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   ABSTRACT 

 Testing whether venoms may aid in digestion of the prey, eleven snake venoms were compared for the pres-
ence of proteases and endopeptidases that function in alkaline pH conditions.  In vitro  experiments examined 
the relative protease and endopeptidase activity of the venoms, which involved combining bovine muscle and 
snake venom in a buffered solution, encased within dialysis tubing. This mixture was then incubated at room 
temperature (∼20°C) for 24hr, with constant shaking. Bicinchoninic acid (BCA) assay and ninhydrin assay 
were used to determine peptide and amino acid concentrations. Histological and immunohistochemical inves-
tigations using  N. kaouthia  venom confi rmed  in vitro  fi ndings. Results show that  B. arietans  venom generated 
the highest amount of protein/peptides and amino acids in the dialysates, while  O. scutellatus, N. ater niger  
and  P. textilis  venom did not show any signifi cant protein degradation under alkaline conditions. Histologi-
cal examination revealed varying degrees of muscle cell damage for each of the venom investigated, and the 
immunohistochemical study on  N. kaouthia  venom showed that the venom penetrated the muscle tissue to 
a signifi cant degree.  In vitro  assays and histological results indicate that particular venoms may possess the 
ability to enhance digestion of bovine muscle tissue.  
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     INTRODUCTION 

 Snake venoms are a complex mixture of proteins, peptides, 
carbohydrates, lipids, metal ions and organic compounds 
( Eggertsen et al, 1980 ), which primarily act to incapacitate 
and perhaps aid in the digestion of prey. The major physio-
logical effects of envenomation include neurotoxication that 
results in general paralysis, haemotoxicity which includes 
toxins that cause coagulation disturbances (including hem-
orrhagic and haemolytic toxins), myolytic activity resulting 
in muscle breakdown and subsequent renal failure, and a 
direct nephrotoxic effect ( Stewart, 2003 ). 

 The suggestion that snake venom plays more of a role 
than just subduing prey has often been raised ( Deutsch 
and Diniz, 1955 ;  Flachsenberger, 1995 ;  Urdaneta et al, 
2004 ;  Nicholson et al, 2006 ), one suggestion being that 
venom actually aids digestion.  Nicholson and colleagues 
(2006)  undertook a study on the digestive properties of 
the Australian Coastal Taipan,  Oxyranus scutellatus . The 
study found that the snake’s venom increased the rate at 
which soluble proteins were released from a dismem-
bered mouse hind leg. Although the mechanism was not 
studied, it was suggested that phospholipase A 

2
  (PLA 

2
 ) 

may play a role in aiding digestion by disrupting cell 
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The most common Phospholipases found in snake venoms 
include Phospholipase As and Phospholipase B, with a 
single report of Phospholipase C being found in  Bothrops 
alternates  venom ( Bernheimer, 1986 ). Some small molecu-
lar weight myotoxins, which primarily act on paralysing the 
prey have also shown profound skeletal muscle degeneration 
which ultimately contributes to prey digestion. Prey digestion 
commences upon envenomation and continues beyond the 
prey’s death until venom constituents are inactivated by prey 
protease inhibitors or proteases, or by the snakes digestive 
enzymes ( Aird, 2002 ). It has been found that some venom 
constituents have digestive functions which are secondary to 
their immobilisation activities, while others apparently only 
serve to break down prey tissues. Hemorrhagic toxins (such 
as some fi brinogenases and metalloproteases) destroy the 
integrity of the prey vascular system and (probably) the lym-
phatic system as well, permitting the movement of catabolic 
endogenous and exogenous enzymes into the tissues. Inter-
estingly, some have also been shown to induce apoptosis of 
muscle cells ( Aird, 2002 ). Hyaluronidase has been known as 
a venom spreading factor for some time, and has been found 
in a variety of snake venoms. It acts to hydrolyse hyaluro-
nan, therefore, degrading the integrity of tissues which facil-
itates penetration by microorganisms, parasites and toxins. 
It also expedites diffusion of released endogenous catabolic 
enzymes, acting in conjunction with venom hemorrhagic 
proteases. Therefore, venom hyaluronidase should also be 
viewed as playing a digestive role in venoms ( Aird, 2002 ). 

   MATERIALS AND METHODS 

  Materials 
 All venoms were supplied by Venom Supplies Pty Ltd, 
Tanunda, South Australia, in lyophilised form. Horse radish 
peroxidise (HRP) conjugated anti-cobra antibodies used for 
the immunohistochemical study were made at the Univer-
sity of South Australia. Bovine muscle tissue (neck strap) 
was obtained from Strath Pastoral Pty Ltd, Strathalbyn, 
South Australia. Subtilisin A (7.1units/mg), Endoproteinase 
Glu-C (100units/mg), Proteinase K (39units/mg), Trypsin 
(10,000 BAEE units/mg) were obtained from Sigma-
Aldrich, Inc. Liquid DAB+ Substrate Chromagen System 
(DakoCytomation), Bicinchoninic acid (BCA) protein assay 
kit (Thermo Fisher Scientifi c, Inc), Micro-BCA protein 
assay kit (Thermo Fisher Scientifi c, Inc), Commonwealth 
Serum Laboratories (CSL) Black snake antivenom (Batch 
No 0543-07001; expiry 11/04), Antivipmyn antivenom for 
 C. vegrandis  (Batch No B2J-03, expiry 09/09/2006, Bio-
clon), Dilaysis tubing (12kDa (Biolabs) and 1kDa (Spectra/
Por) molecular weight cut off (MWCO)), Haematoxylin and 
Eosin staining reagents ( Woods and Ellis, 1994 ) and Ninhy-
drin Reagent 2% (v/v) solution (Sigma Aldrich) were all of 
analytical grade. 

