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Abstract
Ensemble based virtual screening refers to the use of conformational ensembles from crystal
structures, NMR studies or molecular dynamics simulations. It has gained greater acceptance as
advances in the theoretical framework, computational algorithms, and software packages enable
simulations at longer time scales. Here we focus on the use of computationally generated
conformational ensembles and emerging methods that use these ensembles for discovery, such as
the Relaxed Complex Scheme or Dynamic Pharmacophore Model. We also discuss the more
rigorous physics-based computational techniques such as accelerated molecular dynamics and
thermodynamic integration and their applications in improving conformational sampling or the
ranking of virtual screening hits. Finally, technological advances that will help make virtual
screening tools more accessible to a wider audience in computer aided drug design are discussed.

INTRODUCTION
The computational identification of drug leads out of large compound libraries through
receptor-based virtual screening (VS) is a well-established method to predict putative
inhibitors for target receptors (reviewed in [1–9]). Despite advances in the underlying
algorithms of virtual screening experiments have incrementally improved our ability to
discriminate binders from non-binders, a number of obstacles remain. A major outstanding
challenge in the practice of virtual screening is the treatment of receptor flexibility, which is
especially difficult owing to the many degrees of conformational freedom in target
receptors. Steady increases in computational power, coupled with improvements in the
underlying algorithms and available structural experimental data, are enabling a new
paradigm for virtual screening, wherein computationally predicted ensembles from first-
principle simulations are being used in rational drug design efforts. The integration of these
more rigorous physics-based methods will have far reaching impact on translational
medicine, including the ability to: (1) better understand the structural dynamics of disease-
related target receptors, (2) improve our quantitative assessments of ligand-receptor
interactions, (3) discover novel modes of ligand binding and inhibition, and (4) develop new
therapeutics that are patient-specific and less prone to drug resistance. This review will
attempt to summarize the recent computational and theoretical advances that have enabled
the development of new methods to integrate larger-scale sampling of receptor space and
identify the most biologically relevant structures for drug design. We will attempt to discuss
the advantages and drawbacks of current methodologies, but focus on emerging methods
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that we believe will become more frequently utilized, especially for receptors that exhibit a
high degree of flexibility.

MOVING BEYOND “LOCK-AND-KEY” OR SIMPLE “INDUCED FIT”
A full understanding of molecular recognition presents a problem of intense interest to
molecular sciences and the field of computer-aided drug design (CADD) [10–13]. The
interactions between ligand molecules and their corresponding receptors are dynamic and
complex. Over time, the field has moved away from an original understanding of molecular
recognition as a simple, rigid “lock-and-key” mechanism [14], towards an “induced fit”
[15]. In the traditional induced-fit theory, the intrinsic plasticity of the receptor is utilized
when the protein’s structure and function responds to the ligand-binding event through
inducible structural motion, and the corresponding rearrangements of the receptor active site
upon binding are only capable in the presence of the bound ligand. Many studies describing
the induced fit effects in various protein-ligand systems have been presented (for examples,
see [16–21]). It is widely accepted that ligands may bind to receptor conformations that
occur infrequently in the receptor’s dynamics, and that the local motions of active site
residues can drastically alter the binding affinity and specificity of ligands to their target.
The ability to efficiently sample these rare dynamics and furthermore, to incorporate the
resulting conformations into the drug discovery and design protocol is still an active area of
investigation. Instead of using static crystal structures in virtual screening, in the traditional
lock and key sense, methods that explore large domain motions and significant active site
rearrangements in a computationally efficient manner will be required.

CONFORMATIONAL ENSEMBLES
An important theoretical notion that presented a modification to traditional induced fit
theory is that of ligands binding to pre-existing receptor populations, or conformational
ensembles [22, 23]. Borrowed in large part from the more theoretically-leaning field of
protein folding, the general idea is that the receptor does not exist in a single native
conformation, but more realistically exists in an ensemble of metastates, or energetically
low-lying substates along the rugged receptor energy landscape [24, 25]. The ligand is
exposed to this ensemble of receptor conformational states and may bind preferentially to
one, shifting the equilibrium population towards the favorable bound conformation [26].
These theories are deeply rooted in statistical mechanics and state that the ensemble
comprises a statistical distribution of native conformations that essentially move, subject to
mechanical forces. Although a review of the elegant protein folding theories is outside the
scope of this review (for comprehensive reviews, see [24, 27, 28]), it is important to
recognize the influence of these theories on understanding the fundamental nature of protein
structure, function and ligand binding [29]. An essential conceptual point that is highly
relevant to this review is the recognition that receptors are able to sample productive bound-
ligand conformations even while in the apo state. To some extent, this suggests that the
“lock and key” is but one of the rare conformations within this unifying scheme, and that
conformational selection is an important driving force in ligand binding and recognition.

