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Abstract
Improved rational drug design methods are needed to lower the cost and increase the success rate
of drug discovery and development. Alchemical binding free energy calculations, one potential
tool for rational design, have progressed rapidly over the last decade, but still fall short of
providing robust tools for pharmaceutical engineering. Recent studies, especially on model
receptor systems, have clarified many of the challenges that must be overcome for robust
predictions of binding affnity to be useful in rational design. In this review, inspired by a recent
joint academic/industry meeting organized by the authors, we discuss these challenges and suggest
a number of promising approaches for overcoming them.
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1. Introduction
R&D spending in the pharmaceutical industry has risen sharply in the last decade, with real
expenditures by members of the U.S. pharmaceutical trade industry PhRMA doubling to
$65.3 billion in 2009 from $32.4 billion in 2000 (in 2009 dollars) [1]. Despite this, the
number of new molecular entities (NMEs) approved by the U.S. Food and Drug
Administration (FDA) from 2004–2009 was only half that of the previous five years [2], and
the number of truly innovative NMEs has remained stable at 5–6 per year [3]. This situation
is especially grim if one considers the continual emergence of drug-resistant strains of
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viruses and bacteria, a process which actively depletes the limited repertoire of useful
therapeutics, sometimes leaving few, if any, alternatives in treatment.

Drug discovery has begun to integrate rational design techniques, in which a drug is
engineered with the help of structural biology, alongside traditional screening approaches—
a shift reflected in FDA approval requirements that make it difficult to move therapeutics of
unknown mechanism forward. While virtual screening methods have wide deployment
within the industry and play a large role in modern drug discovery efforts, there is concern
that these methods may have reached a limit in effectiveness [4]. Although undoubtedly
useful in eliminating some inactive compounds, current virtual screening methods are
insufficiently effective in selecting molecules that are actually bioactive against the desired
target; lead optimization efforts alone still consume, on average, two years and $146 million
[3].

Given that bridges, buildings, and aircraft are now regularly designed entirely using
computers [5], why is it that we cannot design small molecules of a few dozen atoms?
Admittedly, design goals are often complex—potential therapeutics must not only possess
high affinity to the target, but meet multiple additional criteria, such as high selectivity, low
off-target activity, good solubility, and a host of bioavailability and toxicity properties
collectively known as ADME-Tox—absorption, distribution, metabolism, excretion, and
toxicity. But it is precisely complex, multi-objective design problems where a computational
approach should be superior to human-guided efforts. If computational approaches are
currently ineffective, it is likely because we lack good predictive models for each of the
individual objectives.

How can we move beyond the limitations of current virtual screening methods? Existing
approaches rely upon a variety of approximations to allow large numbers of compounds to
be screened quickly, often neglecting, or considering in an ad hoc fashion, statistical
mechanical effects (such as conformational entropy, averaging over multiple conformations
or binding modes, and the discrete nature of solvent) and chemical effects (such as
protonation state and tautomer distributions, and their shifts upon binding) for computational
efficiency. Unfortunately, it is precisely the neglect of these effects that is likely to be
responsible for the gross inaccuracies of current scoring functions when making quantitative
estimates of binding interactions [4].

Free energy calculations, at least in principle, offer a way to incorporate these effects to
compute quantitatively accurate binding affinities. Alchemical free energy methods [6] in
particular show great potential in enabling the computation of binding free energies with
reasonable computational resources. In an alchemical calculation, instead of simulating the
binding/unbinding processes directly, which would require a simulation many times the
lifetime of the complex, the ligand is alchemically transmuted into either another chemical
species or a noninteracting “dummy” molecule through intermediate, possibly nonphysical
stages. Because free energy is a state function, the choice of intermediates is in principle
arbitrary, but in practice, can have great impact on the efficiency of the calculation [7].

