy, but have pharmacokinetic differ-
ences that account for differences in therapeutic ratio
between these drugs. ICS are very effective in controlling
asthma symptoms in asthmatic patients of all ages and sever-
ity. ICS improve the quality of life of patients with asthma
and allow many patients to lead normal lives, improve lung
function, reduce the frequency of exacerbations and may
prevent irreversible airway changes (Barnes et al., 1998;
O’Byrne et al., 2006). ICS were first introduced to reduce the
requirement for oral glucocorticoids in patients with severe
asthma and many studies have confirmed that the great
majority of patients can be weaned off oral glucocorticoid.
Only about 1% of asthmatic patients now require mainte-
nance treatment with oral glucocorticoids for control of
asthma (‘steroid-dependent’ asthmatics), but short courses
of oral glucocorticoids are still needed to treat exacerbations
of asthma. There are local side effects of ICS, including
increased oral candidiasis and dysphonia, but these are rarely
a major problem. Systemic side effects, largely arising from
absorption of ICS from the lung, are not a problem in patients
treated with the usually required doses, but may become a
problem in patients with severe asthma who require larger
doses for asthma control.

Clinical use in COPD

Most patients with COPD have a poor response to glucocor-
ticoids in comparison to asthma with little improvement in
lung function or symptoms (Suissa and Barnes, 2009; Barnes,
2010a). High doses of ICS have shown a reduction (20–25%)
in exacerbations in patients with severe disease and this is the
main clinical indication for their use (Rabe et al., 2007).
However, even the effect on exacerbations has been ques-
tioned as it is largely explained by an artefact in trial design
(Suissa and Barnes, 2009). Several large studies have shown
that glucocorticoids failed to reduce the progression in COPD
[measured by annual fall in forced expiratory volume in 1
second (FEV1) ] (Yang et al., 2007) and failed to reduce mor-
tality in a large study where this was the primary outcome
measure (Calverley et al., 2007). These results are likely to
reflect the resistance of pulmonary inflammation to gluco-
corticoid in COPD patients which is discussed below. Current

guidelines suggest that high doses of ICS should be used only
in patients with severe disease (FEV1 < 50% predicted) who
have frequent exacerbations (�2 per year) which would com-
prise about 10% of patients, whereas currently high-dose ICS
are used in approximately 80% of patients with a clinical
diagnosis of COPD. This overuse of glucocorticoids is likely to
produce several long-term side effects, such as osteoporosis,
diabetes, cataracts, hypertension and pneumonia (Barnes,
2010a). Oral glucocorticoids are used to treat acute exacerba-
tions, although they are poorly effective. Some patients with
COPD, who also have concomitant asthma (termed ‘overlap
syndrome’), benefit from ICS and these patients may be rec-
ognized by increased sputum eosinophils and exhaled nitric
oxide and by a greater bronchodilator reversibility (Gibson
and Simpson, 2009).

Anti-inflammatory mechanisms
of glucocorticoids

There have been major advances in understanding the
molecular mechanisms whereby glucocorticoids suppress
inflammation in asthma (Rhen and Cidlowski, 2005;
Barnes, 2006b; 2010b). Glucocorticoids activate many anti-
inflammatory genes, and repress many pro-inflammatory
genes that have been activated in inflammation (Table 1), as
well as having several post-transcriptional effects. Under-
standing the molecular mechanisms of glucocorticoid action
has also provided new insights into understanding molecular
mechanisms involved in glucocorticoid resistance (Barnes
and Adcock, 2009).

Glucocorticoid receptors (GR)
Glucocorticoids diffuse across the cell membrane and bind to
GR in the cytoplasm (Rhen and Cidlowski, 2005; Nicolaides
et al., 2010). Upon ligand binding, GR are activated and
released from chaperone proteins (heat shock protein-90
and others) and rapidly translocate to the nucleus where
they exerts their molecular effects. The mechanism of
nuclear translocation involves the nuclear import proteins
importin-a (karyopherin-b) and importin-13. (Goldfarb et al.,
2004; Tao et al., 2006). There is only one form of GR that
binds glucocorticoids termed GRa. GRb is an alternatively
spliced form of GR that interacts with DNA but not with
glucocorticoids, so may theoretically act as a dominant-
negative inhibitor of glucocorticoid action by interfering
with the binding of GR to DNA (Lewis-Tuffin and Cidlowski,
2006). In addition, there is evidence that multiple GR iso-
forms are generated by alternative splicing and alternative
translation initiation. These isoforms have unique tissue
distribution patterns and transcriptional regulatory profiles.
Furthermore, each is subject to various post-translational
modifications that may affect receptor function, which deter-
mine the cell-specific response to glucocorticoids (Lu and
Cidlowski, 2004).