   Venoms 
 The lyophilised venoms were reconstituted to 100mg/
ml protein concentration. Eleven venoms were tested in 
total, consisting of eight elapid species including the Red-
bellied Black Snake  (Pseudechis porphyriacus),  Mulga/King 
Brown Snake  (Pseudechis australis -  QLD locality), Coastal 
Taipan  (Oxyuranus scutellatus),  Tiger Snake ( Notechis ater 
niger -  Kangaroo Island locality), Common/Eastern Brown 

membranes, increasing the release of free proteins 
( Nicholson et al, 2006 ). This study only examined the 
acidic (peptic) digestive properties of the venom. 

 Interestingly,  Van Der Walt and Joubert (1971)  found that the 
venom of  Bitis arietans  exerted purely a proteolytic effect 
on casein and denatured haemoglobin.  Blaylock, (2002)  
also investigated the venom of  Bitis arietans  and its local 
necrotic effect on live mouse hind legs. This study found 
that the venom caused much more signifi cant necrosis of the 
local tissue when the hind leg was kept immobilized com-
pared to those mice that were ambulatory, which could be 
partly due to a proteolytic action of the venom. 

  Thomas and Pough (1979)  found that injecting live mice 
with  Crotalus atrox  (Western Diamondback Rattlesnake) 
venom, before ingestion by non-venomous snakes, increased 
the rate of digestion. They found that the venom’s proteo-
lytic activity weakened the internal organs of the prey and 
loosened hair which resulted in the more rapid rupturing of 
the visceral cavity. This provided the natural digestive secre-
tions of the snake’s stomach a larger surface area to act on, 
resulting in faster digestion of the prey. Not all studies, how-
ever, have agreed that venoms facilitate digestion.  Marshall 
(2007)  also performed a study on  Crotalus atrox , a species 
of snakes known for its relatively high proteolytic activity, 
and found no statistically signifi cant evidence that digestion 
was made more effi cient by envenomation of prey. Contra-
dicting studies such as these have fuelled debate on whether 
venoms in fact do or do not aid in prey digestion. 

 Other studies on various snake venoms have also come 
to different conclusions on the digestive role of venom. 
 Reichert (1936)  found that envenomated prey ingested by 
 Bothrops jaracussu  was digested over 4-5 days but when 
envenomation was withheld the digestion process lasted 
12-14 days. Similar results were found  Vipera aspis  venom 
also, where normal prey digestion lasted 3 days, but when 
venom was withheld it lasted 5-8 days ( Zeller, 1948 ). In 
contrast to these, a study by  Urdaneta et al (2004)  found 
that there was no signifi cant proteolytic action in the venom 
of  Micrurus nigrocinctus,  as did a recent study on the 
Taiwanese pit vipers  Trimeresurus gracilis  and  T. stejnegeri  
( Chu et al, 2009 ). The differing conclusions on the role of 
venoms in digestion may be due to variation in the compo-
nents of these venoms. 

 The internal physiological pH of many small organisms is 
slightly alkaline, around 7.4 ( Spigelman et al, 2002 ), and if 
a venom has the ability to completely or partially hydrolyse 
proteins in alkaline conditions, this suggests the venom may 
aid in the initial digestion of the prey. This digestion would 
occur inside of the prey as the venom was injected, and work 
its way outwards as the animal passes along the gastroin-
testinal tract ( Thomas and Pough, 1979 ). Although many 
studies discuss the ability of snake venoms to aid digestion 
of prey, none have directly investigated the extent to which 
particular venoms may be able to digest proteins under alka-
line conditions. 

 Of the many venom components, there are only a few that are 
of interest to this study. Among these are Lipase enzymes, 
such as phospholipases, which act to cleave phospholipids. 
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each individual test (1gm of muscle + 1ml CSB buffer + 
0.1ml of venom (100mg/ml). Tubes were gently agitated 
for 24hr in a shaking water bath (Ratek Instruments) at 
20°C. After 24hr the CSB buffer (dialysate) was removed 
and quantitatively assayed for either peptide or amino acid 
concentration. Dialysates were assayed for protein using a 
Pierce BCA protein assay kit. A ninhydrin assay was used to 
measure amino acid concentration in the peptide-amino acid 
experiments ( Moore and Stein, 1948 ). 