These methods experienced a wave of initial enthusiasm in the late 1980s and early 1990s
following their introduction, but this enthusiasm was quickly quelled when it became
evident that some of these early successes were due either to luck or conformation bias [8].
In the intervening decade, numerous methodological advances (see [9, 10, 11, 12, 13] for
recent reviews) have sparked a new wave of enthusiasm. But are these advances sufficient
for alchemical free energy methods to finally play a role in drug discovery efforts? And if
so, what barriers remain to their widespread use in industry alongside current docking and
scoring virtual screening tools?
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To address precisely these questions, the authors organized a recent workshop in
Cambridge, MA, hosted at Vertex Pharmaceuticals [14]. Their intent was to bring together
representatives of the pharmaceutical industry, lead practitioners of free energy methods
from academia, and representatives of companies that build the current generation of state-
of-the-art virtual screening tools to identify which problems within industry might benefit
from practical forms of these tools, as well as the operational hurdles that currently prevent
the application of these tools. Pharmaceutical industry representatives made it clear that
multiple opportunities exist to support the traditional structure-activity relationship (SAR)
driven preclinical optimization process via improved compound ranking and prioritization.
Surprisingly, statistical models of prediction-guided prioritization suggest that even
moderate accuracy (RMS errors of ~2 kcal/mol) could be sufficient to produce substantial
efficiency gains in lead optimization campaigns [11]. The ability to suggest considerably
less conservative structural modifications, beyond the guidance of observed SAR, would
have significant impact provided robust predictions could be made for the target compounds.
Selectivity optimization, in which proposed modifications are evaluated for their negative
impact on binding to non-therapeutic molecular targets, would be of tremendous use,
especially in designing isoform-selective inhibitors for kinase and other targets. Late-stage
preclinical evaluation frequently identifies issues, such as pharmacokinetic (PK) liabilities or
toxicity risk factors, sufficient to halt progression of compounds with promising activity.
The ability to rescue such compounds through potentially radical alteration of the core
chemical scaffold while maintaining target potency and selectivity would have great utility
in such cases. Finally, the qualities required for a drug include not only target potency and
metabolism but also the reliable manufacture and formulation of the compound. Successful
optimization of these parameters is often driven by the physical and structural properties
such as solubility [15, 16], logP [17, 18], and crystal form of the active ingredient [19] that
can in principlebe computed through alchemical free energy approaches.

In this review, we aim to briefly address issues relevant to these opportunities, highlighting
relevant work from the recent literature. We make no attempt to be comprehensive—such a
task would be daunting, given that over 3,500 papers using the most popular free energy
computation approaches were published in the last decade, with the publication rate
increasing ~17% per year. After briefly surveying recent literature to assess the current state
of alchemical free energy methods, we discuss a number of challenges that remain before
these approaches can provide clear utility in industrial drug discovery challenges where
existing virtual screening approaches are struggling, noting recent work hinting at potential
solutions where possible. Finally, we outline several steps that can be taken to clearly move
the field toward the goal of producing effective tools for rational drug design.

2. The state of the art
Alchemical free energy methods can be used to compute either absolute binding affinities
(for an individual ligand to a receptor) or relative binding affinities (a difference between
two or more related ligands). In lead optimization efforts, where optimization through small,
sequential chemical modification is of primary interest, accurate relative free energies could
determine whether modifications have increased affinity and selectivity. If uncorrelated
conformations can easily be sampled, relative free energy calculations (recently reviewed
[12]) can be more efficient, requiring fewer alchemical states (and hence less computational
effort) to bridge the phase space between two related molecules. However, free energy
calculations utilizing straightforward molecular dynamics simulations generally suffer from
slow exploration along many conformational degrees of freedom, which introduces difficult
sampling issues for both absolute and relative free energy calculations.
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If all ligands share the same binding mode and no protein conformational changes occur that
modulate the protein-ligand interactions, relative free energies may benefit from fortuitous
cancellation of errors, facilitating the computation of precise relative binding affinities in
practical computation times. However, protein conformational changes, even at the
sidechain ro-tamer level, can be far too slow to sample in molecular dynamics simulations
only a few nanoseconds in length [20, 21], yet the energetics of these changes can have
significant effects on binding affinities. Relative calculations avoid this problem only if the
protein conformational change affects the binding free energy of each ligand identically,
which is not likely to be the case in general [20]. Dominant ligand binding modes can be far
from obvious, even given the bound structure of a closely related ligand [22, 23, 24] and it
may not be possible to sample all potential binding modes in a single simulation, leading to
dramatically different relative binding free energy estimates depending on the starting
structure [22]. In some cases, multiple binding modes may be relevant; this has been
observed by in calculations [21, 22, 23, 24, 25, 26] and in experiments in which multiple
binding modes are clearly resolved [27, 28, 29, 30, 21, 22, 31] or in which minute changes
to a ligand dramatically alter the binding mode (e.g. [31] and references therein). Even
choices of alchemical intermediates, such as whether and how artificial restraining potentials
are used, can introduce artificially long correlation times that frustrate sampling [32]. As a
result, situations where the “cancellation of errors” assumption breaks down are almost
impossible to predict ahead of time, and can lead to highly erroneous relative or absolute
free energy differences that make failure to agree with experiment difficult to interpret [22];
this is likely at least partly to blame for their notorious lack of reliability. Despite this,
academic lead optimization efforts relying on this assumed cancellation of efforts have had
some successes, though they often lack quantitative accuracy and human guidance is
typically necessary (e.g. [33]).

