
Caffeine protects against disruptions of the blood-brain barrier
in animal models of Alzheimer’s and Parkinson’s disease

Xuesong Chen, Othman Ghribi, and Jonathan D. Geiger
Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health
Sciences, University of North Dakota, Grand Forks, ND 58203, USA

Abstract
Sporadic Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the most common
neurodegenerative diseases and as such they represent major public health problems. Finding
effective treatments for AD and PD represents an unmet and elusive goal largely because these
diseases are chronic and progressive, and have a complicated and ill-understood pathogenesis.
Although the underlying mechanisms are not fully understood, caffeine, the most commonly
ingested psychoactive drug in the world, has been shown in human and animal studies to be
protective against AD and PD. One mechanism implicated in the pathogenesis of AD and PD is
blood-brain barrier (BBB) dysfunction and we reported recently that caffeine exerts protective
effects against AD and PD at least in part by keeping the BBB intact. The present review focuses
on the role of BBB dysfunction in the pathogenesis of AD and PD, caffeine’s protective effects
against AD and PD, and potential mechanisms whereby caffeine protects against BBB leakage.
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The blood-brain barrier and its pathophysiological importance
The blood-brain barrier (BBB), an exclusive component of the endothelium of brain
capillaries where tight junctions are formed, is an important physical and metabolic barrier
that helps keep the central nervous system separate from the systemic circulation [1-3] and
that helps regulate and protect the microenvironment of the brain. The protection afforded
by the BBB is essential for neuronal survival and proper central nervous system functioning
[4], and once disrupted synaptic and neuronal functions can be compromised [5].

The restrictive nature of the BBB is due mainly to tight junctions formed between adjacent
endothelial cells and less so by the presence of an underlying continuous basement
membrane [6]. Tight junctions restrict ion flux, paracellular diffusion and infiltration of
peripheral inflammatory cells. Tight junctions consist of three transmembrane proteins
occludin, claudins, and junction adhesion molecules (JAM) as well as a number of
membrane-associated and accessory proteins including zonula occludens (ZO-1, ZO-2,
ZO-3) and cingulin (Figure 1). One of the first transmembrane tight junction proteins
described is occludin, a 65 kDa phosphoprotein [7, 8]. Occludin has two extracellular loops,
four transmembrane domains and three cytoplasmic domains; the cytoplasmic domain of
occludin is directly associated with ZO proteins. Occludin is highly expressed in brain
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capillary endothelial cells and appears to be a regulatory protein that can alter paracellular
permeability [6, 9]. Another group of transmembrane tight junction proteins are claudin
proteins, 22 kDa phosphoproteins that contain four transmembrane domains. The carboxy
terminal of claudin proteins binds to ZO proteins. Claudins form heterodimeric bridges with
adjacent cells that block paracellular diffusion [3]. So far, more than 20 isoforms of claudins
have been identified in humans and each of them shows a unique pattern of tissue expression
[10]; claudin-3 and –5 and possibly -12 are expressed on brain endothelial cells. A third
group of transmembrane tight junction proteins are junctional adhesion molecules (JAM)
that have a molecular mass of 40 kDa and are separated into three subtypes JAM-1, JAM-2
and JAM–3; JAM-1 and JAM-3 are expressed in the brain blood vessels [33]. However, the
functions of JAM in the BBB are largely unknown.

Membrane-associated guanylate kinase-like proteins and other accessory proteins involved
in tight junction formation include ZO proteins and cingulin [11, 12]. Of the three
membrane-associated guanylate kinase-like ZO proteins identified (ZO-1, ZO-2 and ZO-3),
ZO-1 (220-kDa phosphoprotein) more so than ZO-2 (160-kDa phosphoprotein) links
transmembrane tight junction proteins with actin cytoskeleton and stabilizes tight junctions
to help maintain BBB integrity [13, 14], while ZO-3 is not expressed at the BBB [15]. Other
accessory proteins associated with the BBB include cingulin, AF-6 and 7H6 and they too
appear to help regulate interactions between the cytoskeleton, tight junction proteins and
signaling events. It is through linkages between the transmembrane proteins and the actin
cytoskeleton that occludin, claudins, and ZO proteins stabilize BBB tight junctions [6, 16].