Using multiple receptor conformations in CADD and virtual screening ensued not long after
the conception of conformational ensembles. These receptor conformations may be obtained
from x-ray crystallography, or nuclear magnetic resonance (NMR) experiments, or
computationally, from molecular dynamics (MD) or Monte Carlo simulations. In a critical
advance, Knegtel et al. [30] presented the first study employing both crystallographically
and NMR derived ensembles in an averaged grid-based docking study. Other early and
important examples of utilizing multiple experimental structures include FlexE [31], which
systematically combined features from multiple crystal structures, and work presented by
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Osterberg et al., which carefully examined different methods to combine receptor grids
stemming from the inclusion of almost two dozen receptor structures of HIV-1 protease
[32]. Numerous additional studies continue to enhance the notion that using multiple
receptor conformations improves enrichment factors and the ability to predict viable binding
modes [22, 33–38].

Although experimentally derived structures have typically been considered the gold standard
for docking and drug design, in many cases, a high correspondence between
computationally derived ensembles and experimental structures has been established, though
initially limited by insufficient sampling [39]. The progress to date suggests that MD-
generated ensembles may closely replicate the structural dynamics of proteins in solution, as
shown by NMR experiments [40, 41]. With this in mind, we focus on emerging virtual
screening methods that utilize direct sampling of receptor conformational space through
MD-based approaches, and note that comprehensive reviews of other methods to include
receptor flexibility, including soft docking [42], sidechain rotamer libraries, docking to
relevant normal modes [43], induced fit docking [44], and more are presented elsewhere
[45–47].

COMPUTATIONALLY GENERATED ENSEMBLES FOR DRUG DISCOVERY
Dynamic Pharmacophore Model

Although the first MD simulation of a protein was performed over 30 years ago [48], the
more systematic use of the resulting conformational ensembles in a predictive fashion has
only recently been successfully demonstrated. The first experimentally verified study to use
multiple computer-generated structures in a systematic ensemble-based approach to
discovery was the multiple protein structures based dynamic pharmacophore (DPM) model
approach presented by Carlson et al. [49]. In this work, a 500 ps explicitly solvated MD
simulation of the apo HIV-1 integrase catalytic domain was performed [50] using the
AMBER95 force field [51] and the NWChem v3.2 simulation program [52]. The flexible
nature of the integrase system in the active site region precluded resolving the structure
completely crystallographically; instead, the authors used a homology model (modeled after
the complete structure of Avian Sarcoma Virus integrase) of the flexible region near the
active site. Their predicted structure (and the corresponding MD trajectory) was later
validated when two additional crystal structures of the full integrase catalytic domain were
published, showing a high degree of similarity between the predicted regions and the new
crystal information [49]. Eleven conformations from the MD trajectory were used as the
representative ensemble to create a dynamic receptor-based pharmacophore model for the
integrase system. The bare active sites were flooded with small molecule probes
representing different chemical functional groups, which essentially map the most favorable
areas in the active site, and are clustered across the ensemble of structures. The resulting
DPM was used to search the Available Chemical Database for potential inhibitors, and
rerank the known set of active compounds for the integrase. Experimental verification of the
predicted set indicated that about one third of the compounds were inhibitory and the
reranking with the DPM outperformed any single static pharmacophore.

Refinements to the DPM method were presented in an application focusing on the flexible
HIV-1 protease as a test case [53]. In this work, Meagher and Carlson showed improved
performance of the DPM to discriminate binders from non-binders with increasing lengths
of MD simulations. This result reinforced not only the importance of including receptor
flexibility in CADD efforts, but also the consideration that longer simulation lengths yield
improved results for discovery. Presumably, the longer simulation times enhanced the
conformational sampling of receptor energy landscape.
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More recently, the DPM was used to discover novel inhibitors of the MDM2-p53 protein
[54]. Snapshots extracted from a 2 ns MD simulation of the human MDM3 bound to p53
were extracted every 100 ps. These 21 structures were used to create a 6-site pharmacophore
model of the active site. A virtual screening of 35,000 in-house compounds identified 27
compounds, of which 23 were experimentally tested. Four active compounds with unique
chemical scaffolds were discovered to inhibit at 50 μM concentration or better. Interestingly,
through a close analysis of the MD simulations and crystal structures, the authors had
discovered an additional hydrophobic binding area near the known binding cleft [55].
Creating an additional pharmacophore model that utilized this site resulted in the discovery
of a fifth compound that inhibited at ~ 20 μM. The discovery of these new compounds is an
important step forward in the use of MD-generated structures in virtual screening, and
validation of the dynamic pharmacophore method.

