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Overview
The KCNH2 gene, or human ether-a-go-go related gene (hERG), codes for a potassium
voltage-gated ion channel [1,2]. The current through the channel is termed the rapid
component of the cardiac delayed rectifier (IKr). The KCNH2 gene is located on
chromosome 7 and has 15 exons. Mutations and variants of KCNH2 are one cause of
congenital long QT syndrome (LQTS), a rare syndrome that carries an increased risk of
cardiac arrhythmias, including the polymorphic ventricular tachycardia termed torsades de
pointes (TdP), which can be fatal [3,4]. There has also been an association between KCNH2
variants and sudden infant death syndrome [5]. Variants in many other genes, including
KCNQ1, KCNE2, and SCN5A can cause congenital LQTS. However, the syndrome of
drug-induced LQTS is most often caused by the block of the hERG channels encoded by the
KCNH2 gene [2–4,6,7]. Other rarer mechanisms for drug-associated QT prolongation and
TdP have been reported [6,8]. In addition, other conditions, such as heart block or severe
electrolyte abnormalities, can also cause QT prolongation and TdP; collectively, the drug-
induced and other forms are termed ‘acquired LQTS’ (aLQTS). For the remainder of this
summary, the gene KCNH2 and the encoded protein, hERG, will be used interchangeably.

The hERG channel consists of six helical transmembrane domains, S1–S6 [4]. The structural
determinants responsible for channel block have been identified by alanine scanning
experiments and homology modeling [9–11]. These studies found that amino acids Y652
and F656 in the pore region of the channel on helix S6 are important for the binding of drugs
and inhibitors [9–11].

There are more than 100 reported mutations in the KCNH2 gene related to congenital
LQTS. Information on these mutations can be found on several online websites, including:
the Online Mendelian Inheritance in Man database webpage for KCNH2
(http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=152427), connections for heart
hERG polymorphisms (http://www.fsm.it/cardmoc/hergpoly.htm), connections for heart
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hERG mutations (http://www.fsm.it/cardmoc/hergmut.htm), and LQTS db hERG mutations
(http://www.ssi.dk/graphics/html/lqtsdb/herg.htm). In addition, gene deletions and
duplications have been observed in patients with congenital LQTS [12,13].

However, there are very few variants and amino acid changes that have been clearly
associated with drug-induced hERG-related LQTS. A number of studies have strongly
supported the idea that variation, not only in KCNH2 but also in other cardiac ion channels
and associated genes, may predispose individuals to aLQTS [14,15]. In addition, several
population studies have reported that KCNH2 haplotypes modulate variability in the QT
interval [16–18]. A more detailed discussion of two KCNH2 variants related to drug
response can be found later in this summary.

hERG/IKr inhibitors
Virtually all drugs that cause drug-induced QT prolongation are KCNH2/IKr blockers [4,7].
Eight drugs (astemizole, sertindole, terfenadine, cisapride, grepafloxacin, terodiline,
lidoflazine, levomethadyl) have been removed from the market because of the risk of
aLQTS and fatal TdP [1,19]; and a ninth, droperidol, has received highly restrictive labeling
[1].

As a result of these events, testing for hERG blocking activity and subsequent evaluations
for QT interval prolonging potential are routine in the pharmaceutical industry and such
screening has resulted in halting the drug development of compounds that exhibit these
potentially undesirable effects [4,20].

Inhibitors of hERG/IKr include amiodarone [14], astemizole [1,19,21–23] and its metabolite
desmethylastemizole [22], cisapride [1,9,19,21,23,24], disopyramide [25], dofetilide [26,27],
erythromycin [28,29], fluoxetine [30], grepafloxacin [1,19,21,23], haloperidol half maximal
inhibitory concentration (IC50) approximately 63 nmol/l [31], hydroxyzine [32], ibutilide
[25]; levomethadyl [1,23], lidoflazine IC50 less than 37 nmol/l [1,31], methadone [33];
mibefradil [23], moxifloxacin [28], perhexiline [29], pimozide IC50 approximately 18 nmol/l
[34], prenylamine IC50 approximately 590 nmol/l [31], probucol [35], quinidine [25,29];
risperidone IC50 167 nmol/l [34], sertindole IC50 approximately 3 nmol/l [34], IC50
approximately 210 nmol/l [31], sotalol [25,29], telithromycin [28], terfenadine IC50 less
than 52 nmol/l [31], [1,9,21,23], terodiline [1,19,21], thioridazine IC50 approximately 191
nmol/l [34], IC50 approximately 224 nmol/l [36], ziprasidone IC50 approximately 169 nmol/l
[34].

Weak inhibitors of hERG/IKr (IC50 >1 μmol/l) include arsenic trioxide IKr approximately
300 μmol/l [31], chlorpheniramine IC50 approximately 13 μmol/l [31], cimetidine IC50
greater than 10 μmol/l [31], doxepin IC50 approximately 4 μmol/l [37], loratadine IC50
approximately 4 μmol/l [31], lovastatin IC50 approximately 7 μmol/l [31], olanzapine IC50
approximately 6013 nmol/l [34], pentamidine Iherg approximately 1 mmol/l [31],
procainamide IC50 approximately 139 μmol/l [38], pyrilamine IC50 approximately 6 μmol/l
[31], quetiapine IC50 approximately 5765 nmol/l [34], sparfloxacin (fluoroquinolone) IC50
approximately 18 μmol/l [34,39].

Drugs that prolong QT interval by reducing cell surface KCNH2 expression include
pentamidine [40], arsenic trioxide [41].

KCNH2 variants and their functional consequences
The discussion below focuses on two well-studied variants related to drug-induced LQTS:
KCNH2: K897T (Lys897Thr); rs1805123; KCNH2:1670A > C and KCNH2: R1047L
(Arg1047Leu); rs36210421; KCNH2:2120G > T.
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Minor allele frequencies for both variants are reported in Table 1 at end of the summary.

KCNH2: K897T (Lys897Thr); rs1805123; KCNH2:1670A > C
K897T (rs1805123) has been shown, in several studies, to be associated with longer [17,44],
or shorter QT intervals [45–47]. K897T was also shown to create a phosphorylation site that
inhibited channel activity, independent of drug binding [48]. But, in another small study, the
impact of common KCNH2 polymorphisms, including K897T as well as P967L, R1047L
(rs36210421) and Q1068R were found to have no significant differences in cisapride IC50
values or Hill coefficients (compared with wild type) [42]. The K897 allele has been
associated with higher incidence of atrial fibrillation, in a study conducted without drugs
[49].

KCNH2: R1047L (Arg1047Leu); rs36210421; KCNH2:2120G > T
This variant has been implicated in sensitivity to the IKr blocker dofetilide [26]. However, in
in vitro studies using variant protein, sensitivity to another blocker, cisapride, was similar to
wild-type protein [42]. Another study showed that the R1047L mutation impaired K +
current density [50]. Additional information is available at
http://www.pharmgkb.org/search/annotatedGene/kcnh2/
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