Tight junctions are dynamic structures that are highly-regulated by tight junction protein
expression levels, post-translational modifications, protein-protein interactions, and multiple
cell-signalling pathways. Most tight junction proteins are phosphoproteins with multiple
sites for phoshorylation and changes in phosphorylation status of tight junction proteins
profoundly affects their respective expression levels, subcellular localization, protein-protein
interactions, and the assembly of tight junction proteins at the BBB [17-22]. In addition,
tight junction proteins are affected by intracellular signaling pathways including levels of
intracellular calcium [23-25], vascular endothelial growth factor (VEGF) [26], small G-
proteins of the Rho family [21, 27-29], and cAMP which stabilizes the BBB [17, 30-32].
Increasingly, BBB dysfunction has been implicated in the pathogenesis of a number of acute
and chronic neurodegenerative disorders including brain trauma [33], stroke [34], multiple
sclerosis [35], HIV-1 dementia [36], Alzheimer’s disease (AD) [37] and Parkinson’s disease
(PD) [38]. Here will will focus on BBB dysfunction in the pathogenesis of AD and PD, the
two most common neurodegenerative diseases as well as a pharmacological strategy capable
of affecting a wide variety of signalling molecules and stabilizing BBB integrity.

BBB dysfunction in AD
AD, characterized clinically by progressive loss of memory and impaired cognition, is the
commonest form of irreversible dementia in people over the age of 60 years. Pathologically,
AD is characterized by synaptic loss and neuronal cell death, as well as the presence of
extracellular amyloid plaques composed of amyloid beta (Aβ) protein and intracellular
neurofibrillary tangles composed of phosphorylated tau [39]. Aβ is a series of proteolytic
by-products of the amyloid-β precursor protein (AβPP) that vary in length from 39 to 43
amino acids; Aβ results from metabolism catalyzed sequentially by β- and γ-secretase
enzymes. According to the “amyloid hypothesis”, increased levels of Aβ occurs in AD and
Aβ leads to hyperphosphorylation of tau, synaptic dysfunction, neuronal cell death, and
ultimately impairment of higher cortical activity including memory and cognition. Aβ (and
tau) appears to play a critical role in the pathogenesis of AD, and compelling evidence
supports the amyloid hypothesis of early-onset AD [40, 41], which is caused by genetic
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mutations in the AβPP, presenilin-1 and presenilin-2 genes; all lead to dramatic increases in
amyloidogenic processing of AβPP and Aβ production. However, early-onset AD represents
less than 5% of all AD cases while the vast majority (~95%) of AD cases originate
sporadically [42]. Although the etiology of sporadic AD is not known, several risk factors
are implicated including the apolipoprotein allele E4 (ApoE4) genotype, previous head
injury, and cardiovascular diseases such as atherosclerosis, stroke and diabetes that could
result in cerebrovascular dysfunction.

BBB dysfunction is implicated in the pathogenesis of AD, and cerebrovascular dysfunction
risk factors including atherosclerosis, stroke and diabetes can lead to BBB dysfunction
[43-46]. The first indication of BBB disruption in AD brain came from the observation that
IgG and complement proteins aggregate near plaques indicating focal or subtle changes in
BBB permeability [47]. Subsequent studies confirmed the notion that BBB disruption is a
pathological characteristic of AD as evidenced by increased leakage of serum proteins into
AD brain parenchyma [48-50], increased cerebrospinal fluid (CSF):serum albumin ratios in
AD patients [51-54], and pathological changes in the microvasculature of AD brain [37, 55].
Currently, BBB dysfunction is considered to be one of the earliest pathological events
underlying AD [56].

