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Abstract
Alzheimer’s disease (AD) is marked by an increase in the production of extracellular beta amyloid
plaques and intracellular neurofibrillary tangles associated with a decline in brain function.
Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the
source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides
(Aβ) impact oxidative stress have not been adequately investigated. Recent studies provide strong
evidence for the involvement of NADPH oxidase and its downstream oxidative signaling
pathways in the toxic effects elicited by Aβ. ROS produced by NADPH oxidase activate multiple
signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This
review describes recent studies demonstrating the neurotoxic effects of Aβ in conjunction with
ROS produced by NADPH oxidase and the downstream pathways leading to activation of
cytosolic phospholipase A2 (PLA2) and secretory PLA2. In addition, this review also describes
recent studies using botanical antioxidants to protect against oxidative damage associated with
AD. Investigating the metabolic and signaling pathways involving Aβ NADPH oxidase and PLA2
can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress
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in AD. This information should provide new therapeutic approaches for prevention of this
debilitating disease.
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Increase in Oxidative Stress Is an Early Sign of AD Pathogenesis
Alzheimer’s disease (AD) is the most prominent age-related neurodegenerative disease
characterized by accumulation of beta amyloid plaques and intracellular neurofibrillary
tangles in the brain. Impairment of cognitive function and memory in this disease is
attributed to degeneration of synapses in specific brain regions [1]. Although manifestations
of AD have been shown to involve multiple factors, including inherent genetic mutations
and environmental conditions, increases in oxidative stress associated with amyloid beta
peptide (Aβ) accumulation are considered important underlying factors in the development
of this disease [2–5]. Aβ peptides are comprised of 39–43 amino acids and are generated by
proteolytic cleavage of amyloid precursor protein (APP) by beta and gamma secretases.
Considerable evidence indicates that the cytotoxic effects of Aβ are due to its aggregation to
the oligomeric form and not the monomeric or fibrillar forms [6–8]. Oligomeric Aβ can
diffuse into cells and alter cellular pathways leading to disruption of synaptic plasticity and
inhibition of long-term potentiation [9]. These abnormalities occur before the appearance of
Aβ plaques [10].

A number of studies have attempted to elucidate the mechanism(s) whereby Aβ enhances
reactive oxygen species (ROS) production and stimulates oxidative signaling pathways in
the AD brain. Studies using redox proteomics have identified oxidatively modified proteins
as early markers of AD pathogenesis [11]. Earlier studies by Butterfield [12] implicated the
possible role of methionine-35 residue of Aβ in conferring neurotoxicity. Transgenic
PDAPP mice with an M631L mutation in the APP molecule (corresponding to M35 in Aβ)
showed markedly decreased oxidative indices and immunoreactive plaques. Interestingly,
this mutation did not prevent memory loss in this mouse model of AD [13]. In recent years,
studies have provided compelling evidence for the role of oxidative stress in sustained
inflammatory responses in the AD brain [14–20]. Novel strategies have been proposed to
prevent neuronal damage due to oxidative stress [21].

Phospholipases A2 in AD—a Link to Oxidative and Pro-inflammatory
Pathways

Phospholipases A2 (PLA2) are ubiquitous enzymes known for their role in the maintenance
of cell membrane integrity and the production of lipid mediators that regulate cell functions
[22, 23]. More than 20 species of PLA2 are present in mammalian cells and are categorized
as Ca2+-dependent cytosolic (cPLA2), Ca2+-independent (iPLA2), and secretory (sPLA2)
subtypes. In the central nervous system (CNS), PLA2 activity has been implicated to play an
important role in neurodegenerative diseases [24]. Recent studies also linked PLA2 activity
to ROS production and lipid peroxidation. A major objective of this review is to describe
recent studies linking cPLA2 and sPLA2 to oxidative pathways in AD.