Gene activation
Glucocorticoid receptors homodimerize and bind to gluco-
corticoid response elements (GRE) in the promoter region of
glucocorticoid-responsive genes and this interaction switches
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on (or occasionally switches off) gene transcription. Activa-
tion of glucocorticoid-responsive genes occurs via an interac-
tion between the DNA-bound GR and transcriptional
co-activator molecules such as CREB-binding protein, which
have intrinsic histone acetyltransferase activity and cause
acetylation of core histones (particularly histone-4). This tags
histones to recruit chromatin remodelling engines such as
SWI/SNF and subsequent association of RNA polymerase II
resulting in gene activation (Figure 1) (Ito et al., 2000; John
et al., 2008). Genes that are switched on by glucocorticoids
include genes encoding b2-adrenergic receptors and the anti-
inflammatory proteins secretory leukoprotease inhibitor and
mitogen-activated protein kinase phosphatase-1 (MKP-1),
which inhibits mitogen-activated protein (MAP) kinase path-
ways. These effects may contribute to the anti-inflammatory
actions of glucocorticoids (Clark, 2003; Barnes, 2006a). GR
interaction with negative GREs, or to GREs that cross the
transcriptional start site, may suppress gene transcription and
this may be important in mediating many of the side effects
of glucocorticoids, such as inhibition of osteocalcin that is

involved in bone synthesis (Figure 2) (Dostert and Heinzel,
2004).

Switching off activated inflammatory genes
The major action of glucocorticoids is to switch off multiple
activated inflammatory genes that encode for cytokines,
chemokines, adhesion molecules inflammatory enzymes and
receptors (Barnes and Adcock, 2003). These genes are
switched on in the airways by pro-inflammatory transcrip-
tion factors, such as nuclear factor-kB (NF-kB) and activator
protein-1 (AP-1), both of which are usually activated at sites
of inflammation in asthma and COPD, resulting in the
switching on of multiple inflammatory genes. These genes
are activated through interactions with transcriptional
co-activator molecules in a similar manner to that described
above for GR-mediated gene transcription (Barnes et al.,
2005).

Activated GR interact with corepressor molecules to
attenuate NF-kB-associated co-activator activity, thus reduc-
ing histone acetylation, chromatin remodelling and RNA
polymerase II actions (Ito et al., 2000; Barnes, 2006b). Reduc-
tion of histone acetylation more importantly occurs through
the specific recruitment of histone deacetylase-2 (HDAC2) to
the activated inflammatory gene complex by activated GR,
thereby resulting in effective suppression of activated inflam-
matory genes within the nucleus (Figure 3). This may account
for not only why glucocorticoids are so effective in the
control of inflammation, but also why they are relatively safe,
because genes other than those that encode inflammatory
proteins are not affected. GR becomes acetylated upon ligand
binding allowing it to bind to GREs and HDAC2 can target
acetylated GR thereby allowing it to associate with the NF-kB
complex (Ito et al., 2006) (Figure 4). The site of acetylation of
GR is the lysine rich region -492-495 with the sequence
KKTK, which is analogous to the acetylation sites identified
on other nuclear hormone receptors. Site-directed mutagen-
esis of the lysine residues K494 and K495 prevents GR acety-
lation and reduces the activation of the SLPI gene by
glucocorticoids, whereas repression of NF-kB is unaffected.
HDAC6 has also been implicated in GR function by modu-
lating hsp90 acetylation status and thereby GR nuclear trans-
location (Kovacs et al., 2005).

Additional mechanisms are also important in the anti-
inflammatory actions of glucocorticoids. Glucocorticoids
have potent inhibitory effects on mitogen-activated protein
kinase (MAPK) signalling pathways through the induction of
MKP-1 and this may inhibit the expression of multiple
inflammatory genes (Clark, 2003; Barnes, 2006a) (Figure 5).
An important effect of glucocorticoids in the treatment of
allergic diseases is through suppression of Th2 cells and Th2
cytokines [interleukin (IL)4, IL-5 and IL-13] and this may be
mediated via inhibition of the transcription factor GATA3
which regulates the transcription of Th2 cytokine genes
(Maneechotesuwan et al., 2007). This is controlled by trans-
location of GATA3 from the cytoplasm to the nucleus via
importin-a after phosphorylation by p38 MAPK. Glucocorti-
coids potently inhibit GATA3 nuclear translocation as GR
competes for nuclear import via importin-a and also induces
MKP-1 to reverse the phosphorylation of GATA3 by p38
MAPK (Maneechotesuwan et al., 2009). A further immuno-
suppressive effect of glucocorticoids is through enhanced

Table 1
Effect of glucocorticoids on transcription of genes relevant to asthma

Increased transcription (trans-activation)

• Lipocortin-1

• b2-Adrenoceptors

• Secretory leukocyte inhibitory protein

• IkB-a (inhibitor of NF-kB)

• MKP1 (inhibits MAP kinase pathways)

• Glucocorticoid inducible leucine zipper (GILZ)

• Anti-inflammatory or inhibitory cytokines

IL-10, IL-12, IL-1 receptor antagonist

Decreased transcription (trans-repression)

• Inflammatory cytokines

IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, IL-15, TNF-a, GM-CSF, SCF,
TSLP

• Chemokines

CCL1, CCL5, CCL11, CXCL8

• Inflammatory enzymes

Inducible nitric oxide synthase (iNOS), inducible
cyclo-oxygenase (COX-2)

Inducible phospholipase A2 (cPLA2)

• Inflammatory peptides

Endothelin-1

• Mediator Receptors

Neurokinin (NK1)-, bradykinin (B2)-receptors

• Adhesion molecules

ICAM-1,VCAM-1

ICAM-1, intercellular cell adhesion molecule 1; IL, interleukin;
MAP, mitogen-activated protein; NF-kB, nuclear factor-Kb;
TNF-a, tumour necrosis factor a; VCAM-1, vascular cell adhesion
molecule 1.
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activity and expression of indoleamine-2,3-dioxygenase, a
tryptophan-degrading enzyme that plays a key role in the
regulation of T-lymphocyte function in allergic diseases
through increased secretion of the anti-inflammatory cytok-
ine IL-10 (Maneechotesuwan et al., 2008). Interestingly, this
effect of glucocorticoids on indoleamine-2,3-dioxygenase is
further enhanced by statins (Maneechotesuwan et al., 2010).