Although the exact mechanisms whereby BBB dysfunction contributes to the pathogenesis
of AD are not fully understood, BBB dysfunction could affect AD pathogenesis by
decreasing Aβ clearance and increasing Aβ production. Clearance of Aβ is controlled in part
by an intact and functional BBB that transports soluble Aβ from blood to brain mainly via
the Receptor for Advanced Glycation End-products (RAGE) and from brain to blood via the
low-density lipoprotein receptor-related protein (LRP-1) [57-59], and depends on the Aβ
chaperone proteins ApoE and apolipoprotein J (ApoJ) [60, 61]. Thus, altered BBB function
could lead to accumulation of Aβ within brain because of inadequate Aβ efflux (due to
decreased expression of LRP-1) and increased Aβ influx (due to increased expression of
RAGE) [5, 59, 62-64]. ApoE4 allele, the only known genetic risk factor of sporadic AD,
slows Aβ clearance from brain in an isoform-specific manner [61]. Alternatively, significant
amounts of Aβ are produced in the periphery [65-67]. In addition, Aβ can be produced
locally in and around the BBB; AβPP is expressed in endothelial cells and pericytes, and Aβ
production has been demonstrated in isolated brain microvessels [68, 69]. Under conditions
of increased BBB permeability such as has been shown to occur in AD, Aβ from peripheral
sources including blood, platelets and skeletal muscle could flood into brain parenchyma.
Increased Aβ production can also occur as a consequence of BBB disruption and increased
entry of blood-borne pathogens, substances, drugs and peripheral inflammatory cells [70].
Conversely, the presence of Aβ can adversely affect brain endothelial cells and can disrupt
the BBB [71-75]. Therefore, BBB disruption by Aβ can potentiate further increases in Aβ
accumulation in brain thus creating a vicious cycle.

The link between high levels of cholesterol and decreased BBB integrity in
AD

One extrinsic factor that contributes to increased Aβ production and possibly the
pathogenesis of sporadic AD is increased levels of cholesterol; high levels during mid-life
increases the risk of developing AD later in life [76-78]. Under physiological conditions,
brain is a net exporter of cholesterol and brain levels of cholesterol are mainly dependent on
in situ synthesis and not dietary uptake [79, 80]. However, under conditions associated with
AD pathogenesis the situation may be quite different. For example, with increased BBB
leakiness cholesterol in the blood could enter brain and disturb brain cholesterol
homeostasis. Furthermore, ApoE4, the major genetic risk factor of sporadic AD, is critical
for transportation of cholesterol between cells in brain [81], and is associated with elevated
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cholesterol levels and an increased risk of developing AD [82-85]. Thus, evidence for an
important role of cholesterol in the pathogenesis of AD comes from a variety of
experimental approaches including environmental, genetic and epidemiological.

Experimentally, Sparks and co-workers [86] first reported an association between
cholesterol and Aβ production. Subsequently, elevated levels of cholesterol were found to
increase Aβ generation [87-89] and lowering cholesterol levels decreased Aβ production
[89-91]. Rabbits fed a diet enriched in cholesterol have for years been used as a model for
cardiovascular disorders, especially atherosclerosis. Rabbits fed cholesterol-enriched diets
are now known to exhibit neurovascular disorders and others and we have shown that such
diets induce pathological features of AD such as learning deficits, increased Aβ plaque
formation, and hyperphosphorylation of tau [86, 92-95]. Moreover, we reported recently that
rabbits fed a cholesterol-enriched diet exhibit pathological features of AD including
increased BBB leakage and disrupted integrity of the BBB [96]. Thus, elevated levels of
cholesterol could contribute to the pathogenesis of AD, at least in part, because the integrity
of the BBB is compromised.

Cholesterol-induced increases in levels of Aβ in brain might involve increased AβPP
trafficking and increased amyloidogenic processing of AβPP, and increasingly endosomes/
lysosomes have been implicated in amyloidogenesis. An involvement of endocytosis in
amyloidogenic processing of AβPP is suggested by findings of AβPP and AβPP cleavage
products in clathrin-coated vesicles [97]. The involvement of endosomes/lysosomes was
confirmed by findings that Aβ production was decreased in cultured cells that were stably
transfected with an AβPP construct where the C-terminal endocytic targeting signal was
removed [98, 99] and when cells were transfected with a dominant-negative form of
dynamin [100]. Furthermore, beta-site amyloid precursor protein-cleaving enzyme-1
(BACE-1), the major β-secretase to cleave the AβPP to generate Aβ, is localized in
endosomes and its activity is optimal under acidic conditions [101-103]. Even more direct
evidence for the involvement of endosomes/lysosomes in amyloidosis and AD pathogenesis
comes from findings that Aβ accumulates in neuronal endosomes/lysosomes of AD brain
[104], that abnormal endosomes occur before extracellular Aβ is deposited [105], and
intraneuronal deposition of Aβ precedes extracellular deposition of Aβ [106].