Cytosolic Phospholipase A2
In earlier studies, an increase in functional cPLA2 protein or mRNA expression in AD brain
has been demonstrated by immunohistochemical analysis [25, 26], reverse transcriptase
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polymerase chain reaction [27] or detection of lipid hydrolysates [28]. cPLA2 activity is
regulated by a number of protein kinases, which phosphorylate the protein on specific serine
residues. Extracellular signal-regulated kinase (ERK)-dependent cPLA2 phosphorylation on
Ser505 is critical for cPLA2 activity [29]. However, studies to determine cPLA2 activity in
human AD brain have provided for contrasting results. For example, increases in levels of
activated cPLA2 were observed in the hippocampus of human AD brain and in the hAPP
mouse model of AD [30]. The increase in cPLA2 activity in AD brain was marked by the
increase in 4-hydroxynonenal, an index of lipid peroxidation [31, 32]. On the contrary, other
studies indicated a reduction in cPLA2 activity in blood and brain samples from AD patients
[33]. During the early stages of AD, cognitive impairment associated with aberrant
cholinergic and glutamatergic activities has been linked to a decrease in both cPLA2 and
iPLA2 activities [34]. A study utilizing magnetic resonance imaging also demonstrated
reduced phospholipid turnover in the pre-frontal cortex of AD patients [35]. Furthermore,
decreased cPLA2 activity was found in cerebrospinal fluid from AD, vascular, and mixed
AD–vascular demented patients, as compared to healthy controls [33]. Although the reason
for the differences in results is not yet clear, it is recognized that this enzyme is regulated by
complex factors depending on the cell types and intracellular signaling pathways. Since
cPLA2 and its hydrolytic products are critically important in maintenance of phospholipids
in cell membrane, more studies are needed to understand cell specific factors regulating
cPLA2 under physiological and pathological conditions.

Secretory Phospholipase A2
Mammalian sPLA2s are generally small molecular weight proteins (~14–19 kDa) with six to
eight disulfide bridges. There are more than ten isoforms of sPLA2s in mammals including
groups IA-B, IIA-F, III, V, IX, X, XIA-B, XII, XIII, and XIV [22, 36]. Recent studies have
focused on sPLA2-IIA because this sPLA2 is a pro-inflammatory protein and is upregulated
in coronary artery diseases, atherosclerosis, sepsis, arthritis, and infection [37]. In rodents,
most studies on sPLA2-IIA are limited to rats because many mouse strains lack functional
sPLA2-IIA [38]. Transgenic mice overexpressing human sPLA2-IIA showed increases in
hepatic cholesterol and in collagen deposits in macrophages, suggesting a pro-inflammatory
role for this protein [39, 40]. Our studies indicated upregulation of sPLA2-IIA in reactive
astrocytes in response to injury due to focal cerebral ischemia in rats [41]. In a subsequent
study, we also showed an increase in sPLA2-IIA mRNA expression in AD brain as
compared to age-matched controls [42]. These results are in agreement with the recent
report indicating an increase in sPLA2 activity in cerebrospinal fluid of AD patients as
compared to healthy control subjects [43].

Substantial cross-talk seems to exist between the path-ways that regulate the expression/
activation of cPLA2- and sPLA2-dependent inflammatory responses [44]. It appears that this
cross-talk is linked to oxidative stress mediated by NADPH oxidase [45].

NADPH Oxidase is an Important Source of Oxidative Stress in the CNS and
in AD

Recent studies have demonstrated the role of NADPH oxidase as an important
nonmitochondrial source of ROS in many cell and tissue types, including the CNS [46–48].
Although NADPH oxidase activity is necessary for cell signaling under physiological
conditions, its hyperactivation has been shown to contribute to the pathogenesis of a variety
of diseases, including neurodegenerative diseases including vascular and neurodegenerative
diseases and stroke [49, 50].
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There are at least seven known isoforms of NADPH oxidases, NOX1-5, and Duox1 and 2,
each with a unique combination of subunits [51]. NOX2 is well studied in phagocytic cells,
macrophages, and endothelial cells and is comprised of the subunits p47phox, p67phox,
p40phox, and Rac 1 in the cytosol and gp91phox and p22phox in the membrane fraction
(plasma membranes or other subcellular membranes). Activation of NOX2 is dependent on
phosphorylation of the cytosolic subunits, e.g., phosphorylation of p47phox by protein
kinase C in human monocytes [52] and by Src-mediated tyrosine kinase in lung endothelial
cells [53]. Subsequently, the cytosolic subunits form a complex and translocated to the
membrane-associated gp91phox subunit. The gp91phox subunit has six trans-membrane
domains and four heme-binding histidines in transmembrane domains III and V (see Bokoch
et al. [54] for a recent review). FAD-binding and NADPH-binding domains are present in
the carboxy-terminus of gp91phox [55]. NOX1, 2, and 4 are expressed in neurons,
astrocytes, and microglia in the CNS [48]. Although the subcellular sites of NOX isoform
expression in cells in the central nervous system have not been clearly determined, recent
studies suggest that multiple NOX isoforms can be expressed within the same cell [56].