Absolute calculations (recently reviewed [9, 11]), on the other hand, greatly simplify the
ability to learn from failures and hence improve algorithms and forcefields. Unlike relative
free energies, where the experimental error is a large fraction of the typical dynamic range
seen in related compounds synthesized in a lead optimization effort, absolute free energies
cover a much larger dynamic range of binding affinities, so that experimental error is a
much smaller fraction of this range. Interpretation of failure is also easier, as it is clear
which compounds differ from experiment; with relative free energies, it is often not clear
whether the calculation for one or both compounds suffer from pathologies. In the end, if the
goal is to produce accurate, robust, and reliable methodologies for free energy calculations,
absolute and relative free energy calculations have identical challenges as far as sampling
and accuracy, though errors introduced by these challenges may be somewhat smaller in
relative calculations in general. Because the lessons for accuracy and reliability are often
clearer, we focus our review on studies that compute absolute free energies.

Common practice for assessing the performance of free energy calculations has been
comparison of the predicted free energies of binding to experimental affinity measurements,
often obtained by biophysical [34] or enzymatic assays. However, experimental
measurements are invariably contaminated with error, which can affect maximum possible
correlation with experiment that can be achieved [35]. Further, experiments often measure
proxies for the binding free energy or affinity (such as the IC50 or the apparent inhibition
constant Ki) which do not always provide a reliable estimate of the binding free energy
except under very specific mechanistic conditions [36]. Finally, dynamic range in
experimental measurements may be limited (often spanning only 3–4 kcal/mol or less),
meaning that low root-mean-square (RMS) errors with experiment may not be difficult to
attain with a method that provides the right order of magnitude estimate for affinity. Any
measure of expected utility of free energy calculations in effectively directing drug
discovery efforts will need to take these issues into account [35].
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Work assessing the accuracy of absolute binding free energy calculations has largely
focused on a few model receptor systems, due to the ease with which failures can yield
useful methodological insights. In recent years, the most popular of these model systems has
undoubtedly been a hydrophobic cavity mutant (L99A) of T4 lysozyme (also reviewed in
[11]). Despite the simplicity of the small apolar binding site and relative rigidity of the
protein, this system has proven surprisingly challenging for rapid virtual screening methods
like docking [37], and has been nontrivial for free energy methods to quantitatively predict
affinity [21]. Many ligands (of which toluene is a prototypical example) are small and
reminiscent of fragment screening sets, rather than drug-like molecules, and therefore
possess multiple nearly-degenerate binding orientations separated by substantial kinetic
barriers, frustrating quantitative estimation of affinity [32]. This also makes it difficult to
predict the experimentally-resolved binding mode, as noted elsewhere [38, 39, 31].

Slow repacking rearrangements of some side chains have been observed upon binding,
requiring very long simulations or divide-and-conquer approaches to achieve convergence
[40, 41]. Despite this, addressing these issues allows current-generation forcefields to obtain
RMS errors in computed binding free energies of approximately 1–2 kcal/mol [32, 42, 43,
44], though we note that the dynamic range of ligand binding affinities is relatively small
(3–4 kcal/mol). Introduction of an additional mutation, M102Q, creates a polar version of
this binding site; RMS errors of 1–2 kcal/mol have been reported for this system (with
known binders again spanning a 3–4 kcal/mol range) [22, 44].