Post-transcriptional effects
Some pro-inflammatory genes, such as tumour necrosis
factor-a (TNF-a), have unstable messenger RNA that is rapidly
degraded by certain RNAses but stabilized when cells are
stimulated by inflammatory mediators. Glucocorticoids
reverse this effect, resulting in rapid degradation of mRNA
and reduced inflammatory protein secretion (Bergmann
et al., 2004) (Figure 5). This may be mediated through the
increased gene expression of proteins that destabilize mRNAs
of inflammatory proteins, such as the zinc finger protein
tristetraprolin, which binds to the 3’ AU-rich untranslated
region of mRNAs (Smoak and Cidlowski, 2006).

Cellular effects in asthma and COPD

At a cellular level glucocorticoids reduce the numbers of
inflammatory cells in the airways, including eosinophils,
T-lymphocytes, mast cells and dendritic cells (Barnes et al.,

1998). These effects of glucocorticoids are produced through
inhibiting the recruitment of inflammatory cells into the
airway by suppressing the production of chemotactic media-
tors and adhesion molecules and by inhibiting the survival in
the airways of inflammatory cells, such as eosinophils,
T-lymphocytes and mast cells. Epithelial cells may be the
major cellular target for ICS, which are the mainstay of
modern asthma management. ICS suppress many activated
inflammatory genes in airway epithelial cells. Epithelial
integrity is restored by regular ICS (Barnes et al., 1998). The
suppression of mucosal inflammation is relatively rapid with
a significant reduction in eosinophils detectable within 3 h
and associated with reduced airway hyperresponsiveness
(Gibson et al., 2001; Ketchell et al., 2002; Erin et al., 2008).
This almost certainly accounts for the clinical benefits seen
with inhalation of budesonide and formoterol combination
inhaler as a rescue therapy in asthma, as this is likely to stop
the evolution of an exacerbation (Barnes, 2007). However,
reversal of airway hyperresponsiveness may take several
months to reach a plateau, probably reflecting recovery of
structural changes in the airway (Juniper et al., 1990).

In COPD patients even high doses of ICS fail to reduce
airway inflammation. This glucocorticoid resistance has been
demonstrated by the failure of high doses of ICS to reduce
inflammatory markers in sputum or bronchial biopsies of
COPD patients (Keatings et al., 1997; Culpitt et al., 1999;
Loppow et al., 2001; Hattotuwa et al., 2002; Bourbeau et al.,
2007). The reason why ICS fail to suppress inflammation
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Figure 1
Glucocorticoid activation of anti-inflammatory gene expression. Glucocorticoids bind to cytoplasmic glucocorticoid receptors (GR) which
translocate to the nucleus where they bind to glucocorticoid response elements (GRE) in the promoter region of steroid-sensitive genes and also
directly or indirectly to co-activator molecules such as CREB-binding protein (CBP), p300/CBP activating factor (pCAF) or steroid receptor
coactivator-2 (SRC-2), which have intrinsic histone acetyltransferase (HAT) activity, causing acetylation of lysines on histone H4, which leads to
activation of genes encoding anti-inflammatory proteins, such as secretory leukoprotease inhibitor (SLPI), mitogen-activated kinase phosphatase-1
(MKP-1), inhibitor of nuclear factor kB (IkB-a) and glucocorticoid-induced leucine zipper protein (GILZ).
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cannot be explained by impaired access of the inhaled drug to
sites of inflammation as an oral glucocorticoid is equally
ineffective (Keatings et al., 1997).

Interaction with b2-adrenergic
receptors

Inhaled b2-agonists and glucocorticoids are frequently used
together (usually as a fixed combination inhaler containing a
glucocorticoid with a long-acting b2-agonist) in the control of
asthma and it is now recognized that there are important
molecular interactions between these two classes of drug
(Barnes, 2002; Giembycz et al., 2008; Newton et al., 2010).
Glucocorticoids increase the transcription of the b2-receptor
gene, resulting in increased expression of cell surface recep-
tors. This has been demonstrated in human lung in vitro (Mak
et al., 1995a) and nasal mucosa in vivo after topical applica-
tion of a glucocorticoid (Baraniuk et al., 1997). In this
way glucocorticoids protect against the down-regulation of
b2-receptors after long-term administration (Mak et al.,
1995b). This may be important for the non-bronchodilator
effects of b2-agonists, such as mast cell stabilization. Gluco-
corticoids may also enhance the coupling of b2-receptors to
G-protein (Gs), thus enhancing b2-agonist effects and revers-
ing the uncoupling of b2-receptors that may occur in response
to inflammatory mediators, such as IL-1b through a stimula-
tory effect on a G-protein coupled receptor kinase (Mak et al.,
2002).

There is now increasing evidence that b2-agonists may
affect GR function and thus enhance the anti-inflammatory
effects of glucocorticoids. Long-acting b2-Agonists increase
the translocation of GR from cytoplasm to the nucleus after
activation by glucocorticoids (Roth et al., 2002). This effect
has now been demonstrated in sputum macrophages of
asthmatic patients after an ICS and inhaled long-acting
b2-agonist (Usmani et al., 2005). This suggests that long-
acting b2-agonists and glucocorticoids enhance each others’
beneficial effects in asthma therapy and this may contribute
to the greater efficacy of combination inhalers compared
with increased doses of ICS in clinical trials (Gibson et al.,
2007).