     Digestion positive controls 
 Positive controls for the experiments contained a mixture 
of protein digesting enzymes (in place of the venom). The 
protein-peptide experiments tubes contained Trypsin and 
Proteinase K (100µl of Trypsin (1000 BAEE units), 50µl 
of Proteinase K (0.35units)) with the bovine muscle and 
CSB buffer (within the dialysis tubing). The positive control 
for the amino acid experiments contained equal amounts 
(30µl each) of; Trypsin (330 units), Subtilisin A (0.11units), 
Endoproteinase Glu-C (3units) and Proteinase K (1.3units). 

   Digestion muscle negative control 
 Negative controls were made containing only the CSB 
buffer (1ml) and the muscle sample (1gm)  *  . This allowed 
any protein or peptide released from the muscle samples 
to be measured. The proteins in the negative controls were 
assayed with a micro-BCA kit to obtain accurate measure-
ments at low concentrations. 

     Venom negative controls 
 Negative controls that contained only the CSB buffer (1ml), 
and venom (100µl, 100mg/ml, and no muscle sample). This 
negative control was done for all the separate venoms used 
in the digestion experiments. 

   Digestion tests 
 Test samples were set up identically to the positvie controls, 
except a specifi c venom was used in place of the enzymes. 

Snake  (Pseudonaja textilis -  QLD locality), Common Death 
Adder  (Acanthophis antarcticus -  S.A. locality), Thai/
Monocled Cobra  (Naja kaouthia)  and the King Cobra  (Ophi-
ophagus hannah).  The three Viperid venoms tested include 
Eastern diamond back rattle snake  (Crotalus adamanteus),  
Uracoan rattlesnake  (Crotalus vegrandis) , and Puff adder 
 (Bitis arietans).  Reconstituted venoms were stored at -80°C 
until being used in the experiment. 

   Muscle preparation 
 Bovine muscle tissue was used as the source of protein for 
the experiments. Tissue were collected immediately after 
slaughter and immersed in a sodium acetate buffer, pH 5.5 
(0.05M CH 

3
 COONa.3H 

2
 0, 0.15M NaCl and 0.015M NaN 

3
  

as an antibacterial) to prevent any digestion by endogenous 
enzymes during transport ( O’Halloran et al, 1997 ). Samples 
were immediately taken to the laboratory, and sectioned in 
a UV sterilised laminar fl ow work station. Muscle ‘cubes’ 
(∼ 0.5mm 2 ) were then washed in 2ml of sodium acetate 
buffer, and centrifuged at 985x g  for 4min at 4ºC to remove 
any excess blood and endogenous enzymes that could 
potentially interfere with the experiments. The rinse was 
repeated until the fi ltrate collected in the centrifuge tube had 
a 280nm (UV) absorbance of ≤ 0.1. A fi nal 4min “dry spin” 
at 985x g  was done to dry the tissue which was then stored 
in 1.5ml microcentrifuge tubes at -80°C for future use. This 
procedure ensured a consistent source of protein for all the 
digestion experiments. 

   Digestion method 
 All experiments were set as detailed in  Figure 1 . Ten millili-
tres of Complete Sodium Bicarbonate buffer (CSB) (0.05M 
NaHCO 

3
 , 0.009M CaCl 

2
 , 0.0021M MgCl 

2
 , 0.15M NaCl 

and 0.015M NaN 
3
 ), pH 7.5, was placed into each individual 

50ml centrifuge tube, followed by sealed dialysis tubing 
(12kDa molecular weight cut of (MWCO) for protein-
peptide experiments, and 1kDa MWCO for peptide-amino 
acid experiments) containing the correct components for 

Figure 1. Apparatus in which the 
digestion experiments were performed. 
Dialysis tubing MWCO sizes vary 
between protein-peptide digestion 
experiment (12kDa) and amino acid 
(1kDa). After 24hr the 10ml of CSB 
buffer is termed the “Dialysate”.

*This negative control was called; “Universal muscle negative” and this value was estimated by performing 20 separate estimations, 
and the (mean) value obtained was used in all subsequent calculations (see Figure 2).
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mix (100µl of venom (100mg/ml) + 10µl of 0.20M EDTA) 
and 1ml of CSB buffer. The experimental methodology was 
the same as described in “Digestion method”. 

   Study of muscle tissue penetration by the venom of 
Naja kaouthia during the digestion experiment 
 An immunohistochemical study was performed using 
 N. kaouthia  venom and a horse radish peroxidise (HRP) 
conjugated anti-cobra venom antibodies, made at the Uni-
versity of South Australia. The HRP conjugate was tested 
prior to its use in this study to ensure that it had signifi -
cant biological activity ( i.e. , the ability to bind to the cobra 
venom antigens). Paraffi n sections were cut from muscle 
samples from the initial  N. kaouthia  digestion experiment. 
Sections initially had a 5min peroxidise block (using per-
oxidise quenching solution), and were permeabilised with 
Triton-X100 (0.1%, v/v) for 10min before being blocked 
with horse serum (30min). The HRP conjugate was then 
added and was left to incubate for 30min, rinsed, and a 
Dako diaminobenzidine (DAB) Plus Kit was used to visu-
alise the degree of binding. DAB forms a very stable, brown 
end-product at the site of the target antigen or nucleic acid. 
The sections were counterstained with Ehrlich’s Haema-
toxylin ( Woods and Ellis, 1994 ), for 20sec and differen-
tiated in 1% (w/v) acid/alcohol if necessary. Finally, the 
sections/slides were dehydrated, cleared (in Xylene) and 
mounted. Slides were analysed using an Olympus BX40 
microscope, fi tted with an Olympus DP70 camera. Results 
from this process showed DAB deposition as brown col-
our, and nuclei as purple-blue. 