Another popular model system has been the FK506 binding protein 12 (FKBP12). This
protein, pharmaceutically interesting due to its role in suppressing immune response, binds a
number of large cyclic natural products and related molecules. Several studies of this system
have reported the results of alchemical calculations [45, 25, 46, 47, 48]. Notably, computed
binding affinities vary between studies by up to 2–3 kcal/mol, likely an indication of long
time scales leading to convergence difficulties in short simulations, as well as differences
related to handling of the standard state [47]. Other factors that differ among these studies
(including force field, simulation setup, simulation package, details of sampling approach)
make it difficult to further interpret differences in RMS errors achieved. Several of these
studies, however, have directly demonstrated that correlation times for internal ligand
degrees of freedom can be tens of nanoseconds, reinforcing the importance of sufficient
simulation lengths or enhanced sampling techniques. Even seemingly minor details such as
the need for an inhomogeneous dispersion correction to account for the differing density of
van der Waals sites in the protein and solvent can result in differences of up to 1 kcal/mol
[49].

The serine protease trypsin, which has an exposed binding pocket able to accommodate
relatively small positively-charged ligands (such as the prototypical inhibitor benzamidine),
has also been the focus of a number of recent relative and absolute free energy calculation
studies. Earlier work on this system found that predicted binding affinities generally
captured experimental trends for substituted benzamidines, but the computed range of
binding affinities was shifted and enlarged toward more favorable binding; computed free
energies relative to unsubstituted benzamidine ranged from -2.1 to +0.17 kcal/mol, while
calorimetrically determined free energies only ranged from -0.64 to +0.91 kcal/mol [50, 51].
More recent studies with the AMOEBA polarizable force field [52] reported markedly
improved agreement with experiment (average error less than 0.5 kcal/mol), though at far
greater computational expense [53, 54]. However, due to the small size of this study (five
ligands) [53, 54], it may be premature to expect these accuracy gains from the use of
polarizable forcefields will be consistently realized.
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Other studies of particular interest include the calculation of absolute binding free energies
of antibiotics targeting the bacterial ribosome [55], and application of absolute free energy
techniques to binding to a bacterial membrane transporter [56]. In some cases, relative free
energy calculations are being directly utilized in lead optimization in drug discovery efforts
—notably the Jorgensen lab’s work applying rapid free energy calculations in several
systems [57, 58, 59, 59] and the work of Steinbrecher and collaborators [39]. Studies of
tetracycline binding to the Tet repressor protein (TetR) of Gram-negative bacteria
highlighted the large effect that choice of conformation and protonation state has on the
computed binding free energy [60]. Finally, recent work of Michel and Essex has
highlighted how free energy methods can be much more effective than docking methods at
identifying ligands of the estrogen receptor [38].

Many studies have described new algorithmic advances, but there are very few thorough
evaluations of free energy methods. Even fewer have been tested on the same standard
benchmark systems, making it difficult to evaluate how much progress the field has made
over time. As a result, we still have a very limited idea about when alchemical free energy
methods can currently be expected to perform well. The largely anecdotal literature,
however, does provide us with a much clearer understanding of when they can be expected
to perform poorly. Conformational changes slow enough to present sampling difficulties,
even at the single side chain level, can affect computed binding affinities to a significant
degree [40, 22]. It is, unfortunately, nearly impossible to know when these issues will
appear; for example, two newly-characterized ligands to the well-studied T4 lysozyme
L99A/M102Q polar binding site surprisingly induced novel protein conformational changes,
leading to large errors in the computed binding free energies in which these changes were
not sampled in the simulation time scales [22].

Receptors accommodating charged ligands also appear to present additional challenges.
There is of yet relatively little alchemical free energy work examining these systems, but
one study on a model binding site in cytochrome C peroxidase (CCP) found alchemical
techniques substantially overestimated the magnitude and span of binding free energies [61],
a finding confirmed in some trypsin studies [50, 51]. There exist technical reasons (related
to the treatment of long-range electrostatics) why binding free energies of charged ligands
may be especially difficult to calculate with these techniques, necessitating corrections to the
computed free energies [62, 63]. Hence, the published data suggest that as we move away
from relatively rigid binding sites and neutral ligands, there is the potential for considerably
more uncertainty in binding free energy estimates.