The Relaxed Complex Scheme
Another approach of using MD-generated structural ensembles for drug discovery utilizes a
strategy referred to as the relaxed complex scheme (RCS) (Fig. 1). The RCS uses receptor
snapshots extracted from MD simulations to search ligand libaries via small molecule
docking [56, 57]. It combines the advantages of docking algorithms with dynamic structural
information provided by MD simulations, explicitly accounting for the flexibility of both the
receptor and docked ligands. This procedure directly applies the concept of conformational
ensembles in molecular recognition through docking. Increasingly longer time scale MD
simulations enhances our ability to effectively sample the receptor conformational space
prior to docking. This scheme has been developed in combination with various MD software
packages and AutoDock for the ligand docking [58], although other docking programs can
be substituted. The RCS was first applied to the FKBP binding protein [59] and tested using
improved re-scoring functions based on MM-PBSA models [56].

An important example of the method was presented in Schames et al., who performed a 2 ns
explicitly solvated MD simulation of HIV-1 integrase in complex with the 5CITEP inhibitor
[60]. The simulations revealed an additional cavity adjacent to the integrase active site (i.e. a
“trench”), and docking of 5CITEP into this new area proved to be even more favorable than
the actual active site based on the AutoDock 3.0 scoring function. Shortly thereafter, Hazuda
et al. acknowledged that this new structural understanding, in which essential interactions
occur in varying areas of the active site, was invaluable in creating new integrase inhibitors
with unique resistance profiles [61]. Just a few years (and rounds of optimization) later,
raltegravir was approved for use in humans [62]. This success story provides renewed
motivation for the development of computational methodologies that incorporate predictive
structural information for flexible receptors systematically.

ENSEMBLE SELECTION
In order to make these more rigorous yet time-consuming computational methods accessible
to a wider audience, various ways to distill the structural ensemble, and thus reduce the
requisite computational power, need to be explored. With constant improvements in
computing power and the underlying simulation algorithms, we will very soon routinely be
sampling into the microsecond timescale [63]. Performing virtual screening experiments on
the full set of resulting structures is computationally intractable and likely unnecessary. New
metrics to reduce the ensemble systematically – without losing critical structural information
– will be important. Several strategies have been developed that select structural information
from the resulting ensemble, for both the DPM and the RCS. These approaches, which range
from manual selection to more systematic mathematical techniques, both reduce the
ensemble to a manageable size and allow the extraction of the most meaningful (i.e.
biologically relevant) information.
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RMSD-BASED CLUSTERING
RMSD-based clustering has been established as an alternate metric that can be used in order
to reduce an ensemble to a meaningful set before virtual screening experiments. RMSD-
based clustering can be especially useful because it provides information about the most
dominant configurations sampled during an MD trajectory. One can argue based on statistics
that the most populated clusters of receptor structures would be more frequently encountered
by the ligand, energetically stable, and statistically meaningful. Methods remain to be
developed that could incorporate both population and energy states, when seeking to create
more minimal representative ensembles from MD trajectories.

Deng et al. presented a refinement of the DPM that combined RMSD-based clustering in a
hierarchical fashion with energetic probabilities in order to intelligently select which
structures to include in the pharmacophore model [64]. In this study, the authors performed
a 1 ns simulation of the HIV integrase in complex with the 5CITEP inhibitor, again using
homology modeling to complete part of the active site structure [65]. 1000 snapshots were
extracted from the MD trajectory at 1 ps intervals. RMSD-based clustering based on five
key active site residues was performed, followed by a relative estimation of the probability
of each MD snapshot based on a Boltzmann factor (e−ΔU/RT), wherein the energy difference
was based on the difference from the minimum energy structure [66]. The cluster with the
largest total sum of the Boltzmann factors was selected as the first cluster. The snapshots
from this first cluster were removed from the ensemble and the process repeated to
determine the second cluster, and so forth. The final computational ensemble comprised 10
receptor conformations, and collectively represented approximately 50% of the trajectory.
LigBuilder [67] was then used to create a DPM based on these 10 representative cluster
structures and Catalyst 4.6 [68] was used to search an in-house database of 400 available
chemical compounds. A final set of 23 compounds was selected for experimental assays and
9 showed inhibitory capacity at 100 μM or less. Several compounds so identified were
missed if only a static pharmacophore model was used.