   Histological analysis of muscle tissue 
 Haematoxylin and eosin (H&E) stains were performed on 
4µm paraffi n sections of the muscle tissue which had been 
collected and fi xed in 10% (w/v) formal buffered saline 
throughout the digestion experiments. Histological analysis 
provided visual clarifi cation on the effects of the individual 
venoms had on the muscle structure. The stains were per-
formed using methodology by  Woods and Ellis (1994) . 

   Procedure used for calculating the results 
 The total corrected concentration of either peptides or amino 
acids in the dialysate were calculated using the following 
equation detailed in  Figure 2 , which takes into account the 
universal ‘muscle only’ negative control and the ‘venom 
only’ negative controls of the individual venoms. The ‘posi-
tive control’ corrected value used the same equation but 
without a venom only control. 

100µl of venom (100mg/ml), 1gm of bovine muscle, and 
1ml of CSB were placed within the dialysis tubing. 

   Antivenom experiments 
 Two antivenom/venom mixes were used to test the spe-
cifi c antivenoms effi cacy at inhibiting the venom’s protease 
activity. CSL Blacksnake antivenom was used against  
P. porphyriacus  and  P. australis  venom, while polyclonal 
Antivipmyn antivenom was used to test  C. vegrandis  venom. 
Both antivenoms were dialysed to remove any small molecu-
lar weight proteins (50kDa MWCO dialysis tubing, and 2x1l 
(0.15M NaCl)). After dialysing, the Blacksnake antivenom 
was centrifuged in a sterile 3kDa MWCO MACROSEP Cen-
trifugal Concentrator 5000x g  for 10-12hr, thereby removing 
excess water, and concentrating the antivenom. 

 The dialysed antivenom was tested for total protein con-
centration (using 280nm UV absorbance), and for its 
immunological activity on the venoms using an immuno-
electrophoresis assay. For the Blacksnake antivenom test a 
stock solution venom-antivenom mix was made by incu-
bating the mixture (400µl antivenom (50mg/ml) + 100µl 
venom (100mg/ml)) for 1hr at 37°C. The  Crotalus vegrandis  
antivenom mixture was made by mixing 550µl of  Crotalus 
vegrandis  venom with 1650µl of the Antivipmyn antivenom 
and incubating for 1hr at 37°C. Samples were then cooled 
to 4°C, and centrifuged at 16,100x g  for 5min. The clear 
supernatant was retained for use and any precipitates ( i.e. , 
bound venom/antivenom aggregates) were discarded. The 
Blacksnake antivenom tests were conducted in an identical 
manner to the protein-peptide digestion experiments, except 
the ‘venom’ within the dialysis tubing was replaced with 
the venom-antivenom supernatant (100µl venom/antivenom 
supernatant, 1gm muscle, 10ml CSB buffer). Tests performed 
using the  Crotalus vegrandis  antivenom/venom mix each 
contained 1gm muscle, 400µl venom-antivenom mix (100µl 
 Crotalus vegrandis  venom + 300µl Antivipmyn antivenom) 
and 1ml CSB buffer. 

   EDTA digestion inhibition experiments 
 A stock solution of the venom-EDTA mixture was made con-
taining 250µl (100mg/ml) of venom with 25µl (0.20M) EDTA 
solution. This was incubated at room temperature for 10min 
before centrifuging at 16,100x g  for 5min. The clear venom-
EDTA supernatant was removed and used in the digestion 
experiment ( i.e. , replaced the ‘venom’ sample within the 
dialysis tubing). The dialysis bag (12kDa MWCO) for this 
experiment contained 1gm muscle, 110µl of venom-EDTA 

Figure 2. Calcula-
tion for the total 
(corrected) protein/
amino acid concen-
tration in dialysate 
(the concentration in 
dialysate attribut-
able to digestion of 
the muscle by the 
venom alone).
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had strong immunological activity against their target 
venoms. This was done because both antivenoms used 
were past their expiry dates. 

 Results show (see  Table 3 ) that the 50mg/ml antivenom 
concentration totally inhibited all the proteolytic activity 
in  P. australis  venom. The  P. porphyriacus  venom proteo-
lytic activity was also signifi cantly inhibited by the anti-
venom. The Antivipmyn antivenom inhibited  C. vegrandis  
venoms proteolytic activity from 1.29 ± 0.09mg/ml to 
0.80 ± 0.23mg/ml. 

   Statistical analysis 
 A clustered regression analysis was used to test signifi -
cance (P ≤ 0.05) using ‘Stata 10’, for all protein and 
amino acid comparisons. Students T-test’s were used 
(P ≤ 0.05) to test signifi cance of the Antivenom and 
EDTA experiments. 