Even in favorable cases, care must be taken to sample all relevant ligand binding modes [21,
22], as these can sometimes change in unexpected ways when a scaffold is modified [31].
Provided any relevant long time scale motions can be overcome, errors can be in the 1–2
kcal/mol range in computed binding free energies [21, 22, 44] or occasionally even better
[53, 54]. However, extremely large errors—in excess of 6 kcal/mol—are possible in some
situations [64]. In some cases, the same method can yield dramatically different results
across targets—yielding R2 values near 0.8 for some targets while giving correlations near
zero for others for reasons that remain unclear [65].

3. Challenges and potential solutions
The challenging aspects of a binding free energy calculation can naturally be separated into
four categories: modeling and simulation setup, sampling, force field accuracy, and analysis.
Researchers must model the relevant chemical species, assign force field parameters of
sufficient accuracy, and choose appropriate alchemical intermediates. They must then
employ some method capable of sampling the relevant configurations (and potentially,
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chemical states) with the appropriate probability during each phase of the calculation, using
limited computer resources and wall clock time. Finally, they must analyze the results in a
way that detects sampling problems and obtain as accurate an estimate as possible. Issues
with any of of these aspects can lead to significant deviations between computation and
experiment.

Modeling and simulation preparation
Before performing a calculation, an atomistic model of the receptor-ligand system must be
constructed. This model must contain all of the chemical components essential to computing
a quantitatively accurate binding affinity. Creating the model may require generating a
complete atomic structure of the receptor from incomplete or inexact structural data,
assigning an appropriate protonation state, constructing an atomic model of the ligand in an
appropriate tautomeric and protonation state, and docking the ligand into the receptor to
generate initial configurations for simulation. Salts or counterions may influence the binding
affinities, as might any post-translational modifications or the presence of other bound
species; cofactors such as heme and nicotinamide adenine dinucleotide (NAD+) are not
uncommon.

Forcefield parameters for all of these chemical species present in the model must also be
generated or assigned from a database. Procedurally, this process is still complex and time-
consuming, which has no doubt played a role in the limited adoption of these approaches
within pharma, where lead optimization cycles operate on time scales of a few weeks. Due
to a lack of commonly agreed-upon best practices (despite recent efforts [66, 12, 13]), many
decisions must be made that require expert knowledge to avoid errors that may have a
significant impact on the computed binding affinity. While tools for automated ligand
parameterization do exist [67], these often struggle with exotic chemistries, and there are
numerous anecdotal reports of issues even for mundane chemistries. Tools for automatically
performing ligand and complex modeling and preparation are sorely needed, though recent
attempts from industry have made some progress in this direction (e.g. integration of
Desmondsetup into Schrödinger’s Maestroproduct). Alchemical intermediates must be
selected to provide sufficient overlap without too much wasted effort; recent work suggests
the beginnings of theory and methodology for doing this optimally [68].

Sampling
Alchemical free energy calculations require sampling from the equilibrium distribution of a
number of thermodynamic states in which interactions between the ligand and its
environment are modulated. This requires the equilibrium sampling scheme—such as
molecular dynamics (MD) or Monte Carlo (MC)—to move away from the initial structure
into a region of high equilibrium probability (equilibration), and to “mix” well within the
equilibrium-populated regions of conformation space so that all relevant states are sampled a
sufficient number of times during the simulation to obtain a precise estimate (convergence).

To complicate matters, the protein and/or ligand may change, or exist as a mixture of,
protonation [69, 60] or tautomeric states [70] upon binding, or there may be significant
populations of multiple such states during some part of the binding process. This has
recently been termed the multiple state problem [10], and may require semigrand canonical
simulation methodologies to address, such as those described in Refs. [71, 72].

As a benchmark for accessible timescales, modern eight-core Intel Core i7 processors using
the popular Gromacs MD code [73] can simulate solvated dihydrofolate reductase (23,569
atoms) at a rate of ~10 ns/day. If one CPU-day is expended for each alchemical state in
standard free energy calculation, all relevant conformational transitions that can affect the
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receptor-ligand interactions must be sampled at time scales much shorter than 10 ns. If, on
the other hand, binding a ligand induces an allosteric conformational change in the receptor,
but the time scales for conformational change far exceed 10 ns, then the simulation will fail
to sample the relevant conformations in proper proportion generally leading to incorrect
binding affinities.