Glucocorticoid resistance

Patients with severe asthma have a poor response to gluco-
corticoids, which necessitates the need for high doses and a
very small number of patients are completely resistant. These
patients are difficult to manage as they get side effects from
high doses of glucocorticoids, despite their lack of clinical
benefit. All patients with COPD show a degree of glucocorti-
coid resistance (Barnes, 2010a). Asthmatics who smoke are
also relatively glucocorticoid-resistant and require increased
doses of glucocorticoids for asthma control (Thomson and
Spears, 2005; Ahmad et al., 2008). Several molecular mecha-
nisms have now been identified to account for glucocorticoid
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Figure 2
Glucocorticoids regulate gene expression in several ways. Glucocorticoids enter the cell to bind to glucocorticoid receptors (GR) in the cytoplasm
that translocate to the nucleus. GR homodimers bind to glucocorticoid-response elements (GRE) in the promoter region of steroid-sensitive genes,
which may encode anti-inflammatory proteins. Less commonly, GR homodimers interact with negative GREs to suppress genes. Nuclear GR also
interact with co-activator molecules, such as CREB-binding protein (CBP), which is activated by pro-inflammatory transcription factors, such as
nuclear factor-kB (NF-kB), thus switching off the inflammatory genes that are activated by these transcription factors. Other abbreviations: CRF,
corticotrophin releasing factor; GILZ, glucocorticoid-induced leucine zipper protein; IkB-a, inhibitor of NF-kB; MKP-1, mitogen-activated kinase
phosphatase-1; POMC, proopiomelanocortin; SLPI, secretory leukoprotease inhibitor.
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resistance in severe asthma and COPD (Adcock and Barnes,
2008; Barnes and Adcock, 2009).

Molecular mechanisms of
glucocorticoid resistance

Several distinct molecular mechanisms contributing to
decreased anti-inflammatory effects of glucocorticoids have
now been identified, so that there is heterogeneity of mecha-
nisms even within a single disease (Table 2) (Adcock and
Barnes, 2008; Barnes and Adcock, 2009). Similar molecular
mechanisms have also been identified in different inflamma-
tory diseases indicating that there may be common therapeu-
tic approaches to glucocorticoid-resistant diseases in the
future.

Genetic susceptibility
The early descriptions of glucocorticoid-resistant asthma sug-
gested that it was more commonly found within families
(Carmichael et al., 1981), indicating that genetic factors may
determine glucocorticoid responsiveness. Microarray studies
of peripheral blood mononuclear cells (PBMC) from
glucocorticoid-sensitive and glucocorticoid-insensitive
asthma patients identified 11 genes that discriminated
between these patients (Hakonarson et al., 2005), suggesting

that it might be possible to develop a genomic test for glu-
cocorticoid resistance. However, in normal subjects differen-
tial gene expression between the 10% with the greatest and
least glucocorticoid responsiveness of circulating genes iden-
tified 24 genes of which the most discriminant was bone
morphogenetic protein receptor type II, which enhanced glu-
cocorticoid responsiveness when transfected into cells (Donn
et al., 2007).

The very rare inherited syndrome familial glucocorticoid
resistance is characterized by high circulating levels of corti-
sol without signs or symptoms of Cushing’s syndrome (Lam-
berts, 2001). Clinical manifestations, which may be absent,
are due to an excess of non-glucocorticoid adrenal steroids,
stimulated by high adrenocorticotrophin levels, resulting in
hypertension with hypokalaemia and/or signs of androgen
excess (usually hirsutism and menstrual abnormalities in
females). Inheritance appears to be dominant with variable
expression, but only about a dozen cases have so far been
reported. Sporadic cases have also been described. Several
abnormalities in GR function have been described in periph-
eral blood leukocytes or fibroblasts from patients with famil-
ial glucocorticoid resistance, including decreased binding for
cortisol, reduced numbers, thermolability and an abnormal-
ity binding to DNA, all of which are due to mutations of GR.
These patients are clearly different from patients with
glucocorticoid-resistant inflammatory diseases and in
patients with glucocorticoid-resistant asthma mutational
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Figure 3
Glucocorticoid suppression of activated inflammatory genes. Inflammatory genes are activated by inflammatory stimuli, such as interleukin-1b
(IL-1b) or tumour necrosis factor-a (TNF-a), resulting in activation of IKKb (inhibitor of I-kB kinase-b), which activates the transcription factor
nuclear factor kB (NF-kB). A dimer of p50 and p65 NF-kB proteins translocates to the nucleus and binds to specific kB recognition sites and also
to co-activators, such as CREB-binding protein (CBP) or p300/CBP-activating factor (pCAF), which have intrinsic histone acetyltransferase (HAT)
activity. This results in acetylation of core histone H4, resulting in increased expression of genes encoding multiple inflammatory proteins.
Glucocorticoid receptors (GR) after activation by glucocorticoids translocate to the nucleus and bind to co-activators to inhibit HAT activity directly
and recruiting histone deacetylase-2 (HDAC2), which reverses histone acetylation leading in suppression of these activated inflammatory genes.
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analysis demonstrated no obvious abnormality in GR struc-
ture (Lane et al., 1994). Various single nuclear polymorphisms
of GR have been linked to altered cellular responses to
glucocorticoids and a polymorphism of GRb (GR-9b) is
associated with a reduced trans-repressional response to
glucocorticoids (van den Akker et al., 2006). These polymor-
phisms have yet to be associated with glucocorticoid resis-
tance in airway diseases, however.