    RESULTS 
  Protein Assay 
 Testing for protease activity in the venoms show that 8 out of 
the 11 venoms investigated showed a statistically signifi cant 
increase in protein-peptide accumulation in the dialysate 
when compared to the negative control (see  Table 1  and 
 Figure 3 ). 

     Amino acid assay (endopeptidase effect) 
 Peptide-Amino acid assay results show that only 2 out of the 
7 venoms investigated generated a statistically signifi cantly 
higher amount of amino acids in the dialysate compared to 
the negative control. The results of this assay are given in 
 Table 2  and  Figure 4 . 

     Antivenom inhibition 
 After observing the alkaline protease action of  C. vegrandis, 
P. porphyriacus  and  P. australis  venom on digestion of 
muscle proteins, experiments were conducted to test 
whether specifi c antivenoms were able to inhibit the 
proteolytic activity observed in these venoms. Immuno-
electrophoresis assays were performed to ensure the 
antivenom’s antibodies reacted with the venoms anti-
gens (toxins) and results showed that both antivenoms 

Figure 3. Protein comparison.

Species Protein (mg/ml)

Pseudechis porphyriacus 1.16 ± 0.30

Pseudechis australis 0.68 ± 0.03

Acanthophis antarcticus 0.17 ± 0.08

Ophiophagus Hannah 0.81 ± 0.06

Naja kaouthia 0.29 ± 0.11

Crotalus adamanteus 0.12 ± 0.06

Crotalus vegrandis 1.29 ± 0.09

Bitis arietans 1.69 ± 0.19

Oxyuranus scutellatus 0.02 ± 0.05*

Notechis ater niger 0.03 ± 0.02*

Pseudonaja textilis 0.07 ± 0.04*

Table 1. Protein assay results.

*The three venoms that showed no statistically signifi cant 
protein-peptide release included Oxyuranus scutellatus, 
Notechis ater niger, and Pseudonaja textilis.
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an immunohistochemical study as digestion rates are 
related to food surface area to volume ratios. The following 
histological fi ndings (see  Figure 5 ) show the degree of 
penetration of  N. kaouthia  venom on a piece of bovine 
tissue after 24hr. 

     Histology 
 Histological analysis throughout this study was used to 
visually confi rm the  in vitro  fi ndings. The venom studies 
showed various degrees of tissue damage, ranging from  
O. scutellatus,  which showed limited damage (if any), to  
B. arietans  and  P. porphyriacus , which exhibited marked 
muscle cell destruction, as shown in  Figure 6 . 

      DISCUSSION 
 Venoms used in this investigation were chosen due to their 
availability, previous data, and to provide a broad spectrum 
of venoms that show various envenomation characteristics. 
In particular, elapid venoms were included in this study 
because they are known to exhibit some necrotic/proteo-
lytic effects ( e.g. ,  P. australis) , and others that are thought 
to be void of this activity ( e.g. ,  P. textilis  and  A. antarcticus)  
( Wickramaratna et al, 2003b ). There have been numerous 
studies investigating the digestive properties of venoms 
which have utilised either whole mice ( Flachsenberger and 
Mirtschin, 1995 ;  Marshall, 2005 ), or parts of the mice, such 
as hind legs ( Nicholson et al, 2006 ), as a protein source. 
Although, bovine muscle is not the typical food source for 
the studied snakes, whereas mice/rats may be, it provided 
a single piece of consistent muscle tissue for the experi-
ments, and a reasonable source of mammalian protein to 

   EDTA Inhibition 
 Results show (see  Table 4 ) that there was a signifi cant 
decrease of proteolytic activity when the 200mM concen-
tration of EDTA was used on  P. porphyriacus  venom. The  
P. porphyriacus  venom-EDTA experiment shows a signi-
fi cant reduction in protein release from 1.16 ± 0.30mg/ml 
(P ≤ 0.05) to 0.09 ± 0.04mg/ml. Therefore, the alkaline 
protease activity can be attributed to one or more metal-
loproteins present in  P. porphyriacus  venom.  C. vegrandis  
venom exhibited similar results, where protease activity was 
signifi cantly inhibited by EDTA. 

   Immunohistochemistry 
 In this study we also investigated the degree of muscle 
tissue penetration of  N. kaouthia  venom after 24hr using 

Figure 4. Amino acid comparison.

Species Amino acid (µg/ml)

Crotalus vegrandis 142.58 ± 22.60

Bitis arietans 279.31 ± 36.62

Naja kaouthia 0.00 ± 11.69*

Acanthophis antarcticus 0.02 ± 8.85*

Pseudechis porphyriacus 48.69 ± 34.99*

Pseudechis australis 16.14 ± 10.63*

Crotalus adamanteus 7.34 ± 11.70*

Table 2. Amino acid assay results.