Cholesterol in most types of cells comes largely from lipoproteins up-taken through
receptor-mediated endocytosis. Following binding of lipoproteins to its receptors, the
receptor-lipoprotein complex is internalized and transported to endosomes/lysosomes where
cholesterol esters are hydrolyzed to free cholesterol which is then transported to various
cellular compartments including plasma membrane and endoplasmic reticulum [80, 107].
Although brain cholesterol is largely derived from de novo synthesis within the brain,
lipoprotein transport across the BBB can play a role in delivering essential lipids including
cholesterol to brain cells [108, 109]. In brain, ApoE is the major endogenous lipoprotein that
transports cholesterol from astrocytes to neurons, and neurons express low density
lipoprotein (LDL) receptors including low density lipoprotein receptors (LDLR), very low
density lipoprotein receptor s(VLDLR) and LRP-1 [110-112]. It has been shown that
receptor-mediated endocytosis of cholesterol promotes AβPP internalization and processing
[81, 113-118]. Under conditions when circulating LDL cholesterol levels are high, high
levels of LDL cholesterol would be expected to enhance receptor-mediated endocytosis of
cholesterol at the BBB and thereby impair endothelial barrier function [119, 120].
Alternatively, high levels of LDL cholesterol could promote amyloidogenic processing of
AβPP, increase Aβ production and in so doing impair the BBB function. Once the BBB is
disrupted, it is expected that increased levels of LDL cholesterol coming from the periphery
could increase brain levels of cholesterol, enhance neuronal uptake of cholesterol, and
increase AβPP trafficking, amyloidogenic processing of AβPP and Aβ generation.
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BBB dysfunction in PD
PD, is a chronic neurodegenerative disease characterized clinically by tremor, bradykinesia,
rigidity and postural instability and pathologically by loss of dopaminergic neurons mainly
in the substantia nigra pars compacta [38]. Although, the etiology of PD is not known, the
observation that the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
causes a parkinsonian syndrome similar to PD has led to the hypothesis that environmental
toxins similar to MPTP could play an important role in the pathogenesis of PD [121]. The
cellular and molecular mechanisms underying the pathogenesis of PD is unclear at present,
but it has been linked increasingly to neuroinflammation and oxidative stress [122-125].

Similar to AD, BBB dysruption may play an important role in the pathogenesis of PD.
Increasingly, BBB dysfunction has been reported to contribute to PD progression [38, 126,
127] and it has been found that pesticides disrupt BBB permeability [128], that
neuroinflammation and oxidative stress compromises BBB [129-133], that pathological
alterations in endothelial cells within the substantial nigra are noted in patients with PD
[134] and BBB dysfunction is present in PD patients [38], that BBB disruption occurs in PD
animal models including MPTP-treated mice [133] and 6-hydroxydopamine (6-OHDA)-
treated rats [135], and that BBB disruption precedes dopaminergic neuronal loss in
substantial nigra [136]. Thus, BBB dysfunction appears to contribute, at least in part, to the
pathogenesis of PD and may help explain why even short exposures to MPTP could result in
the development of a progressive parkinsonian disorder.

Caffeine and its mechanism(s) of actions
Caffeine, the main topic of these reviews, is widely consumed [137, 138] and has diverse
pharmacological actions [138]. Of relevance to the control of BBB integrity, caffeine’s
actions have been shown to be mediated through blocking cell surface adenosine receptors,
through inhibition of cAMP phosphodiesterase (PDE) activity, and by affecting the release
of calcium from intracellular stores. Each of these three mechanisms has been implicated in
modulating BBB functions and the effects of caffeine on these mechanisms are clearly
concentration- and dose-dependent.