Recent studies have demonstrated the ability for Aβ to upregulate different NADPH oxidase
subunits in microglial cells and increase enzyme activity in AD patients as compared to age-
matched controls [57–59]. These studies suggest a relationship between ROS produced from
NADPH oxidase and oxidative stress in AD.

Involvement of NADPH Oxidase and cPLA2 in N-Methyl-D-Aspartic Acid-
Induced Neuronal Excitotoxicity

Recent studies with cultured neurons have demonstrated the involvement of NADPH
oxidase in excitotoxicity induced by ionotropic glutamate receptors, including the N-methyl-
D-aspartic acid (NMDA) subtype [50, 60–62]. NMDA-induced activation of NADPH
oxidase can trigger signaling pathways leading to activation of ERK1/2 [63], the protein
kinase required for activation of cPLA2 (Fig. 1). Studies in our laboratory with primary
cortical neurons demonstrated that oligomeric Aβ can induce ROS production through
NADPH oxidase. In turn, ROS from NADPH oxidase can stimulate ERK1/2
phosphorylation and activation of cPLA2 and result in a release of arachidonic acid (AA)
[61]. This study further demonstrated that the excitotoxic effect of Aβ is inhibited by
NMDA receptor antagonists, including memantine, a drug used to treat AD patients.
Stimulation of this signaling pathway should have important physiological consequences
since (1) cPLA2 activation modulates membrane phospholipid homeostasis that is known to
be altered in a number of neurodegenerative diseases [64, 65], (2) cPLA2-dependent
production of AA leads to an increase in the synthesis of bioactive eicosanoids [66, 67], (3)
AA itself can act as a retrograde messenger in neurons thereby modulating learning and
memory processes [68], and (4) lysophospholipids, e.g., lysophosphatidylcholine, produced
by cPLA2 may alter the membrane microenvironment and thereby further alter membrane
protein functions [36, 69].

The involvement of cPLA2 in neuronal excitotoxicity, dysfunction, and death in vivo and in
vitro has been suggested by several studies. However, despite some indirect evidence, the
mechanism whereby cPLA2 alters mitochondrial membrane and triggers mitochondrial
apoptotic pathways remains to be investigated. A study by Kriem et al. demonstrated the
role of cPLA2 in mediating neuronal apoptosis induced by oligomeric Aβ [70]. Using
selective inhibitors, cPLA2 and iPLA2 were shown to play a role in Aβ-mediated loss of
mitochondrial membrane potential and increase in ROS in astrocytes [71]. Neurons from
cPLA2 knockout (KO) mice show less NMDA-induced injury as compared with wild-type
controls [72]. Transgenic mice overexpressing human APP in neurons exhibited a reduced
deficit in learning, memory, and behavioral dysfunctions and diminished Aβ-induced
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neurotoxicity when crossed with cPLA2 KO mice [30]. Similar reduction of Aβ-induced
neurotoxicity was observed using cPLA2 inhibitors [70]. Furthermore, squalestatin was
shown to be neuroprotective against Aβ-induced neurotoxicity by inhibiting cPLA2
activation [73].

Although there is convincing evidence suggesting a role for glial cell NADPH oxidase in
Aβ-induced neurotoxicity [74], relatively few studies have investigated the role of NADPH
oxidase in neurons. Antisense oligonucleotide knockdown of p22phox expression inhibited
Aβ-induced neuronal apoptosis [75]. The NADPH oxidase inhibitor apocynin was also
effective in diminishing the cytotoxic effects of Aβ [76]. Furthermore, diminished oxidative
stress, neurovascular dysfunction, and behavioral deficits were observed in the Tg2576
mouse model of AD when these mice were crossed with gp91phox KO mice [77].