 *Venoms that did not show a statistically signifi cant increase 
when compared to the negative control.
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Figure 5. Immunohistological 
fi ndings. (A) Negative Control, 
(B) Control for non-specifi c DAB 
binding, (C) Background binding of 
DAB, (D) N. kaouthia test exhibit-
ing brown DAB deposition formed 
when the DAB reacted with the 
HRP- anti cobra venom conjugate, 
(E) Area of muscle tissue without 
DAB precipitate present.

test the digestive action of the venoms. The main proteins 
in the muscle cells are actin and myosin (and myoglobin to 
a lesser extent) ( Vandekerckhove and Weber, 1978 ;  Sellers, 
2000 ), and these proteins have molecular sizes that would 
prevent them passing through the dialysis membrane pores, 
unless they were digested by proteolytic enzymes. The vast 
majority of studies investigating digestive properties have 
investigated the venoms role in acidic environments, whilst 
there has not been a study directed to the venoms action in 
alkaline conditions. The alkaline conditions were designed 

to mimic the slightly alkaline conditions in prey and the 
small intestine of a snake, and internal pH of a prey item 
(such as a mice/rat) ( Spigelman et al, 2002 ). Sodium bicar-
bonate was used to mimic small intestinal conditions and the 
ions of sodium, calcium and magnesium were also incorpo-
rated to ensure their presence as cofactors for any diges-
tive enzymes (such as, metalloproteases). Finally, sodium 
azide was present as an antibacterial to prevent any bacte-
rial growth, causing breakdown of the muscle over the 24hr 
time period of each experiment ( Lichstein and Soule, 1944 ). 
Another aspect for choosing the 24hr time period relates to 
the digestive processes of a snake. When prey is envenomed 
and ingested, the strong acidic environment of the snakes 
stomach ( i.e. , digestion occurring externally), and digestive 
enzymes would reach and effectively denature any venom 
within the fi rst few days. So, at least initially, the venom may 
be able to survive in the stomach (inside the ingested prey) 
and contribute to digestion. 

 Careful selection and documentation of venom param-
eters ( e.g. , time of milking, yield, storage conditions) was 
another important aspect that is commonly overlooked in 
venom studies. This study used pooled samples (multiple 
snakes) of venom from distinct geographical areas, which 
decreased the chances in having venom variation ( e.g. , geo-
graphic ( Williams et al, 1988 ;  Chippaux et al, 1991 ;  Yang et 
al, 1991 ;  Flight et al, 2006 ) from individual snakes. Factors 
such as geographic location of the snakes, different venom 
batches, and date of milking (seasonal variation could be a 
factor), snake age, snake health may infl uence results. Some 
of these were controlled. 

 Results of the protein-peptide digestion experiments 
revealed elapid venoms, which are generally known for 
their limited necrotic effects, showed a broad spectrum 
of activity. The Australian Red Bellied Black snake,  
P. porphyriacus , and Mugla snake,  P. australis  (both from 
the  Pseudechis  genus or ‘black snake’ group), showed 
higher protein digestion indicating that there is at least 
one active protease in their venoms, which can function 
under alkaline conditions. Other elapid species that did not 

Antivenom 
concentration used

Protein 
concentration 
(mg/ml)*

Protein 
concentration 
(mg/ml)**

P. porphyriacus
(50mg/ml antivenom)

1.16 ± 0.30 0.16 ± 0.08

P. australis
(50mg/ml antivenom)

0.68 ± 0.03 0.05 ± 0.08

Crotalus vegrandis
(30mg/ml antivenom)

1.29 ± 0.09 0.80 ± 0.23

Table 3. Antivenom inhibition assay results.

*Before inhibition by Antivenom.
**After inhibition by Antivenom.

EDTA concentration

Protein 
concentration
(mg/ml)*

Protein 
concentration
(mg/ml)**

P. porphyriacus 
(200mM/ml EDTA)

1.16 ± 0.30 0.09 ± 0.04

Crotalus vegrandis
(200mM/ml EDTA)

1.29 ± 0.09 0.28 ± 0.10

Table 4. EDTA inhibition assay results.

*Before inhibition by EDTA.
**After inhibition by EDTA.
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 Low protein-peptide results found in  A. antarcticus  
venom compliment much of the literature that has been 
pub lished, where the venom has been described as lacking 
necrotic and myotoxic activity ( Mebs and Samejima, 1980 ; 
 Sutherland et al, 1981 ;  Wickramaratna and Hodgson 2001 ; 
 Wickramaratna et al. 2003b ). However, recent reports have 
described venom components that show myotoxic activ-
ity in some  Acanthophis  species including  A. rugosus  and 
 A. sp. seram  ( Wickramaratna et al, 2003a ;  Wickramaratna 
et al. 2003b ;  Hart et al, 2005 ).  Naja kaouthia  results were as 
expected, showing some degree of protease activity, because 
this species has been documented as commonly causing 
necrotic activity ( Reali et al, 2003 ;  Wongtongkam et al, 
2005 ). Out of all of the venoms studied, it was expected that 
 O. hannah  would show the greatest alkaline protease activity 
because the venom has been documented as being enzymat-
ically active and exceptionally high in alkaline phosphomo-
noesterase activity ( Tan and Hj, 1989 ). This study agrees 
with fi ndings of  Kocholaty et al, (1971)  as  O. hannah  venom 
showed proteolytic effects (but not at extremely high levels, 
as we were expecting). Reasoning behind this reduction in 
proteolytic activity could be because  O. hannah  typically 
injects a high volume of venom into its prey, and the present 
study controlled the amount of venom used (using much 
less than  O. hannah  could inject into a prey item). 