Solvent degrees of freedom generally relax on the time scale of picoseconds to nanoseconds;
as a result, alchemical transformations in solvent are generally easily converged in current
practical simulation time scales. Still, slow torsional transitions in small molecules (such as
in carboxylic acids) can cause surprising convergence issues even in hydration free energy
calculations [74]. Relaxation of protein conformational degrees of freedom can be
considerably slower; side chain reorganization can occur on microsecond time scales, and
large-scale allosteric conformational changes on the millisecond time scale. Simply
“waiting” for these conformational changes to occur is beyond what one can expect from
modern MD simulations, which can typically only reach microsecond simulation time scales
with great effort—one must explicitly consider schemes to directly address time scales in
excess of what can be sampled.

One way to speed sampling is simply speed up the MD or MC simulation directly with
improved algorithms or hardware. Recently, new parallel force calculation algorithms, such
as neutral territory decomposition [75, 76], have been incorporated into MD packages such
as Desmond [77], Gromacs [78] and NAMD [79]. As commodity hardware is reaching a
limit in clock speeds, groups have looked to specialized hardware [80, 81], or developing
entirely new algorithms to efficiently map these calculation onto commercial graphics
processing units (GPUs) [82, 83, 84, 85]. GPUs are especially attractive for their ability to
inexpensively deliver a theoretical peak of ~2 TFLOP/s of computing power, and the
surprising capability of the industry to double (at least for now) this figure approximately
every 12 months.

One algorithmic approach to circumvent slow correlation times is to decompose the
configuration space into smaller, overlapping regions along the slow degree of freedom;
each region could be efficiently sampled independently, and the results from these
simulations merged to recover the overall binding affinity. The approach from Roux et al.
[86] does this by computing the potential of mean force along a protein-ligand approach
vector, restraining the ligand to a restricted region in each simulation. If, however, multiple
slow degrees of freedom must be explicitly dealt with, computation of many-dimensional
dimensional PMFs becomes extremely challenging to converge. Waters located in active
sites can also possess extremely long correlation times; semigrand canonical approaches can
aid convergence by explicitly allowing waters to be created and destroyed through an
unphysical route [87]. Similar issues can arise for slow protein side chain degrees of
freedom, making explicit decomposition of these degrees of freedom a natural approach to
improve sampling [40].

However, what if one does not know in advance the specific degrees of freedom which will
lead to slowing of dynamics beyond what can be sampled in reasonable wall clock time?
Recent approaches for constructing Markov state models (MSMs)—recently reviewed in
[88]—suggest a more general scheme for computing expectations in the presence of slow
conformational dynamics. To construct these models, numerous short simulations are used
to identify metastable conformational states, in which mixing within the region is fast
(compared to typical MD simulations) while transitions between the regions are slow, such
that the states have lifetimes much longer than can be sampled in typical MD simulations.
While the metastable states can be identified by many short parallel simulations [88], recent
adaptive schemes allow these to be constructed very efficiently on a computer cluster [89,
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90]. By dividing the protein conformation space into these metastable states, binding
affinities could be efficiently computed restricted to individual metastable conformations,
and the relative state populations (estimated from the interstate transition matrix during the
metastable state identification procedure) used to reconstruct the total binding affinity. A
first step in this direction was made by Jayachandran et al. [25], who defined MSM states in
terms of details involving both protein conformation and ligand conformation. This allowed
one to sample the system of interest quickly by starting with docked poses as initial seeds
for MD trajectories and then using MSM approaches to combine the trajectories into a single
model.

Alternatively, there has been success with applying generalized ensemble (GE) methods to
protein-ligand free energy calculations. The goal of these methods is to reduce the
correlation times by allowing the system to visit multiple alchemical intermediate states in a
single simulation, where it is presumed correlation times are much reduced in some
intermediate states, such as when the ligand is weakly interacting with its environment. This
can be done either in a serial way [91] or a parallel way [92, 44]; further details can be found
in a companion review in this issue [93]. However, GE approaches in alchemical space
alone may not accelerate receptor conformational changes, and recent results suggest that
using temperature to accelerate these transitions may not be especially effective [94, 95]; a
possible solution may come from a synergistic combination of GE and MSM methods, such
as suggested recently [96], or to explicitly couple in other degrees of freedom [97].
Independent of method specific details, it is clear that simply “waiting and hoping” that
sampling will be sufficient will fail in an unknowable subset of challenging problems, which
implies that the future of robust free energy prediction rests in some sort of active sampling
scheme.