NADPH Oxidase and cPLA2 and sPLA2 in Glial Cells
Relatively high levels of NADPH oxidase are found in astrocytes and microglial cells, as
compared with neurons, and ROS produced from glial cells has been shown to cause
neuronal damage [74, 78]. ROS produced by NADPH oxidase modulates the cytokine-
induced activation of NF-κB, a transcription factor that regulates the expression of pro-
inflammatory genes, including cyclooxygenase-2 (COX-2), sPLA2-IIA, and inducible nitric
oxide synthase (iNOS; Fig. 2). Our studies showed that IL-1β-induced sPLA2-IIA mRNA
and protein expression in rat astrocytes could be inhibited by polyphenol antioxidants and
apocynin, a known NADPH oxidase inhibitor [79]. These results are consistent with other
studies indicating that Aβ and cytokines potentiate ROS production via NADPH oxidase
activation in glial cells [80, 81]. Arachidonic acid is another activator of NADPH oxidase
that causes superoxide release from microglia and induces their proliferation [82]. Using
neuron–glial cell coculture, per-oxynitrite was shown to be produced by NO release from
iNOS and ROS from NADPH oxidase in glial cells, and peroxynitrite is the potent cytotoxic
factor that kills neurons.

Although studies with phagocytes indicate that cPLA2 targets NADPH oxidase [83, 84], the
role of cPLA2 in the activation of NADPH oxidase in neurons and glial cells has not been
well characterized. Studies with neutrophils demonstrate the formation of a complex
between the C2 domain of cPLA2 and the p47 phox-PX domain of NADPH oxidase [84]. In
BV-2 microglial cells, which lacks sPLA2-IIA, Aβ could induce activation of NADPH
oxidase and this was linked to a rapid increase in cPLA2 phosphorylation and a delayed
increase in expression which was attributed to the NF-κB pathway. Aβ also enhanced
production of PGE2 through conversion of AA by COX-2. In this study, Aβ also led to
induction of iNOS and release of NO, but this was thought to be mediated through activation
of the PGE2 receptor and the down-stream PKA-CREB pathway. Interestingly, inhibition of
cPLA2 by antisense led to a decrease in NADPH oxidase activity and release of superoxides,
PGE2 formation, iNOS expression, and NO production [85]. Taken together, this study
provided results demonstrating a close relationship between NADPH oxidase and cPLA2 in
Aβ-mediated inflammatory responses in microglial cells.

In wild-type mice, Aβ-induced neurotoxicity is enhanced by microglia that produce
superoxide from NADPH oxidase, a response that is inhibited in gp91phox KO mice [78].
Aβ also has been shown to increase ROS production in astrocytes through the calcium-
dependent activation of NADPH oxidase, and oxidative stress results in glutathione
depletion and neuronal death [86]. Peroxynitrite appears to be an important factor mediating
neurotoxicity in vitro [87] since generation of pathophysiological concentrations of
superoxide and NO are necessary but not sufficient to induce neurodegeneration [88]. It is
noted that these studies do not exclude the possibility that neurotoxicity is mediated by other

Simonyi et al. Page 5

Mol Neurobiol. Author manuscript; available in PMC 2011 May 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



factors, such as pro-inflammatory cytokines and protein modification through cysteine S-
nitrosylation [89–92].

Targeting NADPH Oxidase Activity for Neurodegenerative Diseases
Recognition of the important role of NADPH oxidase in generating ROS that regulate
receptor signaling pathways has highlighted an urgent need to develop novel approaches and
pharmacological agents to regulate this enzyme system [93, 94]. In this regard, it is
important to identify compounds that directly modulate the activities of NADPH oxidase,
either through binding to specific protein subunits or through scavenging the ROS produced.
The recent study by Jaquet et al. provided a list of small molecules useful as NOX inhibitors
[95]. Although compounds such as diphenyleneiodonium, apocynin, atorvastatin, and 4-(2-
amino-ethyl)benzenesulfonyl fluoride have been used to inhibit NADPH oxidase, these
compounds are rather nonspecific. On the other hand, gp91ds-tat, a peptide inhibitor, can
specifically block NOX2 [48]. Since different cell types can produce different amount of
ROS, it is also important to develop cell-special inhibitors for NADPH oxidase, in
particular, for targeting microglial cells [96, 97]. Of particular interest is dextromethorphan,
a noncompetitive NMDA receptor antagonist and antitussive agent that has been shown to
inhibit several NADPH oxidase-mediated responses, including degeneration of
dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinson’s model
and endotoxic shock in mice [98, 99]. Another approach is to inhibit NADPH oxidase-
mediated responses including inflammation and oxidative stress by nutritional means using
natural products from plants [100]. Indeed, the use of plant antioxidants has gained
considerable popularity in recent years [95].