Caffeine at low concentrations (μM range) can block all four subtypes of adenosine
receptors (A1, A2A, A2B and A3), with most of its actions being mediated through inhibition
of the high-affinity A1 and A2A receptors and, to a lesser extent, the low-affinity A2B and
the high-affinity low-density A3 receptors [137]. These receptors are G protein-coupled
receptors that affect many cell-signaling mechanisms including cAMP. Activation of A1 and
A3 receptors leads to the inhibition of adenylate cyclase by Gi and decreases intracellular
levels of cAMP, whereas activation of A2A and A2B receptors stimulates adenylate cyclase
through Gs and increases intracellular levels of cAMP [139]. Because caffeine is commonly
ingested chronically, it is important to note that long-term exposure to adenosine receptor
antagonists like caffeine can have effects that resemble the acute effects of adenosine
receptor agonists [140] due likely to up-regulation of adenosine receptors (A1 and A2A) and
adaptive changes leading to adenosine receptor sensitization [140-142]. At higher
concentrations, caffeine and its intermediate metabolites such as theophylline, theobromine
and paraxanthine can elevate intracellular cAMP levels by inhibiting cAMP PDE activity
[137]. At high, possibly toxic, concentrations (mM range) caffeine can mobilize calcium
from endoplasmic reticulum stores through actions on IP3 and ryanodine receptors [137,
143]. Caffeine is also know to affect a number of other cell signaling molecules and
physiological functions the composite of which may affect the pathogenesis of AD and PD
as well as BBB structure and function.
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The role of the BBB in the protective effects of caffeine in animal models of
AD and PD

Recent epidemiological and experimental studies indicate that caffeine, when administered
chronically, has beneficial effects against a number of acute and chronic neurological
disorders including stroke, AD, and PD [144-156]. For AD, the protective effects of caffeine
have been observed in humans as well as in animal models of this neurodegenerative
disorder. Epidemiologically, chronic ingestion of caffeine conferred protective effects
against AD [157, 158] and a retrospective study showed that caffeine intake is associated
with a significantly lower risk for AD [150]. Prospective studies confirmed the above
findings by showing that chronic caffeine intake improved memory and cognitive function
in normal aged individuals as well as in AD patients [148, 151, 159-162]. Subsequently,
experimental studies conducted using animal models of AD noted that caffeine improved
cognitive abilities [149, 163], reduced Aβ production [149, 163, 164], and stabilized BBB
integrity [96]. Thus, caffeine and drugs like caffeine might be part of any regimen intended
to prevent, delay, and/or treat AD.

For PD, it was reported some 35 years ago that caffeine through blocking adenosine receptor
activation could ameliorate parkinsonian symptoms [165]. Subsequent retrospective,
prospective, and epidemiologic studies demonstrated that caffeine when administered
chronically decreased the risk of developing PD [152-155]. Experimental studies confirmed
and extended the epidemiological findings by showing that caffeine was neuroprotective
against the loss of dopaminergic neurons that occurs in the substantial nigra of MPTP-
treated mice [166]. Thus, current evidence strongly suggests that caffeine is a promising
agent in the prevention and/or treatment of PD [167]. Although the mechanisms whereby
caffeine exert their protective effects on PD are not fully understood, much work has been
conducted on the involvement of adenosine receptors in the pathogenesis and possible
treatment of PD [168]. Of the identified adenosine receptor subtypes, the main focus
continues to be on A2A receptors [169] and preclinical studies suggest strongly that A2A
receptor antagonists are protective against PD [170-174]. However, clinical trials with an
A2A receptor antagonist were rather disappointing in that only minimal improvements in PD
symptomatology were noted in the PD patients [175, 176]. Never the less, A2A receptor
antagonists may still proved to be effective against PD because those clinical trials were
designed to determine only the extent to which they might show a therapeutic effect in
patients already living with PD, and that results from animal studies and epidemiological
studies have demonstrated repeatedly that caffeine and blockade of adenosine A2A receptors
affords prophylactic protection and not therapeutic rescue of endpoints related to PD.
Furthermore, it remains a possibility that an inadequate dose of the A2A receptor antagonist
was tested in the clinical trials.