 The previous work by  Marshall (2007) , on the Western Dia-
mond back rattlesnake ( Crotalus atrox ) concluded that this 
venom had no signifi cant digestive properties. This snake 
is a close relative of the Eastern Diamond back rattlesnake 
( Crotalus adamanteus ) whose venom was investigated in 
this study. The venom of  Crotalus adamanteus  did not show 
any signifi cant proteolytic activity in this study, therefore, 
supporting the work of  Marshall (2007)  in stating that the 
venom of these two closely related species of snakes has 
no signifi cant (alkaline) protein digestive activity. However, 
the venom of  Crotalus vegrandis  and  Bitis arietans  did 
show signifi cant proteolytic activity. The  Crotalus vegran-
dis  venom results support previous work by  Aguilar et al 
(2001) , who observed the presence of fi brinolytic and pro-
teolytic enzymes in the venom of this species. Similarly, our 

demonstrate a signifi cant degree of protein digestion 
included,  P. textilis ,  A. antarcticus, O. scutellatus  and 
 N. ater niger , and whether these very low levels (if any) 
are of any signifi cant use in protein digestion within living 
systems requires further investigation. Study conducted 
by  Flachsenberger and Mirtschin (1995)  found that at 
18°C  O. scutellatus  venom delayed decay onset, therefore 
producing a ‘lack of digestion’, as seen in our study. The 
fi ndings of the present study do not imply that  O. scutel-
latus  venom does not contain any digestive capabilities 
as a whole, but perhaps lacks the proteolytic enzymes 
which can function in an alkaline environment or func-
tion effi ciently at the temperatures used in this study. This 
requires further investigation. 

 Histological analysis of the bovine muscle samples that 
were exposed to  P. textilis  venom showed that the tis-
sue was seemingly unaffected when compared to a con-
trol, therefore confi rming the histological observations 
seen by  Harris and Maltin (1981)  where no cell damage 
was evident. On the other hand, other venoms, such as 
 P. porphyriacus  and  P. australis , showed marked cell 
destruction. These results confi rm the histological obser-
vations seen of  Hodgson and Wickramaratna (2006)  on 
the effect of  P. australis  venom, probably due to PLA 

2
  and 

myotoxic venom components, such as PA-myotoxin ( Geh et 
al, 1992 ;  Ponraj and Gopalakrishnakone, 1995 ;  Fry, 1999 ). 
The low concentration of peptide formation obtained from 
 N. ater niger  is surprising, because majority of the literature 
discusses muscle damage, collagen destruction and possible 
renal failure associated with envenomation of the common 
tiger snake ( Soto et al, 1988 ;  Jolles et al, 1998 ). Perhaps 
the alkaline protease activity of  N. ater niger  is somewhat 
lower compared to common tiger snakes ( N. scutatus ) 
due to the high variation in venom proteins that has been 
documented between isolated populations of tiger snakes 
( Williams et al, 1988 ;  Yang et al, 1991 ). It is also possi-
ble that whilst the PLA 

2
  myotoxins present in the venom 

do damage muscle cells, the muscle proteins released into 
the dialysis bag are too large to go through the pores of the 
dialysis membrane (MWCO ∼12kDa). 

Figure 6. Histological fi ndings. 
(A) Negative Control, (B) O. scutel-
latus test, (C) B. arietans test, 
(D) P. porphyriacus test.
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of the digestive enzymes in the venom are metalloprotein-
ases. Only protein-peptide digestion was investigated using 
12kDa dialysis tubing. The peptide concentration in the 
dialysate from  P. porphyriacus  venom-EDTA mixture was 
compared to that of the  P. porphyriacus  peptide digestion 
experiment, and showed that the enzyme(s) responsible for 
the alkaline protein digestion are probably all metallopro-
teinases.  Crotalus vegrandis  venom also exhibited a large 
decrease in activity, indicating one or more metalloproteins 
are primarily responsible for the alkaline protease activity. 

   Immunohistochemical study on  N. kaouthia  
 Due to the rate of protein digestion being largely depend-
ent on food volume to area ratios, we investigated if the 
venom may penetrate or only work on the surface of muscle 
cells, and to explore the degree of absorption (or diffusion) 
of venom into a piece of muscle tissue after 24hr. Due to 
the muscle’s previous treatment, it is diffi cult to comment 
in specifi c detail on cell structures, or detailed morphology. 
However, results clearly show that after 24hr  N. kaouthia  
venom had penetrated approximately 300µm into the piece 
of beef muscle tissue, and caused the loss of cell nuclei. 
This observation enables highlighting of several impor-
tant factors underlying the digestion experiments that were 
conducted. It shows that results for the protein-peptide and 
peptide-amino acid digestion experiments not only depends 
on the mass of protein within the dialysis tubing ( i.e. , 1gm), 
but also on the relative surface area to volume ratio of these 
samples. This would imply that one would expect higher 
protein digestion results for muscle samples that had greater 
surface area. Although, care was taken to try and standardise 
the size of muscle tissue samples that were used throughout 
the digestion experiments, there would have been slight dif-
ferences in the surface area of each digestion experiment 
that was done. It cannot be concluded that all of the other 
venoms act in this way with ‘partial-penetration’ into mus-
cle tissue due to the varying makeup and compositions of 
snake venoms, but may be an explanation for the variance 
seen in some test results. 