Force fields
With advanced sampling, the community can now address the questions of force field
accuracy for some systems. Indeed, there are numerous examples where sampling has lead
to an improved understanding of the limits of force field accuracy. For example, Shirts et al.
[98, 99] used large-scale distributed computing to compute amino acid solvation free
energies to high precision, allowing for a direct comparison of force fields. Mobley et al.
used hydration free energy calculations to identify and resolve a problem with Lennard-
Jones parameters for alkynes, improving agreement with experiment [100]. Garcia and
Sanbonmatsu [101] and Sorin and Pande [102] used replica exchange and distributed
computing, respectively, to address force field effects in the thermodynamics and kinetics of
alpha helices. More recently, Best and Hummer have used converged replica exchange data
to compare the behavior of simulated helices to new experimental data in order to improve
force field torsion parameters, with compelling initial results indicating its transferability
[103].

While there have been several important steps taken to improve additive force fields [104,
105, 103], it is also natural to consider the fact that additive force fields may be inherently
environmentally dependent. For example, they are parameterized to the condensed phase
and would not be appropriate for gas phase calculations without significant corrections
[106]. However, beyond this obvious failing, the power of transferability may be more
widely needed, as protein-like environments are very different in dielectric, polarization, and
density from aqueous environments, and thus protein-ligand binding affinities may also
accumulate inaccuracies due to the neglect of this environmental dependence.

Towards this end, several groups have been working on polarizable force fields. For
proteins, the AMOEBA [52] and CHARMM [107] polarizable models are natural examples
to consider, with promising initial results [53, 54]. However, these force fields have not been
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used as extensively as additive force fields, and thus await more exhaustive tests. Indeed,
due to the greater computational costs of these more detailed force fields, efficient sampling
methods are more important than ever.

Finally, a key aspect of molecular forces is the nature of the solvation model. Here too, there
are numerous choices one can make, with the most common choices being either an explicit
representation of the solvent in atomic detail or an implicit (i.e. continuum) representation.
While it may be natural to assume that a more detailed model (i.e. explicit solvent) is more
accurate, this question is not so simple. Implicit models, such as Poisson Boltzmann (PB)
approaches [108] or fast analytical approximations to PB such as Generalized Born (GB)
models [109], often include detail missing in many explicit solvent models; in particular,
implicit models often include a model for atomic polarization via the dielectric constant of
the model and thus may have some advantages of simple (e.g. non-polarizable) explicit
models. Recent comparisons between the methods (e.g. [110]) suggests that while explicit
solvent can be more accurate, implicit models also do very well, especially in areas of
solvation free energies. Few groups, so far, have examined implicit solvent models for use in
binding free energy calculations, though early results are encouraging (e.g. [44]).

Analysis
When computing any statistical quantity, such as the binding affinity of a molecule, it is
important have both a statistically efficient way to compute the quantity from samples, and a
good estimate of what the statistical noise in that quantity is for a given choice of the force
field model. This field is relatively well developed. For example, the multistate Bennett
acceptance ratio (MBAR) now provides a way to use all simulation data in an optimal way
and provide good estimates of the statistical error, provided there are no sampling issues
[111, 112], though in most cases the standard pairwise Bennett acceptance ratio will be
almost as good. Earlier work has suggested an automatic scheme for detecting the length of
the transient equilibration phase, which can be used to control simulation lengths [113].
Thermodynamic integration can be problematic as the bias due to the number of
intermediate states must be monitored to avoid numerical error in the calculation, and it is
usually less efficient than BAR or MBAR, as well requiring additional effort to implement
analytical energy derivatives [114].

4. Outlook for progress
Over the past decade, the field has been extraordinarily productive in generating new
algorithmic ideas and advancing technologies to facilitate the development of more accurate
forcefields, it has failed to produce an effective set of tools for the design of small
molecules. To do so, it is necessary for the field to begin a shift from a research focus to an
engineering focus. This shift will require a focus on developing accepted best practices for
running calculations, measuring accuracy, and improving methodologies, as well as a clearer
plan for how academia and industry work together, both to share data and to find the
resources required to develop better drug design tools.