Defective GR binding and translocation
There is increased expression of IL-2 and IL-4 in the airways
of patients with glucocorticoid-resistant asthma (Leung et al.,
1995) and in vitro these cytokines in combination reduce GR
nuclear translocation and binding affinity within the nucleus
of T cells (Sher et al., 1994; Irusen et al., 2002; Matthews et al.,
2004). IL-13 alone mimics this effect in monocytes (Spahn
et al., 1996; Irusen et al., 2002). The mechanism whereby
these cytokines reduce GR function may be mediated via
phosphorylation of GR by p38 MAPK and their effect is
blocked by a p38 MAPK-a inhibitor (Irusen et al., 2002). In
support of this p38 MAPK shows a greater degree of activation
in alveolar macrophages from asthmatics with a poor
response to glucocorticoids than patients who show a normal
response (Bhavsar et al., 2008). GR may be phosphorylated by
several kinases that may alter its binding, stability, transloca-
tion to the nucleus, binding to DNA and interaction with
other proteins, such as transcription factors and molecular
chaperones (Weigel and Moore, 2007). The serine residue
phosphorylated by p38 MAPK is not yet certain and may be
Ser226 or Ser211, or this may be an indirect effect (Irusen et al.,
2002; Szatmary et al., 2004; Miller et al., 2005). IL-2 may also

cause reduced nuclear translocation in murine T cells
through a mechanism involving interaction to the transcrip-
tion factor STAT5 under the control of JAK3 (Goleva et al.,
2002). In patients with glucocorticoid-resistant asthma a
large proportion show reduced nuclear translocation of GR
and reduced GRE binding in PBMC following glucocorticoid
exposure and this may be explained by GR phosphorylation
(Matthews et al., 2004; Szatmary et al., 2004). Another MAPK
c-Jun N-terminal kinase (JNK), which is activated by TNF-a
and other pro-inflammatory cytokines, also directly phos-
phorylates GR at Ser226 and inhibits GRE binding (Ismaili
and Garabedian, 2004). Microbial superantigens induce glu-
cocorticoid resistance in T cells in vitro via activation of
extracellular receptor kinase pathways, resulting in GR
phosphorylation (Li et al., 2004). MKP-1 is an endogenous
inhibitor of MAPK which is activated by glucocorticoids, as
discussed above. Macrophages from MKP-1 gene knock-down
mice show reduced anti-inflammatory responses to glucocor-
ticoids in vitro (Abraham et al., 2006). In asthmatic patients
with glucocorticoid insensitivity there is a significant reduc-
tion in MKP-1 expression in alveolar macrophages after glu-
cocorticoid exposure and this is correlated with increased p38
MAPK activity (Bhavsar et al., 2008).

In vitro GR may be nitrosylated by nitric oxide (NO)
donors resulting in reduced binding affinity for glucocorti-
coids (Galigniana et al., 1999). In severe asthma and COPD
there is increased expression of inducible NO synthase which
produces large amounts of NO that could reduce glucocorti-
coid responsiveness. Whether this mechanism is relevant in
glucocorticoid-resistant patients has not yet been evaluated
by the use if inducible NO synthase inhibitors, however. GR
may also be ubiquitinated and tagged for proteasomal degra-
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dation by E3 ubiquitin ligases implying that proteasome
inhibitors may increase glucocorticoid responsiveness,
although this has not yet been demonstrated in
glucocorticoid-resistant disease (Wallace and Cidlowski,
2001).

Increased GRb
Increased expression of GRb has been reported in
glucocorticoid-resistant patients of several diseases, including
asthma, rheumatoid arthritis and inflammatory bowel
disease (Hamid et al., 1999; Sousa et al., 2000; Orii et al., 2002;
Kozaci et al., 2007), but this has not been confirmed in several
other studies (Gagliardo et al., 2000; Pujols et al., 2007). GRb
is induced by pro-inflammatory cytokines and has the capac-
ity to compete for the binding of GRa to GRE, thus acting as
a dominant-negative inhibitor (Webster et al., 2001). GRb
expression is also increased by microbial superantigens, such
as staphylococcal enterotoxins, which may account for glu-
cocorticoid resistance in atopic dermatitis (Fakhri et al.,
2004). However, in most cell types, apart from neutrophils,
the expression of GRb is much lower than that of GRa,
making this mechanism unlikely (Pujols et al., 2007).
Another mechanism may be through interference with
GRa nuclear translocation, because knock-down of GRb in
alveolar macrophages from glucocorticoid-resistant asthma
patients results in increased GRa nuclear localization and
increased glucocorticoid responsiveness (Goleva et al., 2006)

While glucocorticoids do not bind to GRb it is transcription-
ally active and the GR antagonist mifepristone (RU-486)
binds to GRb, making it translocate to the nucleus, but the
endogenous ligand of GRb is currently unidentified (Lewis-
Tuffin et al., 2007).