Prevention of Neurodegenerative Diseases by Natural Antioxidants
Fruits and vegetables are known to contain phenolic compounds that exhibit antioxidant
properties and have been shown to exert health benefits and reduce risk of major diseases,
including cardiovascular and neurodegenerative diseases (see review in [101]). The
underlying mechanisms for neuroprotection, however, remain incompletely understood but
likely involve the ability of polyphenols and plant extracts to scavenge ROS and counteract
Aβ formation/aggregation directly or indirectly [102, 103]. Some phytochemicals may exert
neurohormetic effects and protect neurons from injury by upregulating cell survival
pathways [104]. There is also evidence that some polyphenols, such as curcumin, may
inhibit Aβ fibril formation and destabilize preformed fibril Aβ [102, 105–107]. Other studies
have demonstrated that some natural products provide neuroprotection by targeting multiple
cellular signaling pathways [108, 109]. Recent in vitro and in vivo studies have indicated
that purified botanical compounds or plant extracts effectively prevent Aβ-induced
neurotoxicity (Table 1) as well as provide neuroprotection in animal models of AD (Table
2). Since our recent review has described the use of phenolic compounds such as resveratrol,
curcumin, and apocynin as neuroprotective agents [101], these compounds are not included
in Tables 1 and 2.

Dietary flavonoids are potent inhibitors of NADPH oxidase. Figure 3 shows the chemical
structures of some flavonoids as described in Table 1. A study of 45 compounds indicated
that flavanols inhibit NADPH oxidase through an apocynin-like mechanism [110]. Other
studies demonstrate the ability of dietary polyphenols to inhibit NADPH oxidase, suggesting
that these polyphenols may serve as novel therapeutic agents in neuroinflammation [111].
Some polyphenols, like those from grape seed extract, also have been shown to regulate
NADPH oxidase subunit expression [112].

Dreiseitel et al. used a kinetic photometric model to compare the potency of a number of
anthocyanidins for inhibition of sPLA2 [113]. Anthocyanidins have been shown to
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ameliorate cognitive deficits in AD patients and improve immunocompetency of these
patients [114]. The polyphenol genistein was shown to be a potent inhibitor of sPLA2 in
inflammatory exudates and in snake venom-induced mouse paw edema [115]. It appears that
anti-inflammatory activities of many plant flavonoids are associated with inhibition of PLA2
[116]. These studies provide strong rationale to search for novel compounds as specific
inhibitors of PLA2s [117–121].

Summary
In summary, AD progression is marked by an increase in oxidative stress and chronic
inflammation that is attributed in part to the toxic effects of Aβ. Studies in recent years have
identified NADPH oxidase as an important source of ROS that contributes to Aβ-induced
neuronal damage and glial cell activation. ROS produced by NADPH oxidase activate
MAPK and subsequently cPLA2, a key enzyme that releases AA from phospholipids for the
synthesis of eicosanoids (Fig. 1). cPLA2 activation and AA release have been associated
with neuronal excitotoxicity, impairment of mitochondrial dysfunction, and neuronal
apoptosis. In addition, ROS produced by NADPH oxidase can activate NF-κB to promote
pro-inflammatory gene transcription, thereby enhancing the synthesis of sPLA2, iNOS, and
COX-2, enzymes that play a role in neurodegenerative diseases (Fig. 2). There is compelling
evidence for the beneficial effects of antioxidants from botanical sources as inhibitors of
NADPH oxidase and PLA2, and these polyphenolic compounds may become useful
therapeutic agents to alleviate oxidative stress and chronic inflammation in
neurodegenerative diseases, including AD.
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Fig. 1.
The role of Aβ in the coupling of NADPH oxidase and NMDA receptor signaling pathways
in neurons
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Fig. 2.
Effects of Aβ on cytokine-induced inflammatory responses in glial cells: the role of NADPH
oxidase
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Fig. 3.
Chemical structures of some flavonoids described in Table 1
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Table 1