Cheng et al. recently extended the RCS for virtual screening by the efficient use of RMSD-
based clustering information as well [69] In order to distill the most dominant configurations
from the MD simulations, Cheng et al. performed RMSD-based clustering on snapshots
extracted every 10 ps from two 40 ns trajectories of avian influenza N1 neuraminidase in the
apo form and in complex with the inhibitor oseltamivir [70]. Although the tetramer N1 was
used in the simulations, the clustering analyses were carried out on individual monomer
protein chains [71]. Therefore, each 40 ns tetramer simulation yielded the equivalent of four
times the monomer sampling (160 ns), yielding 16,000 structures for the analyses. To date,
this study was based on considerably longer MD trajectories than any other published
examples used in CADD (the equivalent of 160 ns for the monomer for each of the apo and
holo systems). Therefore an extensive sampling of the receptor configurational space was
achieved; in addition, the four monomer copies in the tetramer allows for a multi-copy MD
approach, which has been shown to enhance sampling as opposed to a single long trajectory
[72]. The RMSD-clustering was performed on a subset of binding-site residues and yielded
10 structures representing the apo ensemble and 5 structures representing the holo ensemble.
The central member structure from the three most dominant clusters in the apo and holo sets
were screened against the National Cancer Institute Diversity Set 1 (NCIDS1) using
AutoDock 4.0 [73]. The final ranking of all ligands from 8 primary screens was determined
by taking the weighted average of the docking scores into the full representative ensemble of
the holo MD trajectory (Fig. 2). Of the experimentally tested set of 25 compounds, 10
exhibited Ki’s of under 500 μM. Of these, 7 compounds were only selected through the
screening of the MD-generated structures, which exhibited large structural rearrangements
during simulation (Fig. 2) [74]. Eight of the compounds are predicted to at least partially
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bind to novel binding sites revealed in the simulations. This significant reordering enabled
the identification of hits that otherwise would have been missed.

In a separate system published at almost the same time, Zhong et al. performed an explicitly
solvated 5 ns MD simulation of human DNA ligase 1 using the CHARMM27 force field
[75] with CMAP corrections [76] and the CHARMM MD engine [77]. Receptor coordinates
were extracted every 5 ps (i.e. 1000 conformations total) [78]. They then performed RMSD-
based clustering on binding site residues and used representative structures from the four
largest clusters in a second round of docking. The top 50,000 compounds from the first
phase were docked using DOCK4.0 [79] into the crystal structure as well as representative
structures from the five most populated clusters. Compounds were ranked according to the
most favorable individual score from the set and 192 compounds tested experimentally. Of
the 10 active compounds discovered, nine were chosen based on MD-generated
representative clusters.

QR-FACTORIZATION
An alternate technique that has been applied to virtual screening experiments using the RCS
is QR-factorization. The technique was originally designed to remove inherent bias in
structure databases and distill, from a vast quantity of redundant information, a minimal
basis set of protein structures accurately spanning the evolutionary conformation space of a
particular protein [80]. In 2008, Amaro et al. incorporated this new method to create a
minimal basis set for the configurational space sampled in the MD simulations and used the
resulting ensemble in a virtual screening with the RNA editing ligase 1 enzyme in
Trypanosoma brucei [81]. In this work, a 20 ns explicitly solvated MD simulation
employing the Charmm27 force field [75] and the NAMD2.6 MD program [82] were
performed of the ATP-bound enzyme [83]. Snapshots of the receptor only (ATP and all
water molecules removed) were extracted every 50 ps, generating a total of 400 receptor
conformations. The QR-factorization algorithm reduced the initial set of 400 MD structures
to 33. In the first round, virtual screen of the NCIDS1 was performed using the static crystal
structure and AutoDock 4.0 [73] to dock and rank approximately 1800 compounds. In order
to take receptor flexibility into account and to validate and refine the top hits, the top 2% of
the screening hits (corresponding to the top thirty compounds), were redocked into the full
and QR-reduced holo MD-ensembles. A comparison of the mean RC energy (i.e. mean
energy from docking into all 400 snapshots) and the mean QR-RC energy (i.e. mean energy
from docking into the representative 33) for the top thirty compounds indicated that
redocking into the QR-reduced set was a more efficient way to capture the effects of
receptor flexibility without loss of energetic information. In total, 10 compounds were
experimentally tested and 5 were found to inhibit at 10 μM or better. Importantly, two of the
best inhibiting compounds would not have been selected for testing based on the crystal
structure score alone, therefore, further refinement of the predicted compounds based on the
RCS reranking provided an important enrichment of the final ranked set.