Transcription factor activation
Excessive activation of AP-1 has been identified as a mecha-
nism of glucocorticoid resistance in asthma as AP-1 binds GR
and thus prevents its interaction with GRE and other tran-
scription factors (Adcock et al., 1995; Loke et al., 2006). AP-1
is a heterodimer of Fos and Jun proteins and may be activated
by pro-inflammatory cytokines such as TNF-a, acting
through the JNK pathway. JNK is activated to a greater extent
and there is increased expression of c-Fos in PBMC and bron-
chial biopsies of glucocorticoid-resistant compared with sen-
sitive asthma, with no reduction of JNK activity or c-Jun after
high doses of oral glucocorticoids (Lane et al., 1998). This
may explain why the increased inflammation found in severe
inflammatory disease results in secondary glucocorticoid
resistance and is a mechanism for perpetuating resistance
whatever the initial mechanism. Increased c-Jun results in
depolymerization of the cytoskeleton, which may also reduce
GR trans-activating activity (Vardimon et al., 2006). Cofilin-1
is an actin-binding protein that depolymerases the cytoskel-
eton and in gene array studies was identified as showing
increased expression in T cells from glucocorticoid-resistant
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stabilizing messenger RNA (mRNA) encoding several inflammatory proteins, such as tumour necrosis factor-a (TNF-a), interleukin(IL)-1b, IL-6,
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compared with sensitive asthma (Vasavda et al., 2006). Over-
expression of cofilin-1 results in glucocorticoid resistance in T
cells.

Abnormal histone acetylation
Histone acetylation plays a critical role in the regulation
of inflammatory genes and the mechanism of action of
glucocorticoids. Glucocorticoids switch on glucocorticoid-
responsive genes, such as MKP-1, via acetylation of specific
lysine residues (K5 and K16) on histone-4 (Ito et al., 2000). In
a small proportion of patients with glucocorticoid-resistant
asthma, GR translocates normally to the nucleus after gluco-
corticoid exposure but fails to acetylate K5 so that transacti-
vation of genes does not occur (Matthews et al., 2004). These
patients show a poor response to high dose inhaled glucocor-
ticoids but unlike most patients with glucocorticoid resis-
tance seem to have fewer side effects as many of these are
mediated via GREs (Dostert and Heinzel, 2004).

Recruitment of HDAC2 to activated inflammatory genes
is a major mechanism of inflammatory gene repression by
glucocorticoids (Barnes et al., 2004) and reduced HDAC2
activity and expression is reduced in some diseases where
patients respond poorly. For example, HDAC2 is markedly
reduced in alveolar macrophages, airways and peripheral

lung in patients with COPD (Ito et al., 2005), and similar
changes are found in PBMCs and alveolar macrophages of
patients with refractory asthma (Hew et al., 2006) and in the
airways of smoking asthmatics (Murahidy et al., 2005). The
glucocorticoid resistance of COPD bronchoalveolar macroph-
ages is reversed by over-expressing HDAC2 (using a plasmid
vector) to the level seen in control subjects (Ito et al., 2006).
The mechanisms for HDAC2 reduction in COPD are now
being elucidated (Barnes, 2009b). Oxidative and nitrative
stress result in the formation of peroxynitrite, which nitrates
tyrosine residues on HDAC2 resulting in its inactivation,
ubiquitination and degradation (Ito et al., 2004; Osoata et al.,
2009). Oxidative stress also activates phosphoinositide-3-
kinase (PI3K)d, which leads to phosphorylation and inactiva-
tion of HDAC2 (Marwick et al., 2010; To et al., 2010). This is
confirmed in mice exposed to cigarette smoke that develop
glucocorticoid-resistant pulmonary inflammation. This glu-
cocorticoid resistance is completely absent in mice where the
PI3Kd gene is inactivated (Marwick et al., 2009). This suggests
that oxidative stress may be an important mechanism of
glucocorticoid resistance and is increased in most severe and
glucocorticoid-resistant inflammatory diseases.

Decreased regulatory T cells
Interleukin-10 is an important anti-inflammatory and immu-
noregulatory cytokine and secreted by regulatory T cells in
response to glucocorticoids (Hawrylowicz, 2005). In patients
with glucocorticoid-resistant asthma there is a failure of
T-helper cells to secrete IL-10 but this is restored to normal by
vitamin D3 (calcitriol) in vitro (Xystrakis et al., 2006). Further-
more, administration of vitamin D3 to three glucocorticoid-
resistant asthmatics also restored the T-cell IL-10 response to
glucocorticoids, suggesting that this might be a useful thera-
peutic approach in the future.

Increased P-glycoprotein
The multidrug resistance gene MDR1 (ABCB1) encodes the
drug efflux pump P-glycoprotein 170, a member of the ATP-
binding cassette transporters, which transports drugs, includ-
ing glucocorticoids, out of cells. It has therefore been
implicated as a mechanism for glucocorticoid resistance in
inflammatory diseases. High levels of expression of MDR1
have been reported in circulating lymphocytes from patients
with glucocorticoid-resistant inflammatory bowel disease
(Farrell et al., 2000; Farrell and Kelleher, 2003) and rheuma-
toid arthritis (Tsujimura et al., 2008). Furthermore, certain
single nucleotide polymorphisms of MDR1 have been linked
to glucocorticoid resistance in these diseases (Potocnik et al.,
2004; Drozdzik et al., 2006). However, these observations
have not been confirmed in other studies and this mecha-
nism has not been explored in glucocorticoid-resistant airway
disease.