BBB dysfunction has been implicated in the pathogenesis of AD [48-50] and although more
controversial PD as well [38, 126, 127]. Thus, caffeine might exert its protective effect
against AD and PD by virtue of its action on the BBB. Indeed, we reported recently that
chronic ingestion of caffeine protected against BBB dysfunction in both a rabbit model of
sporadic AD [96] and a mouse model of PD [177]. In a rabbit model of sporadic AD, we
demonstrated that caffeine (3 mg/day, a human equivalent of ~1 cup of coffee per day)
blocked cholesterol-enriched diet-induced increases in leakage of Evan’s blue dye (Figure
2A) and decreases in levels of the tight junction proteins occludin (Figure 2B, C) and ZO-1.
In a MPTP neurotoxin model of PD, we demonstrated that caffeine (10 mg/kg, a human
equivalent of ~5 cup of coffee per day) blocked MPTP-induced increases in leakage of
Evan’s blue dye (Figure 2D) and decreases in levels of the tight junction proteins occludin
(Figure 2E, F) and ZO-1 specifically in striatum. Although the molecular mechanisms by
which caffeine protects against BBB dysfunction remain unclear, the mechanisms to
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consider include blockade of adenosine receptors, inhibition of cAMP PDE activity, or
mobilization of intracellular calcium from endoplasmic reticulum stores. Because the doses
needed to stabilize the BBB in animal models of AD and PD were in the pharmacologically
relevant range, the protective effects of caffeine on the BBB are most likely achieved
through blockade of adenosine receptors. Of the four subtypes of adenosine receptors, A2A
and A2B receptors are most prominently expressed on brain endothelial cells [178, 179] and
their activation elevates intracellular levels of cAMP, which is well known to stabilize the
BBB [17, 30-32]. That this is an underlying mechanism for the action of caffeine is
supported more directly by findings that activation of A2B receptors protects against
vascular leakage [180]. However, to invoke such a mechanism it is important to note that
although the direct effect of acutely administered caffeine blocks adenosine receptors (A2A
and A2B) thus decreasing intracellular levels of cAMP, chronic ingestion of caffeine as
occurs typically in humans can result in up-regulation of adenosine receptors (A2A and A2B)
on brain endothelial cells and/or increased sensitivity of adenosine receptors (A2A and A2B)
to their endogenous ligand, adenosine. Thus, under conditions when and where brain levels
of adenosine are high [181-184], the activation of already sensitized and/or up-regulated
adenosine receptors on brain endothelial cells especially during the discontinuous presence
of caffeine could lead to greater elevation of intracellular levels of cAMP thus protecting the
BBB against disruption. Our observation that caffeine specifically affects the striatum in the
MPTP neurotoxin model of PD could be related to the very high density of adenosine A2A
receptors found normally in that brain region [137, 166]. It is also possible that caffeine
could stabilize the BBB by increasing intracellular levels of cAMP via inhibition of cAMP
PDE activity in brain endothelial cells [137, 185], but this is not so likely because cAMP
PDE has an approximately 1-2 order of magnitude less sensitivity to caffeine compared to
adenosine A1, A2A, and A2B (but not A3) receptors. In addition, the observed protective
effects of caffeine on endothelial cells of the BBB in our animal models especially the rabbit
AD model might have been due to changes in lipids and/or cholesterol metabolism
[186-188], inhibiting endocytosis [189, 190], and/or affecting lysosomal pH and trafficking
[191, 192].

In addition to its actions on endothelial cells, caffeine might exert its protective effects on
the BBB indirectly through modulation of other cell types in brain including astrocytes,
microglia and neurons. Activation of astrocytes and microglia are major components of
neuroinflammation, which is implicated in the pathogenesis of both AD and PD [193, 194].
Reactive gliosis can release a cascade of proinflammatory and neurotoxic factors including
TNF-α, IL-1 and reactive oxygen species [193, 195-198]; all of which can disrupt the BBB
[24]. The leaky BBB could further potentiate neuroinflammatory responses by allowing
peripheral inflammatory cells to infiltrate into brain parenchyma, thus creating a vicious
cycle. Several lines of evidence indicate that caffeine and the adenosine receptors it is
known to block can inhibit neuroinflammation in in vitro models devoid of BBB [199-201].
Therefore, the protective effects of caffeine against BBB leakage might result from its
ability to inhibit neuroinflammation. The anti-inflammatory actions of caffeine may also
involve blockade of adenosine A2A receptors outside of the brain [202], which could limit
brain cytokine up-regulation (eg. interleukin-1) known to accompany brain insults including
AD [203]. In addition, caffeine has been shown to have direct neuroprotective effects and it
remains a possibility that caffeine’s protective effects against BBB leakage are secondary to
its neuroprotective effects. However, we do favor the notion that neuroprotection is
secondary to the BBB effects because of our findings in a rabbit model of sporadic AD that
caffeine can protect against increased BBB leakage in the absence of apparent neuronal loss
by the cholesterol-enriched diet [96].