Polyphenols and botanical extracts tested against amyloid-beta toxicity

Polyphenol/plant name Cell type Effects References

Apigenin Cortical neurons + [122]

Baicalein PC12 cells + [123]

[124]

Biflavonoids SH-SY5Y cells +/− [125]

Catechin PC12 cells + [126]

[127]

Cortical neurons + [128]

Cocoa PC12 cells + [127]

 Cyanidin 3-O-glucoside SH-SY5Y cells + [129]

Daidzein Hippocampal neurons +/− [130]

EGCG PC12 cells + [131]

Hippocampal neurons + [132]

[133]

Epicatechin PC12 cells + [127]

[124]

Cortical neurons + [128]

Hippocampal neurons − [133]

Gallic acid Hippocampal neurons + [133]

Genistein SH-SY5Y cells + [134]

Hippocampal neurons +/− [130]

Hippocampal neurons +/− [135]

Cortical neurons + [136]

− [122]

Ginkgo biloba (EGb 761) Hippocampal neurons + [137]

N2a neuroblastoma + [138]

SH-SY5Y cells + [139]

PC12 cells +/− [140]

Grape seed PC12 cells + [141]

[142]

Hibifolin Cortical neurons + [143]

PC12 cells + [124]

Hypericum perforatum Hippocampal neurons + [144]

Icaritin Cortical neurons + [145]

Kaempferol PC12 cells + [146]

[124]

Cortical neurons + [122]

Morin HT22 neuroblastoma + [106]

Mulberry (leaf extract) Hippocampal neurons + [147]

Myricetin Cortical neurons + [148]

Mol Neurobiol. Author manuscript; available in PMC 2011 May 3.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Simonyi et al. Page 22

Polyphenol/plant name Cell type Effects References

Naringenin PC12 cells + [149]

− [124]

Cortical neurons − [122]

Puerarin PC12 cells + [150]

Pycnogenol PC12 cells + [151]

Quercetin Cortical neurons +/− [152]

− [122]

HT22 neuroblastoma + [106]

Rhizoma acori graminei PC12 cells + [153]

Scutellarin PC12 cells + [124]

Smilacis chinae Cortical neurons + [128]

Tea extracts Hippocampal neurons + [133]
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Table 2

Polyphenols and botanical extracts tested in AD animal models

Polyphenol/plant name Animal model Effects References

Bacopa monniera PSAPP mice + [154]

Baicalein Aβ infusion (i.c.v.) mice + [155]

Blueberry Tg2576 mice + [156]

Cabernet Savignon Tg2576 mice + [157]

EGCG Tg2576 mice + [158]

[159]

Aβ infusion (i.c.v.) mice + [160]

PS2 mice + [160]

LPS (i.c.v.) mice + [160]

Epicatechin Aβ infusion (CA1) rats + [161]

Ferulic acid Aβ infusion (i.c.v.) mice + [162]

[163]

[164]

Tg2576 mice − [165]

Fustin Aβ infusion (i.c.v.) mice + [166]

Garlic Tg2576 mice + [167]

[168]

TgCRND8 mice + [169]

Ginkgo biloba Tg2576 mice + [170]

[171]

TgAPP/PS1 mice + [172]

[173]

Ginseng Tg2576 mice + [174]

Ginsenoside Rb1or M1Aβ infusion (i.c.v.) mice + [175]

Glycyrrhiza uralensis Aβ infusion (i.c.v.) mice + [176]

Grape seed Tg2576 mice + [177]

Green tea catechins Aβ infusion (i.c.v.) rats + [178]

Luteolin Aβ infusion (i.c.v.) mice + [179]

Nobiletin APP–SL 7–5 mice + [180]

Aβ infusion (i.c.v.) rats + [181]

Oroxylin A Aβ infusion (i.c.v.) mice + [118]

Pomegranate Tg2576 mice + [182]

Rosmarinic acid Tg2576 mice + [165]

Silibinin Aβ infusion (i.c.v.) mice + [183]

Soy isoflavone Aβ infusion (i.c.v.) rats + [184]
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