These studies clearly highlight the significance of including MD-generated conformations in
the virtual screening protocol for discovering new actives. The identification of entirely
novel modes of binding in the hit identification stage provides a key advantage over other
methods. This is especially true for very flexible receptors, in which entirely new pockets
may be revealed for potential ligand binding. The success of these predictions underscores
the importance of incorporating receptor flexibility in docking and scoring methods used in
conjunction with virtual screening.
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CURRENT CHALLENGES AND OPPORTUNITIES
Knowledge Gaps

One issue facing many of the more intensive physics-based methods is the knowledge gap
between industry and academia, as well as computational and experimental academic
groups. Despite an increasing number of academic groups working in CADD, there is still a
knowledge gap between industrial and academic groups working in the field. Similarly,
computational academic groups do not always publish with experimental validation (in this
review, we attempted to only cover computational approaches for which experimental
verification was available). The interdisciplinary nature of drug discovery begs for a close
interaction between all of these groups. It will be important to leverage knowledge from
both camps going forward if we are to maximize progress in improving the “state-of-the-
art.” In this regard, building bridges that allow the field to utilize data and insight from
industry in conjunction with new computational and theoretical methodologies being
developed in academia will be especially useful. Additionally, computational and theoretical
academicians who are pursing these more rigorous and innovative drug discovery
approaches must work more closely with experimentalists to validate their methods. More
extensive academic and industrial collaborations in the area of drug discovery for neglected
infectious diseases will also be progressively more important given the present climate
changes and an increasingly mobile world population.

Predicting Explicit Water Interactions
Another current methodological challenge in virtual screening is the inclusion of explicit
ordered water molecules. Water is well-known to play an important role in ligand binding,
either through the formation of key lubrication contacts between the receptor and ligand, or
by being displaced upon ligand binding [84]. A high percentage of high-resolution crystal
structures contain resolved water molecules in or near the active site [85], but the decision as
to whether or not to retain them in virtual screening experiments is unclear [86]. A recent
study sampling the effects of including different water molecules in docking calculations for
24 receptor targets indicated improved enrichment for approximately half of the receptors
studied [87]. A complicating consideration is the potential introduction of hydration artifacts
due to the cryogenic temperatures used to trap many receptor structures [88]. MD
simulations that include experimentally resolved water molecules can provide easily
accessible additional information about these water molecules, such as residence times and
dipole order parameters; this information could be used to determine whether to include
specific water molecules in virtual screening experiments for a given receptor. More
accurate energetic approaches, such as calculating the free energy of binding for individual
water molecules can also be considered [89]. Future MD-based ensemble approaches will
hopefully make use of the structural water information to find novel candidate compounds in
virtual screening strategies.