It is becoming increasing clear that synaptic dysfunction is the key event in pathogenesis of
both AD and PD. In AD patients, it is the loss of synapses rather than neurons that
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effectively correlates with dementia [204, 205]. In AD animal models, there is hardly any
neuronal loss but synaptic loss and dendritic spine abnormalities have been demonstrated in
several transgenic mouse models of AD [206-208]. Altered synaptic plasticity has also been
demonstrated in PD patients [209] and in PD animal models [210-213]. As mentioned
earlier, the BBB limits the entry of blood-borne pathogens, substances, drugs, and cells into
brain parenchyma and helps regulate and protect the microenvironment of the brain such
that once the BBB is disrupted synaptic and neuronal functions are compromised [5]. In the
cholesterol-fed rabbit model of AD, both BBB disruption and learning deficit have been
demonstrated [95, 96]. Furthermore, our observation that caffeine protects against BBB
disruption is consistent with the findings that caffeine intake protects against memory loss in
aging and in AD [150, 151]. Thus, synaptic dysfunction and loss of synaptic markers should
be a focus in future studies using the rabbit model of AD.

Conclusions
Sporadic AD and PD are the two most common neurodegenerative diseases, with unknown
etiologies and limited available therapeutic interventions. Recent epidemiological and
experimental studies suggest strongly that caffeine, the most commonly ingested
psychoactive drug in the world, is protective against these degenerative diseases.
Furthermore, elucidating underlying mechanisms whereby caffeine protects against AD and
PD will undoubtedly lead to new therapeutic strategies that could prevent, delay, and/or
treatment of these deleterious diseases.

Emerging evidence suggests that BBB dysfunction plays an important role in the
pathogenesis of both AD and PD. Our recent findings that caffeine, a safe and readily
available drug, can stabilize BBB have important implications for therapeutic interventions
against these neurological disorders. Never the less, further detailed studies are now
warranted to determine first the temporal and spatial sequence of caffeine’s effects on BBB
leakage, neuroinflammation, synaptic dysfunction, and neuroprotection, and second the
detailed molecular mechanism(s) whereby caffeine protects against BBB disruption.
However, because caffeine can prevent the opening of the BBB in two very different models
of neurodegenerative disorders and in two different species and therefore may of generalized
importance it might be important to limit ingestion of caffeine by patients undergoing
therapeutic interventions wherein controlled opening of the BBB is integral to the desired
clinical endpoints.
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Figure 1.
A schematic diagram of endothelial cells that form the blood–brain barrier (BBB) and their
associations with the lumen of a blood vessel, pericytes, basement membrane and endfeet of
astrocytes. The restrictive nature of the BBB is due to tight junctions between adjacent
endothelial cells at the apical membrane and a continuous basement membrane underlying
the endothelium. Tight junctions consist of three transmembrane proteins occludin, claudins,
and junction adhesion molecules (JAM) as well as a number of membrane-associated and
accessory proteins including zonula occludens (ZO-1).
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Figure 2.
In a rabbit model of sporadic AD, caffeine at a dose of 3 mg/day blocked cholesterol-
enriched diet-induced increases in leakage of Evan’s blue dye (A) and decreases in occludin
immunostaining (B) and protein levels (C) in olfactory bulb (Bar = 100 μm). Modified with
permission from Ref [96]. In a MPTP neurotoxin model of PD, caffeine at the dose of 10
mg/kg/day blocked MPTP-induced increases in leakage of Evan’s blue dye (D) and
decreases in occludin immunostaining (E) and protein levels (F) in striatum (Bar = 20 μm).
Modified with permission from Ref [177].
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