    CONCLUSIONS 

 •    Seven of the eight elapid venoms and two of the three 
viperid venoms contain alkaline proteases. The spe-
cies that showed the highest activity was  B. arietans  
followed by  C. vegrandis ,  P. porphyriacus ,  O. hannah , 
 P. australis  and  N. kaouthia . Several other venoms, 
including  P. textilis ,  A. antarcticus , and  N. ater niger . 
 O. scutellatus  showed no signifi cant protease activity 
under alkaline conditions. 

 •    Two of the seven venoms that were tested for endopepti-
dase activity can hydrolyse protein down to individual 
amino acids, including  P. porphyriacus  and  P. australis . 
However, these results need to be confi rmed by identi-
fying the individual amino acids, and ultimately puri-
fying and characterising the enzymes responsible. 

 •    All histological fi ndings complemented  in vitro  
fi ndings, with venoms such as  P. porphyriacus  and 
 P. australis  showing marked cell destruction, in 
accordance with the higher peptide concentrations 
found in the digestion assays. 

 Bitis arietans  venom results support the work of  Van Der 
Walt and Joubert (1971) , who were able to purify an alkaline 
protease from the venom of  Bitis arietans . The venom from 
both  Crotalus vegrandis  and  Bitis arietans , therefore, were 
found to contain compounds that aid in digestion of proteins 
into smaller peptides. 

 Of the seven venoms that were investigated tested for 
peptidase activity, only two venoms were found to have 
the ability to generate elevated levels of amino acids in the 
dialysate, when compared to their respective venom nega-
tive control. These fi ndings support the study conducted by 
 Tu and Toom (1967) , where they found that snake venoms 
do contain components that can hydrolyse peptides. How-
ever, as compared to the positive controls, the values are 
very low so it can be assumed that the total effi cacy of the 
venom to fully hydrolyse protein into amino acids is lim-
ited, and has an overall negligible effect in amino acid pro-
duction for digestive purposes (at the tested temperature). 
Further research into these enzymes would be required to 
indicate any digestive advantage  in vivo.  It is also possible 
that there are endoproteinases in the venom. These enzymes 
would hydrolyse only a specifi c C terminal amino acid ( i.e. , 
glutamine), unlike endopeptidases which will hydrolyse the 
complete protein into individual amino acids. This could 
only be proven by identifying the individual amino acids 
released into the dialysate. There are many variables that 
need to be considered including the mass of venom injected 
into prey items ( i.e. , greater mass of venom may increase 
the overall peptide and amino acid formation from venom), 
the size of the prey, prey type, and its internal body tempera-
ture and pH. The nature of this study cannot conclude which 
amino acids were produced. 

  Antivenom inhibition experiments 
 Gel immunoelectrophoretic assays were used to test the 
activity of antivenom antibody binding to the crude venom. 
Precipitation lines showed a high degree of antibody bind-
ing to the various venom antigens. 

 The Blacksnake antivenom experiments showed that  
P. porphyriacus  venom proteolytic activity was reduced by 
> 80% compared with the initial digestion experiment for 
this venom, and  P. australis  activity was reduced by more 
than 90%, thereby showing that the antivenom contains the 
appropriate antibodies to inhibit venom alkaline protease 
activity. 

 Although Antivipmyn is not the antivenom of choice for 
 C. vegrandis  venom neutralisation, results indicate that 
the antivenom had cross reactivity and could successfully 
inhibit some of the enzyme(s) responsible for alkaline pro-
tease activity. Therefore, it may be able to reduce necrotic 
activity (muscle/protein destruction) of these venoms. More 
specifi c antivenom may have a greater inhibition potential, 
but Antivipmyn antivenom was used in this study because 
of its availability. 

   EDTA inhibition experiment on  P. porphyriacus  
 EDTA is a well known metal ion complexing agent and has 
the ability of inhibiting ions from taking part in reactions 
( Vassil et al, 1998 ;  Jones and Atkins, 1999 ). Inhibition of 
digestion by EDTA could therefore indicate that some or all 
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 •    Histological analysis confi rmed the low peptide 
readings (such as,  O. scutellatus, N ater niger, 
C. adamanteus  and  P. textilis ) with little (if any) cell 
damage compared to the negative control. 

 •    Further investigation into the digestive role of venom 
revealed that one or more of the enzymes responsible 
for hydrolysis of protein into peptides are metallopro-
teinases, due to its inhibition by EDTA. 

 •    Black snake antivenom signifi cantly inhibited these 
proteolytic enzymes in  P. porphyriacus  and  P. austra-
lis  venoms. Antivipmyn antivenom also showed some 
inhibition of alkaline proteases in  C. vegrandis  venom. 

 •    Immunohistochemical study found that  N. kaouthia  
venom substantially penetrated the bovine muscle 
tissue after 24hr. 
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