Promising New Ways to Enhance Sampling of the Receptor Ensemble
The ability to sample longer timescales presents yet another challenge for traditional all-
atom MD simulations, despite continuous increases in computer power. Sampling routinely
into the microsecond timescale and beyond will require the use of new and improved
techniques. New and promising emerging approaches that address the general problem of
more efficiently sampling receptor conformational space are being pursued; two approaches
in particular that we would like to highlight that have benefitted recently from a number of
applications on more realistic protein systems are accelerated molecular dynamics (AMD)
and generalized Born MD (GB MD). Through the use of a robust potential function, AMD
increases the transition of high-energy barriers without any advance knowledge of the
underlying energy landscape [90]. This promising method has been shown to sample slow
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diffusive conformational transitions [91] as well as speed rates of convergence for entropic
calculations [92]. Importantly, experimental validation of accurate, enhanced conformational
sampling through AMD has been carried out by NMR studies [93]. We anticipate that the
structures sampled with this far-reaching technique will facilitate the discovery of new
structural understandings that will lead to the discovery of novel therapeutics, and also
potentially provide more accurate estimates of the thermodynamics of binding. A second
technique to pave the way into the microsecond regime that is ready to be applied to larger
biomolecular systems, is generalized Born molecular dynamics (GB MD). GB MD, which
employs a continuum representation of the solvent water molecules and salt ions, offers
computational efficiency over the more rigorous Poisson-Boltzmann solvers or explicit
solvent simulations [94]. The implicit solvent approach essentially reduces solvent friction
and has been shown to enhance conformational sampling for a wide variety of peptide,
protein, and nucleic acid systems [95–97], and more recently, larger protein systems [98,
99]. Correspondence between GB models and experimentally derived structures has also
been established [100, 101], which, similar to AMD, makes it a good choice for extensions
of the computational receptor ensemble.

How Long is Long Enough?
A key question regarding the MD-based approaches for conformational ensemble generation
is determining for how long one should simulate. Unfortunately there does not yet appear to
be a clear-cut answer to this question. Current successful published studies range from 500
ps to 320 ns in length, which is quite a broad range of timescales. Each of the studies
presented some measure of success, mainly the identification of compounds that otherwise
would have been missed in static receptor models. One could determine enrichment factors
as a function of simulation length for a particular receptor, although it would be difficult to
generalize the findings to all possible receptors since different proteins exhibit varied
structural dynamics. Moreover, rare events that occur on longer-time scales will only be
sampled if the simulations are extended beyond the requisite time point. Including
conformational ensembles generated with accelerated sampling approaches, such as AMD or
GB MD, may shed light on this aspect. For now, the only clear answer seems to be that
including receptor flexibility to some degree, even if only explored for 1 ns of dynamics, is
better than a purely rigid model.

Application of more Rigorous Approaches for Predicting Binding Affinities
Although in virtual screening experiments success is more loosely defined as being able to
separate the binders from non-binders, a challenge intimately connected to virtual screening
is the development of methods to predict the binding affinities for a series of compounds to
a target receptor (reviewed in, among others: [102–107]). Most current methods apply the
indirect approach first suggested by Tempe and McCammon, which utilizes a simple
thermodynamic cycle for the bound and unbound receptor-ligand complex [108]. The most
rigorous treatment of receptor-ligand binding that presently exist are the so-called
“computational alchemy” techniques achieved through MD simulations, in which free
energy changes are estimated based on coupling-parameter approaches, such as free energy
perturbation or thermodynamic integration [109]. These methods describe a higher physical
complexity of the binding process and include an extensive sampling of receptor, ligand, and
solvent phase spaces 1[07, 110–119]. Importantly, these methods provide more accurate
estimates of binding free energies as well as reliable measures of their accuracy. Although
they suffer from extraordinary computational costs that essentially prohibit their mainstream
application, this too, is changing. More frequently these are being applied to larger ligand
sets, and although computational power has not advanced to the point of being able to apply
these methodologies to entire ligand libraries, they are being used to handle several dozens
of candidate compounds [120]. Additionally, these algorithms now exist as functional
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modules in the massively parallelizable MD programs Desmond (TI) [121] and NAMD
(FEP) [114], allowing the determination of accurate free energies of binding in equivalent
wall-clock time of hours-to-days, whereas serial implementations of these algorithms
traditionally require(d) weeks-to-months of computing time for a single compound. The
utilization of petascale computing infrastructures that will soon become publicly available
will continue to drive down the cost of such calculations. Faster and more approximate free-
energy based methods, such as molecular mechanics Poisson Boltzmann (generalized Born)
surface area (MM-PB(GB)SA) [122, 123], linear interaction energy [124, 125], single-step
perturbation [126–129], are less computationally intensive and thus already more easily
extendible to larger compound libraries.