Automated software pipelines
Software tools for automating the preparation of systems using “best practices”
methodology are needed. These tools would not only enable the use of alchemical methods
by non-experts in academia and pharma, but facilitate high-throughput use and evaluation.
With automation, results will be less operator-dependent, allowing meaningful and
automated assessment of performance of algorithms and forcefields. To achieve high-
throughput, analysis of simulation data must also be automated, and with particular attention
paid to diagnostics of convergence problems. Inline diagnostics, in which results are
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continually re-evaluated “on the fly,” will also help the simulations adapt to natural
correlation times within the system, or signal that it will be impossible to converge the
calculations using the desired simulation protocol. Open source tools that can be adapted for
different techniques and software tools would also be useful, as there is no single approach
that will work for all researchers, all tools, or all systems.

Sensitivity analysis
In addition to a lack of comprehensive assessments of accuracy across multiple systems,
there is a lack of literature determining which parameters have significant impact on free
energies of binding for a given protein-ligand system. Considering there are numerous
reports of changes in experimental conditions affecting measured binding affinities, it would
seem that the same should be true of computed binding free energies. By assessing the error
incurred in methodically omitting contributions from statistical mechanical effects (e.g.
multiple conformations, conformational entropy, receptor flexibility) and chemical effects
(e.g. protonation changes or multivalence, tautomerization), the magnitude of these effects
can be assessed in highly realistic models of ligand binding, even if current forcefield
models are inadequate to quantitatively capture experimental binding affinities to high
accuracy. Insights from this effort would be immediately useful in improving existing virtual
screening methods, as well as algorithms and forcefields over the longer term, where our
limited understanding of these dominant physical determinants of binding is believed to
have hindered their improvement [4].

Standardized benchmark sets
Without comprehensive benchmark evaluations, it is impossible to gauge expected
predictive accuracy if current techniques were directly applied to problems in drug
discovery; as a result, simply attempting to incorporate existing tools into pipelines would
be a risky endeavor. To gauge progress toward the goal of deploying a viable engineering
tool, it is essential to establish standardized benchmark sets of receptor-ligand systems.
These sets should span a range of complexity, from simple targets where quantitative
accuracy should be unproblematic to pharmaceutically relevant targets where accuracy is
largely unknown at present. To make steady progress on recognized issues, such a set should
include a variety of model systems that each introduce a limited number of complications—
such as conformational changes upon binding, local unfolding, cryptic binding sites, and
protonation state changes—and be collected under uniform, controlled conditions. In
addition to existing data, new data must be continually added to the set to avoid overfitting,
ensuring that improvements made to deal with known pathological cases can also deal with
new ones. While several curated databases of ligand-receptor binding affinities exist, the
data generally comes from a variety of laboratories making measurements under different
conditions. These almost universally omit assessments of the experimental error, which will
be critical in assessing actual improvement versus simply fitting the noise. A recent high-
throughput crystallographic screen and biophysical binding assay of a fragment set against
trypsin to provide a community dataset is a prime example of efforts that can continue to
drive the field forward [115]. Computational benchmark sets with extensive conformational
sampling could be used to benchmark novel sampling approaches.

Continual improvement
The ability to explain existing datasets is not sufficient; these are vulnerable to being over-fit
by ad hoc corrections. Instead, honest evaluation of progress requires continual collection of
new data to evaluate improvements, explore where methodologies break down, and discover
new phenomena not previously observed. Small-scale realizations of this process have
already demonstrated their utility in revealing shortcomings in algorithms and force fields
[21, 22]. By organizing the community to make predictions in advance of experiment
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through periodic blind challenges (such as the SAMPL challenges [116, 117]), it is possible
to continually gauge performance and drive progress on a larger scale. Several
pharmaceutical companies have expressed interest in providing datasets from inactive
projects, but it is currently unclear what mechanism will provide appropriate incentive to go
through the nontrivial process of releasing this data. Instead, by engaging in community-
supported efforts in which the burden of these experiments are shared, new data could be
obtained on an appropriate community-selected set of targets and timeframes. While it may
be difficult to finance the synthesis of complex ligands, intriguing alternatives exist, such as
screening existing libraries (e.g. [115]) or mutating the receptor in a high-throughput
manner.
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