Macrophage migration inhibitory factor (MIF)
Macrophage migration inhibitory factor is a pro-
inflammatory cytokine that has potent anti-glucocorticoid
effects and has been associated with several inflammatory
diseases (Flaster et al., 2007). MIF is induced by glucocorti-
coids and inhibits their anti-inflammatory effects mainly
through inhibiting the induction of MKP-1 (Roger et al.,

Table 2
Molecular mechanisms of glucocorticoid resistance

• Familial glucocorticoid resistance

• Glucocorticoid receptor modification

Phosphorylation: decreased nuclear translocation

p38 MAP kinase due to IL-2 + IL-4 or IL-13 in severe
asthma

p38 MAP kinase due to MIF in several inflammatory
diseases

JNK due to pro-inflammatory cytokines

ERK due to microbial superantigens

Nitrosylation: ↑ NO from inducible NO synthase

Ubiquitination: ↑ degradation by proteasome

• Increased GRb expression

• Increased pro-inflammatory transcription factors

Activator protein-1, JNK

STAT5, JAK3

• Defective histone acetylation

Decreased acetylation of lysine-5 on histone 4

Decreased histone deacetylase-2

↑ oxidative stress

↑ phosphoinositide-3-kinase-d activation

• Increased P-glycoprotein

Increased efflux of steroids

ERK, extracellular signal-regulated kinase; IL, interleukin; JNK,
c-Jun N-terminal kinase; MAP, mitogen-activated protein; MIF,
macrophage migration inhibitory factor; NO, nitric oxide; STAT,
signal transduction activated transcription factor.
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2005). Increased MIF expression has been reported in colonic
mononuclear cells from patients with glucocorticoid-
resistant ulcerative colitis and a MIF antibody restores the
anti-inflammatory response to glucocorticoids in these cells
(Ishiguro et al., 2006). Similar findings are reported in
glucocorticoid-resistant rheumatoid arthritis and systemic
lupus erythematosis. Polymorphisms of the MIF gene have
also been reported in association with glucocorticoid resis-
tance (Baugh et al., 2002; Griga et al., 2007), although this is
disputed (Ayoub et al., 2008). MIF has also been implicated in
the glucocorticoid resistance in asthma (Rossi et al., 1998),
suggesting the potential for anti-MIF therapies in
glucocorticoid-resistant diseases.

Therapeutic implications

Inhaled glucocorticoids are highly effective in treating most
patients with asthma. Patients with severe asthma may
require high doses and this has a risk of systemic side effects,
which has led to a search for ICS with even greater therapeu-
tic ratios. A few patients with asthma and most patients with
COPD are poorly responsive to glucocorticoids and are at risk
of side effects, so that alternative anti-inflammatory treat-
ments are needed, or the mechanisms of glucocorticoid
resistance need to be reversed. Resistance to the anti-
inflammatory effects of glucocorticoids is a major barrier to
effective control of many common diseases and enormously
increases their morbidity and medical costs.

Dissociated steroids
There has been a concerted effort to develop glucocorticoids
that have reduced side effects, while retaining anti-
inflammatory efficacy. Selective glucocorticoid receptor ago-
nists (SEGRAs or dissociated steroids) are more effective in
trans-repression than trans-activation so have less side effects
(Schacke et al., 2007). Several dissociated steroids have now
been developed, including non-glucocorticoid GR modula-
tors, but there is uncertainly about the efficacy of these drugs
as anti-inflammatory therapies. In a mouse knock-in strain
with dimerization-deficient GR some inflammatory processes
can be suppressed by glucocorticoids, whereas others can not
(Kleiman and Tuckermann, 2007). This may reflect the anti-
inflammatory effects of glucocorticoid mediated through
transactivation of genes, such as MKP-1. Furthermore, side
effects of glucocorticoids may also occur in these mice. While
several inhaled non-steroidal GR modulators are currently in
clinical development for asthma, there are no studies dem-
onstrating any clinical advantage (De Bosscher, 2010).

Alternative anti-inflammatory treatments
There are several therapeutic strategies to manage
glucocorticoid-resistant diseases, but the most important
general approaches are to use alternative anti-inflammatory
(‘steroid-sparing’) treatments or to reverse the molecular
mechanisms of glucocorticoid resistance if these are identi-
fied. Several non-steroidal anti-inflammatory drugs are cur-
rently available to treat certain glucocorticoid-resistant
diseases, but these may have a toxicity of their own. Cal-
cineurin inhibitors, such as cyclosporin A and tacrolimus,

may be effective in some patients with glucocorticoid-
resistant rheumatoid arthritis, but have not been found to be
very effective in glucocorticoid-resistant asthma (Evans et al.,
2001; Kitahara and Kawai, 2007). This has led to a search for
novel anti-inflammatory treatments, particularly for diseases
with marked glucocorticoid resistance, such as COPD, where
no effective anti-inflammatory treatments are currently
available.

Phosphodiesterase-4 inhibitors are broad spectrum anti-
inflammatory treatments that are now in clinical develop-
ment for several inflammatory diseases, such as COPD
(Hatzelmann et al., 2010). However, systemic doses have been
limited by side effects, such as nausea, diarrhoea and head-
aches. Roflumilast is the first PDE4 inhibitors licensed for the
treatment of inflammation in COPD patients and reduces
neutrophilic inflammation with some improvement in lung
function and reduction in exacerbations (Calverley et al.,
2009).