CLOUD COMPUTING, GPU AND HARDWARE ACCELERATION
The increasing availability of computing power on the order of peta- to exa-FLOPS (floating
point operations per second) will make possible longer time course simulations (Fig. 3).
Currently, a 100 ns explicit solvent simulation of a 75 kDa protein can be completed in one
week on a supercomputer or a local cluster with low latency network. More rigorous
physics-based approaches are increasingly possible. The arrival of supercomputers such as
the NCSA/IBM Blue Waters with many-core architecture will enable simulations on the
order of 1~100 μs on a routine basis. The advance in general purpose graphics processing
unit (GPGPU) based processing power, where each GPU contains as many as 512 cores,
means that the age of personal supercomputer has dawned upon us. While GPGPU is still
challenging to program, it has been used successfully to achieve speedups of tomographic
reconstruction codes such as TxBR [130] or molecular dynamics codes such as NAMD
[131]. Emerging standards such as OpenCL (open computing language) will likely help
make GPGPU or cGPU (integrated CPU/GPU) even more powerful, lower the cost of use,
and increase in popularity. What used to take weeks to complete on a TFLOPS (tera-
FLOPS) supercomputer could be accomplished in days on a workstation in the near future.
More dedicated application and algorithm specific hardware acceleration for molecular
dynamics codes has achieved millisecond scale simulations [132]. Although current force
fields have yet to be rigorously tested over such longer time scale simulations, pushing time
and length scale limits coupled with experimental validation will help identify critical areas
for new methodological development.

Cloud computing refers to the on-demand availability of thousands of processors offered by
commercial service providers. Amazon Elastic Cloud 2 (EC2) is offering computation for
approximately 10 cents per hour, with enormous impact on virtual screening experiments.
Virtual screening services offered as web services are now accessible for interactive use or
batch processing of entire library of compounds with transparent access to cloud or cluster
resources [133]. The RCS will be available as a computational workflow that will be
available to a much wider audience, easily accessible to experimental biologists [134].
Commercial offerings such as the Accelrys Pipeline Pilot tailors to in house chemical
compound libraries, whereas the Vision-like environment provides a complete solution to
academic researchers in computer aided drug design. Increasingly, both academic and
commercial entities will rely on cloud-based virtual screening services that are entirely
transparent to the end users. Activities such as the World Community Grid utilize idling
computers provides another venue for virtual screening services [135]. From a practical
perspective, a brute force approach to cross-dock every resulting structure to every available
small molecule compound is counterproductive, regardless of the amount of computational
power. Better theories and more efficient computational schemes to allow the selection of
conformations most relevant to ligand binding in a predictive manner are still needed. New
algorithms such as AutoDock Vina present 10 to 100 fold speed up of AutoDock with equal
or better performance [136]. In short, the continued acceleration through algorithmic and
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hardware improvement, and cloud-based utility computing will make ensemble based virtual
screening accessible to a wider audience, and further its validation and optimization.

CONCLUSIONS
More rigorous molecular dynamics based approaches to include full receptor flexibility are
now being applied in larger-scale virtual screening applications, thanks in part to steady
increases in computational power and the development of new and improved methods
improving computational efficiency of the underlying strategies. The studies highlighted in
this review indicate that these ensemble-based methods can yield material discoveries
regardless of the choice of force field or MD program. The general correspondence
exhibited among the various strategies is a promising feature and indicative of the quality of
many of these methods. MD-generated ensemble-based techniques have the potential to
provide breakthrough discoveries for many target receptors, not only through the discovery
of potential new ligand binding areas, but also through more accurate estimates of free
energies of binding for increasingly larger ligand sets.
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Fig. 1.
General workflow for ensemble-based virtual screen experiment. Blue arrows indicate size
of data sets (i.e. increasing or decreasing) at each step; * denotes emerging methods that
have not yet been tested. (AMD: accelerated molecular dynamics, GB MD: generalized
Born molecular dynamics, RMSD: root-mean-square-deviation, ZINC – ZINC Is Not
Commerical, ACD: Available Chemical Database, NCI: National Cancer Institute, MM-
PB(GB)SA: Molecular Mechanics – Poisson-Boltzmann (Generalized Born) Surface Area).
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Fig. 2.
MD generated conformational ensemble used for virtual screening of the flexible avian
influenza neuraminidase receptor (PDB 2HU4). Closed binding pocket (orange, left panel)
from crystal structures; wide open 150- and 430-loop areas (grey, right panel) from MD
simulations [69]. Select compounds from the virtual screen are shown docked to these areas;
oseltamivir shown in dark gray (open pocket highlighted in red circle).
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Fig. 3.
Evolution of publicly available compute power since 1993. Hardware advances (machine
name, number of processors) are shown in grey, whereas system advances (example system,
number of atoms, and average timescale for simulations) are shown in white.
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