Several p38 MAPK inhibitors have been in clinical devel-
opment and theoretically could be particularly effective in
asthma with glucocorticoid resistance due to IL-2 and IL-4, as
this is reversed in vitro by selective p38 MAPK inhibitors
(Irusen et al., 2002). These drugs may also be useful in other
glucocorticoid-insensitive inflammatory diseases such as
COPD where p38 MAPK is activated and they have been
shown to have efficacy in glucocorticoid-resistant animal
models of these diseases (Medicherla et al., 2007). However,
these drugs have had problems with toxicity and side effects.
Blocking NF-kB by selective inhibitors of inhibitor of NF-kB
kinase (IKKb, IKK2) is another way of treating glucocorticoid-
resistant inflammation, but it is likely that these drugs will
also have toxicity and side effects so may only be suitable for
topical application.

Reversing glucocorticoid resistance
Another therapeutic option for treating glucocorticoid resis-
tance is to reverse the cause of resistance if it can be identi-
fied. This is possible with smoking cessation in smoking
asthmatics (Chaudhuri et al., 2006) and might be possible for
some patients with glucocorticoid-resistant asthma with p38
MAPK, JNK inhibitors and vitamin D3 in the future (Irusen
et al., 2002; Loke et al., 2006; Xystrakis et al., 2006). There are
several therapeutic strategies for inhibiting P-glycoprotein to
prevent the efflux of glucocorticoids, some of which are based
on the observations that verapamil and quinidine are efflux
blockers; several novel drugs are now in development, but
this approach has not been examined in asthma or COPD
(Nobili et al., 2006). Increased MIF has been implicated in
glucocorticoid resistance in several diseases, so strategies to
inhibit MIF, including small molecule inhibitors and mono-
clonal antibodies, are currently being explored (Hoi et al.,
2007).

Selective activation of HDAC2 can be achieved with theo-
phylline, which restores HDAC2 activity in COPD macroph-
ages back to normal and reverses glucocorticoid resistance
(Cosio et al., 2004). Mice exposed to cigarette smoke develop
glucocorticoid-resistant inflammation which is reversed by
low doses of oral theophylline (Fox et al., 2007; To et al.,
2010). In COPD patients the combination of theophylline
and ICS is more effective in reducing airway inflammation
than either drug alone (Ford et al., 2010). This is now leading
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to therapeutic trials in COPD with low doses of theophylline.
Low dose theophylline also improves asthma control in
smoking asthmatic patients who show no response to ICS
alone (Spears et al., 2009). The molecular mechanism of
action of theophylline in restoring HDAC2 appears to be via
selective inhibition of PI3Kd, which is activated by oxidative
stress in COPD patients (Marwick et al., 2009; To et al., 2010).
This suggests that selective PI3Kd inhibitors may also be effec-
tive and these drugs are currently in clinical development for
other diseases. Because oxidative stress appears to be an
important mechanism in reducing HDAC2 and leads to glu-
cocorticoid resistance, antioxidants should also be effective.
Unfortunately, currently available antioxidants are not very
effective and several more potent antioxidants are in clinical
development. In the future, novel drugs which increase
HDAC2 may be developed when the molecular signalling
pathways that regulate HDAC2 are better understood (Barnes,
2005; Barnes, 2009a).

Concluding comments

Glucocorticoids remain by far the most effective therapy for
controlling asthma and suppress airway inflammation
mainly through repression of activated inflammatory genes,
but also by increasing the transcription of anti-inflammatory
genes, such as MKP-1. It is unlikely that it will be possible to
develop more effective anti-inflammatory treatments for
asthma in the future as glucocorticoids have such a broad
spectrum of anti-inflammatory actions, reflecting their ability
to switch off all activated inflammatory genes. ICS are now
amongst the most widely used drugs in the world and there
has been considerable effort expended in trying to improve
their therapeutic ratio. Addition of long-acting b2-agonists in
the form of combination inhalers improves asthma control to
a greater extent than increasing the dose of ICS and this has
become the standard approach for controlling patients with
moderate to severe asthma. This is, at least in part, explained
by the favourable molecular interactions between glucocorti-
coids and b2-agonists. Selective GR modulators which favour
trans-repression over trans-activation mechanisms were
designed to reduce side effects that are largely due to gene
activation, but so far have proved difficult to develop
clinically. Furthermore, it is now clear that some anti-
inflammatory effects of corticosteroids are due to trans-
activation of anti-inflammatory genes, whereas some adverse
effects may be due to trans-repression.

The major area of research interest is now focussed on
understanding glucocorticoid resistance as it is a major
barrier to the effective treatment of COPD patients and asth-
matic patients with severe disease or who smoke. The recog-
nition that there are different molecular mechanisms of
glucocorticoid resistance has identified several new therapeu-
tic targets. A major mechanism for reduced glucocorticoid
responsiveness in COPD, severe and smoking asthma is
reduction in HDAC2 activity and expression as a result of
oxidative stress via activation of PI3Kd. This pathway may be
blocked by low concentrations of theophylline as well as
selective PI3Kd inhibitors, suggesting new therapeutic
approaches to the treatment of severe asthma and COPD in
the future. Other drugs that target this pathway are also in

development and may lead to a new therapeutic strategy
whereby drugs are able to reverse glucocorticoid resistance in
airway diseases and perhaps other glucocorticoid-resistant
inflammatory diseases, such as atherosclerosis and multiple
sclerosis.
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